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METRIZABILITY OF ORDERED ADDITIVE GROUPS

By

Chuan Liu* and Yoshio TANAKA

Abstract. In terms of General Topology, we consider ordered
additive groups having the order topology, including ordered fields.
Namely, we investigate metrizability of these groups or fields, and
topological properties of ordered fields in terms of Archimedes’
axiom or the axiom of continuity. Also, we give a negative answer to
a question in [9]. Finally, we revise the proof of [2, Theorem 2.6],
and give some related results.

1. Introduction

As is well-known, an ordered field is a field which has a linear (total) order
and the order topology by this order. Ordered fields have played important roles
in the theory of real numbers in terms of Archimedes’ axiom or the axiom of
continuity.

In terms of General Topology, we consider ordered additive groups as a
generalization of ordered fields, and we investigate metrizability of these groups.
Then, we give characterizations for ordered fields to be metrizable, or satisfy the
above axioms. Besides, we give a negative answer to a question in [9]. Finally, we
revise the proof of D. E. Dobbs’ result [2, Theorem 2.6], and simplify the proof
of the result. Also, we give some related results.

Let R; Q; and N be respectively the usual real number field; rational number
field; and the set of natural numbers.

We assume that all (topological) spaces are Hausdorff. We give main def-
initions used in this paper. Let X be a set which is linearly ordered (or, totally
ordered) by <. For a,be X with a < b, define the intervals (a,b), [a,b] in X
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by the same way as in R, and especially (a,0) ={xeX :x>a},(—w0,a) =
{xe X :x < a}. (X,<) is a linearly ordered topological space or a LOTS if X has
the subbase {(a, ), (—00,a):ae X}. Such a topology on X is called the order
topology. 1t is well-known that every LOTS is hereditarily (collectionwise) normal.
For LOTS, see [3, 5], etc.

Let G (or, (G,+)) be an Abelian group (i.e., commutative group which is
additive). Let us say that G is an ordered additive group (cf. [9]) if G has a linear
order < such that the order is preserving with respect to addition (i.e., for a < b,
a+x < b+x), and G has the order topology by the order < (hence (G, <) is a
LOTS). For x € G, define |x| € G by |x| = x if x > 0, and |x| = —x if x < 0. Then,
for x,y € G, |x+ y| < |x| + |p| holds. For a commutative field (K,+, x) with a
linear order <, K is an ordered field if (K, +, <) is an ordered additive group, and
the order < is also preserving with respect to multiplication (i.e., for a < b and
0 <x, axx<bxx). Any ordered field contains no isolated points. Ordered
fields play important roles in the theory of the field R.

Let (G,-) be a group. Then G is a topological group if it is a space, and the
group operation of G is continuous; that is, for the map (a,b) — a-b~! from the
product space G x G to G is continuous. As is well-known, every topological
group is homogeneous.

2. Results

We investigate metrizability of ordered additive groups and ordered fields.
Also, we consider topological properties of ordered fields in terms of Archimedes’
axiom or the axiom of continuity.

PropoSITION 2.1.  Every ordered additive group (G,+,<) is a topological
group. When G is an ordered field (G,+, x, <), moreover the multiplication map
(a,b) — a x b and the multiplication inverse map a— a=' (a # 0) are continuous.

Proor. This is folkloric or well-known, but let us give a proof. We can
assume G is not discrete. Then for some p e G, p € c/(G\{p}). Let A = {|x — p|:
xe G\{p}}. Let a,beG. For each ¢>0 (¢€G), take de A with d+J <e.
Then, for |x —al,|y —b| <9, |(x—y)— (a—b)| <e This shows (G,+,<) is a
topological group. The latter part holds by the & method as in R (cf. [2,
Lemma 2.1]). ]

Every LOTS topological group is hereditarily paracompact by [6, Theorem §]
(which is valid with respect to addition). Thus, the following holds.
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COROLLARY 2.1.  Every ordered additive group (in particular, ordered field) is
homogeneous, and hereditarily paracompact.

A space X is a P-space if all Gs-sets are open in X (equivalently, all F,-sets
are closed in X). In terms of Proposition 2.1, the following lemma is shown by a
(folkloric) metrization theorem for LOTS topological groups (see [6, Remark 10]
(which is valid with respect to addition)).

LeEMMA 2.1. Every ordered additive group G is metrizable or a P-space.

PrOOF. Suppose G is not a P-space. Then there exists a Gs-set 4 = ﬂnil U,
with U, open such that for some p € A, any neighborhood of p is not contained
in A. Suppose x(p,G)(= min{|%B|: # is a local base at p}) > w. Since G is a
LOTS, G has a decreasing local base {I,: o < x} at p by open intervals in G.
For each ne N, pick I, < U,. Since y(p,G) > w, there exists f < k which is
larger than any a,. Then p eIz = A. Hence 4 contains a neighborhood of p, a
contradiction. Hence y(p,G) = w. Thus G is first countable by Corollary 2.1.
Then G is metrizable by a classical theorem that every first countable topological
group is metrizable (this is valid with respect to the addition in view of [5, VL.5]).

O

ReEmARk 2.1. Tt is well-known that every compact, LOTS, topological group
is metrizable. But, as well known, every compact, connected, LOTS need not be
metrizable ([3, 3.12.3(d)]), hence, not be a P-space. We have the same if we
replace “LOTS” by ““topological Abelian group”. Indeed, let S be the circle in
the plane. Then S is a topological Abelian group. Let G be the product S“' of w;
many copies of S. Then G is a compact, connected, topological Abelian group
with respect to coordinate addition, but G is not metrizable, nor a P-space since
G contains a non-metrizable set {p,¢}“".

Also, not every ordered field is metrizable by the following: For a completely
regular space X, let C(X) be the (partially ordered) ring of all continuous func-
tions from X into R. For a maximal ideal M in C(X), let K= C(X)/M be
the residue class ring. Then K is an ordered field (see [4, 5.4(c)]). In view of
Theorems 5.5 and 13.8 in [4], K is (order-preserving) isomorphic (equivalently,
homeomorphic) to R, otherwise K is a P-space (hence not metrizable). Thus, if X
is not pseudo-compact (i.e., C(X) contains an unbounded function), there exists a
non-metrizable ordered field K = C(X)/M by [4, Theorem 5.8(b)]. (For X = N,
such an ordered field K is directly shown by [9, Example 2)).
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A space X is a k-space if F < X is closed if and only if FNC is closed in
C for every compact subset C of X. Locally compact spaces or first-countable
spaces are k-spaces.

PRrROPOSITION 2.2. Let G be a non-discrete ordered additive group. Then (a),
(b), and (c) below are equivalent (cf. [9]). When G is an ordered field, (a)~(d) below
are equivalent (cf. [2] for (a) < (c)).

(a) G is metrizable.

(b) G contains an infinite countably compact set (in particular, G is a k-space).
(c) G contains a countable set A having an accumulation point p € G.

(d) G contains a countable set B having no upper (or no lower) bounds.

PrOOF. (a) = (b) = (c) is obvious. For the parenthetic part in (b), since G
is not discrete, G contains some infinite compact subset. For (c)= (a), the
countable set 4 — {p} is not closed in G, hence G is not a P-space. Thus, G
is metrizable by Lemma 2.1. When G is an ordered field, for (c) = (d), the
countable set {1/|a — p|:a€ A,a # p} has no upper bounds. For (d) = (c), the
countable set {1/b:b e B b # 0} has an accumulation point 0 € G. O

PRrROPOSITION 2.3.  Let G be an ordered additive group. Then (a)~(e) below are
equivalent. When G is an ordered field, (a)~(f) below are equivalent (cf. [9] for
(a) & (b) = (f)).

(a) G is separable and metrizable.

(b) G is separable.

(c) G—{0} is Lindelof.

(d) G is a Lindeléf space with x(0,G) = w.
(e) G is a Lindeldf space with x(0,G) # wy.
(f) G is Lindelof.

ProoF. The equivalences among (a)~(d) are shown by means of Lemma 2.1
with Corollary 2.1, because (b), (c), or (d) implies that G is countable discrete, or
not a P-space (for (c), G is a Lindel6f space in which G — {0} is an Fj-set).
(a) = (e) is obvious. For (e) = (a), if x(0, G) = w, (a) holds, so let x(0,G) > w,.
Since G is not metrizable, G is a P-space by Lemma 2.1. Thus, G has a base
by open-and-closed sets ([4, 4K]). While, G has a decreasing local base at 0 by
open intervals. Thus G has a decreasing local base {B; : t < a} (¢ > w,) at 0 by
open-and-closed sets (or, see [6, Theorem 6]). For each 7 < «, let C; = B, — B,
here we assume that C; # . Then, G has a disjoint open cover {G — B;}U
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{C:: 1 <t <w}U{By} of cardinality w;. Thus G is not Lindelof, a contra-
diction. For (f) = (a) in the latter part, since G is Lindel6f, G has a countable
open cover {(—o0,ay,) : n € N}. Since the set {a, : n € N} has no upper bounds, G
is metrizable by Proposition 2.2. O

Let us show that every Lindelof, ordered additive group need not be metri-
zable in Proposition 2.3. This gives a negative answer to a question in [9].

Let X =]
the set of x = (x,) € X with x, # p, for at most a finite number of a. The w-box
se4 Ba such that each B, is
open in X,, but B, # X, for at most a countable number of a.

X, with X, spaces. For p = (p,) € X, the a(p)-product of X is

acA

topology on X has a base by the sets of the form []
The following is similarly shown as in the proof of [1, Proposition 3].

Lemma 2.2. Let X =]],.4 Xy have the w-box topology. If [],.pXp is
Lindeldf for any finite B < A, then each o(p)-product of X is Lindeldf.

ExampLE 2.1. A Lindelof, ordered additive group which is not metrizable.

PrOOF. Let Z be the usual ordered additive group of integers, and let
X =Z“.For 0=(0,0,...)e X, let G be the g(0)-product of X. Then G is an
additive group with respect to coordinatewise addition. Endow X with the w-box
topology, and let G be a subspace of X. Then G is Lindel6f by Lemma 2.2.
But, G is not first countable (hence, not metrizable), because the local base
{V(0;) : « < w1} at 0 does not have any countable subfamily which becomes
a local base at 0, where V(0;0) = {x = (x4) € G:x3 =0 for any f < a}. The
topology on the additive group G is equivalent to the order topology by the
lexicographic order < on G (i.e., for x = (x,), ¥y = (ya), x < y if and only if for
some o < wi, Xg = yp for any f < a, but x, < y,). For a,b € G, a < b if and only
if 0 <b—a. Thus, (G,<) is a desirable ordered additive group. O

A space X is totally disconnected if any component in X is a singleton. A
space is X is zero-dimensional ([3]) if X has a base by open-and-closed sets
(namely, ind X = 0). Every completely regular P-space is zero-dimensional, and
every zero-dimensional space is totally disconnected. For a LOTS X, X is totally
disconnected; ind X =0; Ind X =0; and dim X =0 are all equivalent by [3,
6.3.2(e), 7.1.10].

Concerning topological embeddings for ordered additive groups, Proposition
2.4 below holds. For the Baire (zero-dimensional) space B(m)=D®, D is a
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discrete space of cardinality m > Ny, see [3, 4.2.12]. The space B(m) is con-
sidered as an ordered additive group (by the lexicographic order on D). For the
hedgehog J(m) of spininess m > Ny, see [3, 4.1.5]. The spaces B(m) and J(m) are
complete metrizable.

PROPOSITION 2.4.  For a non-discrete ordered additive group G, the following
hold.

(1) G is not totally disconnected if and only if G is homeomorphic to R x D,
where D is a discrete space of cardinality |G/H| for some open subgroup H.

(2) For G being totally disconnected, G is not a P-space if and only if it is
topologically embedded in the space B(m), m = w(G) (i.e., the weight of G).

(3) Gis Cech-complete if and only if it is homeomorphic to a closed subset of
the countable product J(m)”, m = w(G). When G is totally disconnected, we can
replace “J(m)”” by “B(m)”.

Proor. The “if” parts of (1), (2), and (3) are obvious. Then, let us show
their “only if” parts. For (1), in view of [11, Theorem 2.4] the result holds for G
being a LOTS topological group (this is valid with respect to addition). Thus (1)
holds by Proposition 2.1. For (2), G is a totally disconnected LOTS, then
Ind G = 0. While, since G is not a P-space, G is metrizable by Lemma 2.1.
Hence, the “only if”” part holds by [3, Theorem 7.3.15]. For (3), let G be Cech-
complete. Thus, by [3, 3.9.5], G is a k-space. Thus G is metrizable by Proposition
2.2. Then G is completely metrizable. Hence the “only if” part holds by [3,
4.4 B]. The latter part holds by [3, 7.3.H] since Ind G = 0. ]

THEOREM 2.1. Let G be an ordered additive group. Then (a), (b), or (c) below
holds. When G is an ordered field, (a), (b)*, or (c) holds.

a) G is a P-space.

(a)

(b) G is homeomorphic to a topological sum of R.

(b)*

(c) G is topologically embedded in the space B(m), m = w(G).

G is homeomorphic to R.

Proor. This holds in view of Propositions 2.4. For the latter part, it suffices
to show that every ordered field G is connected or totally disconnected. Indeed,
suppose G is not totally disconnected. Then G has a component L at 0, con-
taining @ # 0. For any pe G, pa 'L contains 0, and it is connected by the
continuity of the multiplication (in Proposition 2.1). Then p e pa~'L = L, thus
p€e L. Hence, G =L is connected. O
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ReMARK 2.2. Every ordered additive group need not satisty (a), (b)*, or (c)
in Theorem 2.1. Indeed, let G=Z xR (Z is the ordered additive group of
integers) be the product space, and let < be the lexicographic order on G. Then
(G,<) is an ordered additive group with respect to coordinatewise addition, but
G satisfies none of (a), (b)*, (c).

Now, let (K,<) be an ordered field. A pair (4|B) of non-empty subsets A4
and B in K is a (Dedekind) cut if K =AUB, AN B = (&, and for any x € 4 and
any y € B, x < y. Let us recall the following Archimedes’ axiom, and the axiom of
continuity which is stronger than Archimedes’ axiom.

Archimedes’ axiom: For each o, f € K with 0 < o < f, there exists n € N such
that f < no.

Axiom of continuity: For each cut (4|B) in K, K contains max A or min B.

An ordered field K is Archimedean; Dedekind-complete if K respectively
satisfies Archimedes’ axiom; the axiom of continuity. For S < K, S is Dedekind-
complete if we replace “K” by “S”. Then K is Dedekind-complete if and only if
so is any [a,b] = K, here we can replace “any [a,b]” by “some [a,b] (or [0,1])”.

We can assume that any ordered field K contains Q as a subfield. The field Q
is Archimedean, but not Dedekind-complete.

Let us recall the following characterizations for an ordered field to be
Archimedean or Dedekind-complete (many of these are well-known); see [7, 8, 9],
for example.

PROPOSITION 2.5. For an ordered field K, (1) and (2) below hold.

(1) The following are equivalent.
(@) K is Archimedean.
(b) The sequence {1/n:ne N} has a limit point 0 in K.
(c) The set {1/n:ne N}U{0} is compact in K.
(d) Q is a dense subset of K.
(e) Q has an accumulation point in K.
(2) The following are equivalent.
(a) K is Dedekind-complete.
(b) Every lower bounded decreasing sequence (in Q) has a limit point in K.
(c) Every lower bounded subset (of Q) has an infimum in K.
(d) Every bounded infinite subset (of Q) has an accumulation point in K.
(e) Some (or any) interval [a,b] is compact in K.
(f) K is connected (we can replace “K” by “Some (or any) interval |a,b]
in K7).
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ReMarRk 2.3. (1) Let K be an ordered field. As is well-known, K is
Archimedean if and only if (*) K is order-preserving isomorphic to a subfield F
of R which has the usual order < in R, in particular, K is Dedekind-complete if
and only if F =R. In (¥*), K is homeomorphic to (F, <) (indeed, F has the order
topology by < in view of [3, 2.7.5(a)], because the field F contains Q which is
dense in R). If K is Dedekind-complete, then K is homeomorphic to R (the
converse holds in view of (f) in Proposition 2.5(2)).

(2) Every Archimedean ordered field K is separable metrizable by (1) (this
is also shown by Proposition 2.2 and 2.5(1)). But, every separable metrizable
ordered field need not be Archimedean ([9]).

Let (G,<) be an ordered additive group. A sequence {a,:ne N} in G is
Cauchy if for each ¢ >0 (¢€ @), there exists nye N such that |a, —a,| <e
if m,n>ny. Let € ={[an,b,):ne N} be a decreasing sequence of closed
intervals in G. Let us call € shrinking if (b, — a,) — 0. When % has a non-empty
intersection, % is shrinking if and only if ¥ has only one common point.

PROPOSITION 2.6.  For an ordered additive group G, the following are equiv-
alent.

(a) (Cauchy’s theorem) Every Cauchy sequence in G has a limit point.
(b) (Principle of successive division) Every shrinking sequence {[a,,b,] :n€ N}
in G has a non-empty intersection.

Proor. For (a) = (b), let L = {a;,b1,a2,bs,...} be a sequence of endpoints
of the closed intervals [a,,b,] in (b). Since L is Cauchy, L has a limit point p.
Then p e (), [an, by). For (b) = (a), let L ={x,:ne N} be an infinite Cauchy
sequence. For each n e N, let ¢, = |x, — x,+1|. Since L is Cauchy, we can assume
that ¢, — 0 with 0 < ¢, <¢g,. Since any subsequence of L is Cauchy, by in-
duction, we can choose a decreasing sequence % = {[a,b,] : n € N} such that
(by — an) < &y, [an,by]NL is a subsequence of L, but for some subsequence
S={s,:ne N} of L, each s, is one of the endpoints in [a,,b,], and the rest of
the endpoints is s; or s; + ¢ for some i < n and j < n. Since ¥ is shrinking, it has
only one common point ¢ € G. Then, the sequence S converges to the point a.
To see L converges to the point a, let ¢ > 0. Since &, — 0, 2g(=¢, +¢,) — 0
by Proposition 2.1, so take ¢ with 2¢; < ¢. Since L is a Cauchy sequence, and S
is a subsequence of L converging to the point a, there exists m € N such that
for n > m, |x, — sy < &, and |s, — a| < &. Then |x, — a| < e. Thus L converges to
the point a. O
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In Propositions 2.7 and 2.8 below, the equivalences of (a) and (b) were shown
in [9].

ProposITION 2.7.  For a non-discrete ordered additive group G, the following
are equivalent.

(a) G is metrizable.
(b) G contains an infinite Cauchy sequence.
(c) G contains a shrinking sequence {[a,,b,]:ne N}.

PrROOF. (a) = (b) holds, because every convergent sequence is Cauchy in G.
(b) = (c) holds, putting a, =0 and b, = ¢, in the proof of Proposition 2.6. For
(c) = (a), G has the convergent sequence {b, — a, : n € N}. Hence G is metrizable
by Proposition 2.2. ]

PrOPOSITION 2.8.  For an ordered field K, (1) and (2) below hold.

(1) The following are equivalent.
(a) K is Archimedean.
(b) K contains an infinite Cauchy sequence in Q.
(c) K contains a shrinking sequence of closed intervals with endpoints in Q.
(2) The following are equivalent.
(a) K is Dedekind-complete.
(b) K contains an infinite Cauchy sequence in Q, and any of these Cauchy
sequences has a limit point in K.
(c) K contains a shrinking sequence of closed intervals with endpoints in Q,
and any of these shrinking sequences has a non-empty intersection in K.

Proor. For (1), (a) = (b) is obvious, for K contains a convergent sequence
{1/n:ne N} by Proposition 2.5(1). For (b) or (c) = (a), let ¢ > 0. Then there
exist p,qg € Q such that 0 < |p —¢| <& by (b) or (c). This shows that Q has an
accumulation point 0 in K. Hence, K is Archimedean by Proposition 2.5(1). For
(b) = (c), it is shown as in the proof of Proposition 2.7 by replacing “e,” by
“1/n”. For (2), (a) = (b) holds by Cauchy’s theorem in R. (b) = (c) holds by (1)
and the proof of Proposition 2.6. For (c¢) = (a), K is Archimedean by (1), so Q is
dense in K by Proposition 2.5(1). Then K satisfies Principle of successive division.

Since K is Archimedean, as is well-known, (a) holds (see [7], etc.). O

Let f:[a,b] — K with K an ordered field, and 4 < [a,b]. Without loss of
generalities, let us consider ““[0, 1] instead of “[a, b]”, and consider “maxima (or
upper bounds)” instead of “minima (or lower bounds)” of f(A4).
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THEOREM 2.2. For an ordered field K, the following are equivalent.

(a) K is metrizable.
(b) There exists an infinite (countable closed) set A < [0, 1] such that for any
continuous function f :[0,1] — K, f(A4) has a maximum.

Proor. For (a) = (b), 0 € K is not isolated in [0,1], then there exists an
infinite sequence L < [0, 1] converging to the point 0. Thus for any continuous
function f :[0,1] — K, M = f(LU{0}) has a maximum in K (indeed, for some
peM, if p> f(0), then {ge M : g > p} is finite since any subsequence of M
converges to the point f(0)). For (b) = (a), suppose that K is not metrizable.
Let 4 be any infinite subset of [0,1], and let D ={d,:ne N} be an infinite
countable subset of A. Then, by Proposition 2.2, D is closed discrete in [0, 1].
Thus, since [0,1] is normal, as is well-known, there exists a closed discrete
collection 2 = {[a,,by] :ne N} in [0,1] with @, < d, < b,. Define a function
f:]0,1] = K as follows:

(n/(dy — ay))(x —a,) if x€(ay,d;] (neN)
f(x)=¢ (n/(by —dy))(by — x) if x€ (dy,by) (n€N)
0 if xe[0,1]— ), (an,bn)

Then f is continuous, because any f~!((«,f8)) is open in [0, 1] since the col-
lection Z is closed discrete in [0,1]. But, f(4) has no maxima since f(d,) =n
(ne N). This is a contradiction. Hence K is metrizable. ]

COROLLARY 2.2. For an ordered field K, (1), (2), and (3) below hold.

(1) The following are equivalent.
(a) K is metrizable, but not Archimedean.
(b) There exists a continuous function f :[0,1] — K such that f(So) has
no upper bounds in K, where Sp ={1/n:ne N}U{0} = K.
(2) The following are equivalent.
(a) K is metrizable, but not Dedekind-complete.
(b) There exists a continuous function f :[0,1] — K such that for some
countable (closed) set L in [0,1], f(L) has no upper bounds in K.
(3) The following are equivalent.
(a) K is metrizable.
(b) Same as (b) in (2), but replace ““[0,1]” by an open interval ““(0,1)” twice.

Proor. For (1), (2) and (3), to see (a) = (b) holds, assume (a) holds. Since
K is metrizable, K has a countable set {o, : n € N} having no upper bounds by
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Proposition 2.2. While, for (1), the sequence Sy is closed discrete in [0,1] by
Proposition 2.5(1). For (2), K has a decreasing sequence L in [0, 1] having no
limit points, hence L is closed discrete in [0,1]. For (3), the same holds in a
normal space (0,1). Let us denote these discrete countable sets by {d, :ne N}.
Then, we obtain a desirable continuous function f in (b) such that f(d,) = o,
(ne N) by the same way as in the proof of Theorem 2.2. To see (b) = (a),
assume (b) holds. Then, K is metrizable by Proposition 2.2, for K contains a
countable set having no upper bounds. While, for (1), f(Sp) has no upper bounds
in (b), then it is not compact in K, thus neither is S;. Hence, K is not
Archimedean by Proposition 2.5(1). Similarly, for (2), [0, 1] is not compact. Thus,
K is not Dedekind-complete by Proposition 2.5(2). Hence (a) holds. O

The following holds in view of the proofs of Theorems 2.2 and Corollary 2.2.

COROLLARY 2.3. For an ordered field K, (1) and (2) below hold (see [10]).

(1) The following are equivalent.
(@) K is Archimedean.
(b) For any continuous function f :[0,1] — K, f(So) has a maximum,
where Sy ={l/n:ne N}U{0} c K.
(2) The following are equivalent.
(a) K is Dedekind-complete.
(b) For any continuous function f :[0,1] — K, and for any decreasing
sequence L in [0,1], f(c! L) has a maximum.
(c) K is Archimedean, and same as (b), but f(L) has an upper bound.
(d) K is Archimedean, and for any continuous function f :[0,1] — K,
f([0,1]) has an upper bound.

REMARK 2.4. (1) We can not replace “maximum” by ‘““upper bound” in
Theorem 2.2. (Indeed, let K be a non-metrizable ordered field in Remark 2.1.
Then, since K is not metrizable, by Corollary 2.2(2) (or (3)), K satisfies (b) with
the substitution “upper bound” in Theorem 2.2.

(2) In Corollary 2.2, we can not replace “no upper bounds” with “no
maxima”. (Indeed, by Theorem 2.2, for a non-metrizable ordered field K, K
satisfies (b) with the substitution “no maxima” in Corollary 2.2).

(3) For continuous functions from [0,1](= K) into R, we can replace
“maximum” by “upper bound” in Theorem 2.2 and Corollary 2.3 (hence, we can
omit “Archimedean” in Corollary 2.3(2)) in view of their proofs, using a classical
Tietze’s extension theorem (Tietze-Urysohn theorem).
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3. Revision of Dobbs’ Paper [2]

Dobbs [2, Theorem 2.6] shows that for each uncountable cardinal number X,
there exist ordered fields F| and F, of cardinality N, such that Fj is metizable
and F, is not metrizable. For his (long) proof of this result, let us revise and
simplify the proof. Then, we give some related results.

THEOREM 3.1. For each infinite cardinal number X, there exist (non-
Archimedean) ordered fields Fy and F, of cardinality X satisfying:

(a) Fy is metrizable; and
(b) F, is not metrizable, but X is uncountable.

Proor. Let K be an ordered field. For a set I, let X ={x;:iel} be the
set of algebraically independent indeterminates. Let F = K(X) be the field of
all rational functions in the variables x; € X with coefficients in K. Then |F| =
max{|K|,|I|} = RXy. We define a linear order < on F by the steps (i), (ii), and (iii)
below. (The order < on F is denoted by <; in the proof of [2, Theorem 2.6], but
we do not use the order <, on F defined there).

(i) Let w; (i=0,1) be the smallest ordinal of cardinality ;. For the index-
set I being infinite countable, define I = [0, @) (or N) which has the usual order,
so let 7 be uncountable. We will define a well-order <, in [ to satisfy (*): for each
countable subset C in I, there exists iy € I such that i <, iy for all i € C. Indeed,
since I is uncountable, for some 4; = I, we can consider 4; as [0,;) having
the usual order =<;. Let Ayg =1 — A;, and give a well-order =<( in A4y. Define
the lexicographic order <, in I = Ay + A4; (i.e., for ap,a; € I, define ay <, a; if
a; € A;; otherwise, if a; € Ay with ay <p a1, or a; € A; with ayp <) a1). Then (I, <,)
is a well-ordered set satisfying (*). (Not every uncountable ordered set satisfy (*)
(by the usual ordered field R, etc.)).

(i) Any monomial x;"---x;" in F (m; € (0,9)) is arranged by i, <. iy 1

<4 o+ <4 Ip <4 I]. Among the monomials in F, define the lexicographic order

mp . xmn
I In

v:x;f'~--xﬁk, define u < v if one of the following holds: i <, ji; i1 = ji,

my < p1; L = ji, my = p1, i <. j»; and so on. (By convention, let us consider

=< in terms of I x (0,mp); that is, for distinct monomials u = x and

1 € K as an (empty) monomial, and let 1 < u for any other monomial u). We
note that for monomials u, v with u < v, and w(> 0), wu < wo.

(i) Any polynomial oywy + - -+ 4 o, Wy, in F is arranged by w; <wy < -+ <
wy, Where o; € K — {0}, and w; are monomials in F. (By convention, let Ou =0
for any monomial u). Let us define a linearly order < in F. For neF, let
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n==+(f/g), where f=au +---+anu, and g=bjv;+---+byv, are poly-
nomials with a,,, b, > 0 in K. Define # > 0 if the sign of the fraction is “+”, and
n <0 if “=". For 5, e F, define n < & if 0 <& —#. Then (F, <) is an ordered
field (for example, for 7 < &, and { > 0, {n < (&), but it is not Archimedean (for
xeX, x>n for all ne N).

Now, first, for (b), let F, = Q(X) with [I| =R (= ¥;). Then F, has cardi-
nality N. To show that F, is not metrizable, let L= {z5,:ne N} = F, with
n,>0. Let S={x;:ie N} =X be all variables appeared in denominators of
n, (me N). Since S is countable, there exists x; € X such that x; < x; for all
x;€S by (i) and (ii). Let #, = +(f./gn) for each ne N. Then, for any n e N,
1/x; < fy and g, < x; by (i), thus 0 < 1/x? < +(f,/gn) =n,. Hence, the se-
quence L does not accumulate to 0. Thus, F, is not metrizable by Proposition 2.2.

Next, for (a), let K = Q for X =8, and let K = F, for X # 8y, for example.
Let X = {x}. Then F; = K(X) has cardinality R. To see F; is metrizable, let
L={1/x":neN}. For n=+4(f/g) > 0, let n = max{deg(f),deg(g)}. Then 0 <
1/x"! < 5. Thus L converges to 0. Hence, F; is metrizable by Proposition 2.2.

U

RemARK 3.1. In [2, Remark 2.7(b)], it is shown that F = R(x; : i € R) is not
metrizable. The coefficients-set R is the usual ordered field, but for the index-set
R, we consider it as a well-ordered set satisfying the condition (*) in (i) of the
proof of Theorem 3.1, then F is not metrizable in view of Theorem 3.1. While, if
the index-set R is considered as the usual order set R, then F would be met-
rizable, because the sequence {1/x;:ie N} converges to 0 in F. Similarly, any
F=K({x;:iel}) would be metrizable if we take an order on I defined by
replacing [0, w;) with [0,w¢) in (i) of the proof of Theorem 3.1 (assuming I is
not finite), because I has the countable subset [0,w() which is cofinal in I with
respect to this order.

Let us give a characterization for K({x;:ieI}) to be metrizable (or sep-
arable metrizable), here we consider the index-set 7 as in (i) of the proof of
Theorem 3.1.

THEOREM 3.2. For F = K({x; : i € I}), F is metrizable if and only if the index
set I is countable.

Proor. This holds in view of the proof of Theorem 3.1. Indeed, for the
“only if” part, suppose [ is not countable, then F is not metrizable. For the “if”
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part, if the countable set 7 is infinite, then {1/x;:ie I} converges to 0. If I is
finite, for m = max I, {1/x}!, : n € N} also converges to 0. Hence, F is metrizable
by Proposition 2.2. O

LemMa 3.1. For F = K(X), K is a closed discrete subset of F.

Proor. Let xe F — K. Then for each e F, V(n) =(n—1/x,n+1/x) is a
neighborhood at 7 in F such that |V(y) N K| < 1. Indeed, suppose that there exist
a,f e V(n)NK with o # f. Then 0 <y = |o — | < 2/x. But, y > 2/x since y € K.
This is a contradiction. Hence, K is a closed discrete subset of F. O

REMARK 3.2. Any ordered field has no isolated points by its order topology.
Thus, by Lemma 3.1, for any F = K(X), the ordered field K is not a subspace
in F (namely, the order topology of K is not the relative topology from F).

COROLLARY 3.1. For F = K(X), F is separable metrizable if and only if F is
countable.

Proor. The “if” part holds by a fact that every countable ordered field
is separable metrizable (see [2], etc.). For the “only if” part, F is Lindeldf, then
K is countable by Lemma 3.1. While, F is metrizable, then X is countable by
Theorem 3.2. Thus, F is countable. O
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