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Abstract. In this paper, we first investigate the shape operators of

certain kind of orbits of the isotropy action of a semi-simple pseudo-

Riemannian symmetric space. The investigation is performed by

investigating the complexified action. Next, by using the fact ob-

tained by the investigation, we show that certain kind of principal

orbits of a Hermann type action on a semi-simple pseudo-

Riemannian symmetric space are curvature-adapted proper complex

equifocal submanifolds and that their shape operators are semi-

simple. It follows from this fact that the principal orbits are iso-

parametric submanifolds with flat section. Also, we derive an in-

teresting structure of a semi-simple pesudo-Riemannian symmetric

space (in particular, the complexification of a Riemannian symmetric

space) from two special Hermann type actions on the space.

1. Introduction

In Riemannian symmetric spaces, the notion of an equifocal submanifold was

introduced by Terng-Thorbergsson in [36]. This notion is defined as a compact

submanifold with flat section such that the normal holonomy group is trivial and

that the focal radius functions for each parallel normal vector field are constant.

However, the condition of the equifocality is rather weak in the case where the

Riemannian symmetric spaces are of non-compact type and the submanifold is

non-compact. So we [17, 18] have recently introduced the notion of a complex

equifocal submanifold in a Riemannian symmetric space G=K of non-compact

type. This notion is defined by imposing the constancy of the complex focal

radius functions in more general. Here we note that the complex focal radii are
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the quantities indicating the positions of the focal points of the extrinsic

complexification of the submanifold, where the submanifold needs to be assumed

to be complete and of class Co (i.e., real analytic). On the other hand, Heintze-

Liu-Olmos [13] has recently defined the notion of an isoparametric submanifold

with flat section in a general Riemannian manifold as a submanifold such that

the normal holonomy group is trivial, its su‰ciently close parallel submanifolds

are of constant mean curvature with respect to the radial direction and that the

image of the normal space at each point by the normal exponential map is flat

and totally geodesic. We [18] showed that all isoparametric submanifolds with flat

section in a Riemannian symmetric space G=K of non-compact type are com-

plex equifocal and that conversely, all curvature-adapted and complex equifocal

submanifolds are isoparametric ones with flat section. Here the curvature-

adaptedness means that, for each normal vector v of the submanifold, the Jacobi

operator Rð�; vÞv preserves the tangent space of the submanifold invariantly and

the restriction of Rð�; vÞv to the tangent space commutes with the shape operator

Av, where R is the curvature tensor of G=K . As a subclass of the class of complex

equifocal submanifolds, we [19] defined the notion of a proper complex equifocal

submanifold in G=K as a complex equifocal submanifold such that its complex

focal set at any point consists of infinitely many complex hyperplanes in the

complexified normal space at the point and that the complex reflections of order

two with respect to the complex hyperplanes generates a Coxeter group. Let G=K

be a Riemannian symmetric space of non-compact type and H be a closed

subgroup of G. If the H-action is proper and there exists a complete embedded

flat submanifold meeting all H-orbits orthogonally, then it is called a complex

hyperpolar action. Principal orbits of a complex hyperpolar action are complex

equifocal (see [18]). If H is a symmetric subgroup of G (i.e., ðFix sÞ0 HHHFix s

for some involution s of G), then the H-action is called a Hermann type action,

where Fix s is the fixed point group of s and ðFix sÞ0 is the identity component

of the group. Hermann type actions are complex hyperpolar. We ([18, 19])

showed the following facts.

Fact 1. Let y be the Cartan involution of G with ðFix yÞ0 HK HFix y, s

be an involution of G with ðFix sÞ0 HHHFix s and L :¼ ðFixðs � yÞÞ0, where

we may assume that y � s ¼ s � y by replacing H to its conjugate group. Then

the orbit HðeKÞ of the H-action on G=K is a reflective submanifold and it is

homothetic to the Riemannian symmetric space H=H VK. For each x A HðeKÞ, the
section Sx of HðeKÞ through x is homothetic to the Riemannian symmetric space

L=H VK .
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Fact 2. Principal orbits of a Hermann type action are curvature-adapted

and proper complex equifocal. Hence it is an isoparametric submanifold with flat

section.

Similarly, we can define the notions of a complex equifocal submanifold and

a proper complex equifocal one in a pseudo-Riemannian symmetric space, and

the notion of an isoparametric submanifold with flat section in a general pseudo-

Riemannian manifold. Also, we can define the notions of a complex hyperpolar

action and a Hermann type action on a pseudo-Riemannian symmetric space. We

[23] showed the following fact.

Fact 3. All isoparametric submanifolds with flat section in a pseudo-

Riemannian symmetric space G=K are complex equifocal. Conversely all curvature-

adapted complex equifocal submanifolds such that Av and Rð�; vÞv are semi-simple

for any normal vector v are isoparametric ones with flat section, where Av is the

shape operator and R is the curvature tensor of G=K and the semi-simplenesses of

Av and Rð�; vÞv mean that their complexifications are diagonalizable.

L. Geatti and C. Gorodski [9] has recently showed that a polar representation

of a real reductive algebraic group on a pseudo-Euclidean space has the same

closed orbits as the isotropy representation (i.e., the linear isotropy action) of a

pseudo-Riemannian symmetric space (see Theorem 1 of [9]). Also, they showed

that the principal orbits of the polar representation through a semi-simple element

(i.e., the orbit through a regular element (in the sense of [9])) is an isoparametric

submanifold by investigating the complexified representation (see Theorem 11

(also Example 12) of [9]), where an isoparametric submanifold means a pseudo-

Riemannian submanifold (in a pseudo-Euclidean space) such that the (restricted)

normal holonomy group is trivial and that the shape operator for each (local)

parallel normal vector field is semi-simple and has constant complex principal

curvature. All isoparametric submanifold (in a pseudo-Euclidean space) in this

sense are isoparametric ones (with flat section) in the sense of [13]. Let G=H be a

(semi-simple) pseudo-Riemannian symmetric space (equipped with the metric h ; i

induced from the Killing form of the Lie algebra g of G). In this paper, we first

investigate the complexified shape operators of the orbits of the isotropy action of

G=H (i.e., the H-action on G=H) by investigating the orbits of the isotropy action

of G c=H c (see Section 3). Next, by using the investigation, we prove the fol-

lowing fact for the orbits of Hermann type action.
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Theorem A. Let G=H be a (semi-simple) pseudo-Riemannian symmetric

space, H 0 be a symmetric subgroup of G, s (resp. s 0) be an involution of G

with ðFix sÞ0 HHHFix s (resp. ðFix s 0Þ0 HH 0 HFix s 0), L :¼ ðFixðs � s 0ÞÞ0 and

l :¼ Lie L. Assume that G is not compact and s � s 0 ¼ s 0 � s. Then the following

statements (i) and (ii) hold:

(i) The orbit H 0ðeHÞ of the H 0-action on G=H is a reflective pseudo-

Riemannian submanifold and it is homothetic to the semi-simple pseudo-Riemannian

symmetric space H 0=H VH 0. For each x A H 0ðeHÞ, the section Sx of H 0ðeHÞ
through x is homothetic to the semi-simple pseudo-Riemannian symmetric space

L=H VH 0.

(ii) Let M be a principal orbit of the H 0-action through a point

expGðwÞH (w A qV q 0 s.t. adðwÞjl : semi-simple) of SeHnF , where q :¼ Kerðsþ idÞ
ð¼ TeHðG=HÞÞ, q 0 :¼ Kerðs 0 þ idÞ and F is a focal set of H 0ðeHÞ. Then M is

curvature-adapted and proper complex equifocal, for any normal vector v of M,

Rð�; vÞv and the shape operator Av are semi-simple. Hence it is an isoparametric

submanifold with flat section.

Remark 1.1. (i) Since 6
w A qVq 0 s:t: adðwÞjl:semi-simple

ðH 0 VHÞðexpGðwÞHÞ is an

open dense subset of LðeHÞ, it is shown that

6
w A qVq 0 s:t: adðwÞjl:semi-simple

H 0ðexpGðwÞHÞ

is an open dense subset of G=H.

(ii) In the case where G=H is a Riemannian symmetric space of non-compact

type, adðwÞjl is semi-simple for any w A qV q 0, Rð�; vÞv and Av is semi-simple for

any normal vector v of M, F ¼ q and 6
x AH 0ðeHÞ

Sx ¼ G=H. Hence the statement

(ii) of Theorem A is a generalized result of the above Fact 2.

L. Geatti [8] has recently defined a pseudo-Kaehlerian structure on some

G-invariant domain of the complexification G c=H c of a semi-simple pseudo-

Riemannian symmetric space G=H. On the other hand, we [23] have recently

defined an anti-Kaehlerian structure on the whole of the complexification G c=H c.

By applying Theorem A to the complexification G c=H c (equipped with the

natural anti-Kaehlerian structure) of a semi-simple pseudo-Riemannian sym-

metric space G=H and a symmetric subgroup G of G c, we recognize an in-

teresting structure of G c=H c. Here we note that an involution s of G c with
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ðFix sÞ0 HH c HFix s and the conjugation t of G c with respect to G are

commutative. In this case, the group corresponding to L in the statement of

Theorem A is the dual G�H of G with respect to H. Hence we have the following

fact.

Corollary B. Let G c=H c and G�H be as above. Then the following

statements ðiÞ and ðiiÞ hold:

(i) The orbit GðeH cÞ is a reflective pseudo-Riemannian submanifold and it is

homothetic to the pseudo-Riemannian symmetric space G=H. For each x A GðeH cÞ,
the section Sx of GðeH cÞ through x is homothetic to the pseudo-Riemannian

symmetric space G�H=H.

(ii) For principal orbits of the G-action on G c=H c, the same fact as the

statement (ii) of Theorem A holds.

Figure 1
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By considering two special Hermann type actions on a semi-simple pseudo-

Riemannian symmetric space, we obtain the following interesting fact for the

structure of the semi-simple pseudo-Riemannian symmetric space.

Theorem C. Let G=H and s be as in Theorem A, y the Cartan involution of

G with y � s ¼ s � y, K :¼ ðFix yÞ0 and L :¼ ðFixðs � yÞÞ0. Then the following

statements (i) and (ii) hold:

(i) The orbits KðeHÞ and LðeHÞ are reflective submanifolds satisfying

TeHðG=HÞ ¼ TeHðKðeHÞÞlTeHðLðeHÞÞ (orthogonal direct sum), KðeHÞ is anti-

homothetic to the Riemannian symmetric space K=H VK of compact type and

LðeHÞ is homothetic to the Riemannian symmetric space L=H VK of non-compact

type. Also, the orbit KðeHÞ has no focal point.

(ii) Let M1 be a principal orbit of the K-action and M2 be a principal orbit of

the L-action through a point of KðeHÞnF , where F is the focal set of LðeHÞ. Then
Mi (i ¼ 1; 2) are curvature-adapted and proper complex equifocal, for any normal

vector v of Mi, Rð�; vÞvjTxMi
(x : the base point of v) and the shape operator Av are

diagonalizable. Hence they are isoparametric submanifolds with flat section.

Remark 1.2. For any involution s of G, the existence of a Cartan invo-

lution y of G with y � s ¼ s � y is assured by Lemma 10.2 in [1].

By applying Theorem C to the complexification G c=K c (equipped with the

natural anti-Kaehlerian structure) of a Riemannian symmetric space G=K of non-

Figure 2
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compact type, we can recognize the interesting structure of G c=K c. In this case,

the groups corresponding to K , L and H VK in the statement of Theroem C are

the compact dual G � of G, G and K , respectively. Hence we have the following

fact.

Theorem D. Let G c=K c be the complexification (equipped with the natural

anti-Kaehlerian structure) of a Riemannian symmetric space G=K of non-compact

type and G � be the compact dual of G. Then the following statements (i) and (ii)

hold:

(i) The orbits G �ðeK cÞ and GðeK cÞ are reflective submanifolds of G c=K c

satisfying TeK cðG c=K cÞ ¼ TeK cðG �ðeK cÞÞlTeK cðGðeK cÞÞ (orthogonal direct sum),

G �ðeK cÞ is anti-homothetic to the Riemannian symmetric space G �=K of compact

type and GðeK cÞ is homothetic to the Riemannian symmetric space G=K of non-

compact type. Also, the orbit G �ðeK cÞ has no focal point.

(ii) For principal orbits of the G �-action and G-action on G c=K c, the same fact

as the statement (ii) of Theorem C holds.

Homogeneous submanifolds with flat section in a pseudo-Riemannian

symmetric space are complex equifocal. We obtain the following fact for a

homogeneous submanifold with flat section in a semi-simple pseudo-Riemannian

symmetric space which admits a reflective focal submanifold, where a reflective

submanifold means a totally geodesic pseudo-Riemannian submanifold with

section.

Theorem E. Let M be a homogeneous submanifold with flat section in a

semi-simple pseudo-Riemannian symmetric space G=H. Assume that M admits a

reflective focal submanifold F such that nhðg�1
� TgHFÞ is a non-degenerate subspace

of h, where gH is an arbitrary point of F and nhðg�1
� TgHF Þ is the normalizer of

g�1
� TgHF in h. Then M is a principal orbit of a Hermann type action.

Remark 1.4. (i) For the H 0-action in Theorem A, we have nhðTeHðH 0ðeHÞÞÞ
¼ nhðqV h 0Þ ¼ hV h 0 þ zhVq 0 ðqV h 0Þ, where zhVq 0 ðqV h 0Þ is the centralizer of qV h 0

in hV q 0. Hence, if zhVq 0 ðqV h 0Þ ¼ f0g, then nhðTeHðH 0ðeHÞÞÞ is a non-degenerate

subspace of h. Thus almost all principal orbits of the H 0-action have H 0ðeHÞ as a
reflective focal submanifold as in the statement of Theorem E.

(ii) For the K-action in Theorem C, we have nhðTeHðKðeHÞÞÞ ¼ nhðqV fÞ ¼
hV fþ zhVpðqV fÞ. Hence, nhðTeHðKðeHÞÞÞ is a non-degenerate subspace of h.

Similarly, for the L-action in Theorem C, it is shown that nhðTeHðLðeHÞÞÞ is a

143Hermann type actions on a pseudo-Riemannian symmetric space



non-degenerate subspace of h. Thus almost all principal orbits of the K-action

(resp. the L-action) have KðeHÞ (resp. LðeHÞ) as a reflective focal submanifold as

in the statement of Theorem E.

(iii) In the case where G=H is a Riemannian symmetric space of non-

compact type, the statement of Theorem E has already been shown in [21], where

we note that nhðg�1
� TgHFÞ is automatically a non-degenerate subspace of h

because H is compact.

2. New Notions in a Pseudo-Riemannian Symmetric Space

In this section, we shall define new notions in a (semi-simple) pseudo-Rie-

mannian symmetric space, which are analogies of notions in a Riemannian

symmetric space of non-compact type defined in [18]. Let M be an immersed

pseudo-Riemannian submanifold with flat section (that, is, g�1
� T?

x M is abelian

for any x ¼ gH A M) in a (semi-simple) pseudo-Riemannian symmetric space

N ¼ G=H (equipped with the metric induced from the Killing form of g :¼ Lie G),

where T?
x M is the normal space of M at x. Denote by A the shape tensor of M.

Let v A T?
x M and X A TxM (x ¼ gK), where TxM is the tangent space of M at

x. Denote by gv the geodesic in N with _ggvð0Þ ¼ v, where _ggvð0Þ is the velocity

vector of gv at 0. The strongly M-Jacobi field Y along gv with Yð0Þ ¼ X (hence

Y 0ð0Þ ¼ �AvX ) is given by

YðsÞ ¼ ðPgvj½0; s� � ðD
co
sv � sDsi

sv � AvÞÞðX Þ;ð2:1Þ

where Y 0ð0Þ ¼ ~‘‘vY (~‘‘ : the Levi-Civita connection of N), Pgvj½0; s� is the parallel

translation along gvj½0; s� and Dco
sv (resp. Dsi

sv) is given by

Dco
sv ¼ g� � cosð

ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞ � g�1
�

ðresp: Dsi
sv ¼ g� �

sinð
ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞ
� g�1

� Þ:

Here ad is the adjoint representation of the Lie algebra g and cosð
ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞ
(resp.

sinð
ffiffiffiffiffi
�1

p
adðsg�1

� vÞÞffiffiffiffiffi
�1

p
adðsg�1

� vÞ
) is defined by

cosð
ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞ ¼
Xy
k¼0

1

ð2kÞ! adðsg
�1
� vÞ2k

ðresp: sinð
ffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞÞffiffiffiffiffiffiffi
�1

p
adðsg�1

� vÞ
¼
Xy
k¼0

1

ð2k þ 1Þ! adðsg
�1
� vÞ2kÞ:
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All focal radii of M along gv are obtained as real numbers s0 with KerðDco
s0v
�

s0D
si
s0v

� AvÞ0 f0g. So, we call a complex number z0 with KerðDco
z0v

� z0D
si
z0v

� Ac
v Þ

0 f0g a complex focal radius of M along gv and call dim KerðDco
z0v

� z0D
si
z0v

� Ac
v Þ

the multiplicity of the complex focal radius z0, where Ac
v is the complexification of

Av and Dco
z0v

(resp. Dsi
z0v
) is a C-linear transformation of ðTxNÞc defined by

Dco
z0v

¼ gc
� � cosð

ffiffiffiffiffiffiffi
�1

p
adcðz0g�1

� vÞÞ � ðgc
�Þ

�1

ðresp: Dsi
sv ¼ gc

� �
sinð

ffiffiffiffiffiffiffi
�1

p
adcðz0g�1

� vÞÞffiffiffiffiffiffiffi
�1

p
adcðz0g�1

� vÞ
� ðgc

�Þ
�1Þ;

where gc
� (resp. adc) is the complexification of g� (resp. ad). Here we note that,

in the case where M is of class Co, complex focal radii along gv indicate the

positions of focal points of the (extrinsic) complexification M cð,! G c=H cÞ of

M along the complexified geodesic gci�v. Here G c=H c is the pseudo-Riemannian

symmetric space equipped with the metric induced from the Killing form of gc

regarded as a real Lie algebra (which is called the anti-Kaehlerian symmetric space

associated with G=H) and i is the natural embedding of G=H into G c=H c. See [23]

([18] also) about the definition of the (extrinsic) complexification M cð,! G c=H cÞ.
Furthermore, assume that the normal holonomy group of M is trivial. Let ~vv be

a parallel unit normal vector field of M. Assume that the number (which may

be 0 and y) of distinct complex focal radii along g~vvx is independent of the

choice of x A M. Furthermore assume that the number is not equal to 0. Let

fri;x j i ¼ 1; 2; . . .g be the set of all complex focal radii along g~vvx , where jri;xj <
jriþ1;xj or ‘‘jri;xj ¼ jriþ1;xj & Re ri;x > Re riþ1;x’’ or ‘‘jri;xj ¼ jriþ1;xj & Re ri;x ¼
Re riþ1;x & Im ri;x ¼ �Im riþ1;x < 0’’.

Definition 2.1. Assume that M is a submanifold with flat section in N such

that the normal holonomy group of M is trivial and that the number (which may

be 0 and y) of distinct complex focal radii along g~vvx is independent of the choice

of x A M, where ~vv is as above. Define complex valued functions ri (i ¼ 1; 2; . . .)

on M by assigning ri;x to each x A M. We call these functions ri (i ¼ 1; 2; . . .)

complex focal radius functions for ~vv and ri~vv a complex focal normal vector field

for ~vv.

Remark 2.1. The complex focal radius functions ri’s (i ¼ 1; 2; . . .) are of

class Cy.
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Definition 2.2. Let M be a submanifold with flat section in N such that the

normal holonomy group of M is trivial. If, for any parallel normal vector field ~vv,

the number of distinct complex focal radii along g~vvx is independent of the choice

of x A M, if complex focal radius functions for any parallel normal vector field ~vv

are constant over M and have constant multiplicities, then we call M a complex

equifocal submanifold.

Let N ¼ G=H be a (semi-simple) pseudo-Riemannian symmetric space and

p be the natural projection of G onto G=H. Let s be an involution of G

with ðFix sÞ0 HHHFix s and denote by the same symbol s the involution of

g :¼ Lie G. Let h :¼ fX A g j sðX Þ ¼ Xg and q :¼ fX A g j sðX Þ ¼ �Xg, which is

identified with the tangent space TeHN. Let h ; i be the Killing form of g. Denote

by the same symbol h ; i both the bi-invariant pseudo-Riemannian metric of G

induced from h ; i and the pseudo-Riemannian metric of N induced from h ; i.

Let y be a Cartan involution of G with y � s ¼ s � y. Denote by the same

symbol y the involution of g induced from y. Let f :¼ fX A g j yðXÞ ¼ Xg and

p :¼ fX A g j yðXÞ ¼ �Xg. From y � s ¼ s � y, it follows that h ¼ hV fþ hV p

and q ¼ qV fþ qV p. Set gþ :¼ p, g� :¼ f and h ; igG :¼ �p�
g�
h ; iþ p�

gþ
h ; i, where

pg� (resp. pgþ ) is the projection of g onto g� (resp. gþ). Let H 0ð½0; 1�; gÞ be

the space of all L2-integrable paths u : ½0; 1� ! g (with respect to h ; igG). It is

shown that ðH 0ð½0; 1�; gÞ; h ; i0Þ is a pseudo-Hilbert space, where h ; i0 is de-

fined by hu; vi0 :¼
Ð 1
0 huðtÞ; vðtÞi dt ðu; v A H 0ð½0; 1�; gÞÞ. Let H 1ð½0; 1�;GÞ be the

Hilbert Lie group of all absolutely continuous paths g : ½0; 1� ! G such that

the weak derivative g 0 of g is squared integrable (with respect to h ; igG), that

is, g�1
� g 0 A H 0ð½0; 1�; gÞ. Define a map f : H 0ð½0; 1�; gÞ ! G by fðuÞ ¼ guð1Þ

(u A H 0ð½0; 1�; gÞ), where gu is the element of H 1ð½0; 1�;GÞ satisfying guð0Þ ¼ e and

g�1
u� g

0
u ¼ u. We call this map the parallel transport map (from 0 to 1). This

submersion f is a pseudo-Riemannian submersion of ðH 0ð½0; 1�; gÞ; h ; i0Þ onto

ðG; h ; iÞ. Denote by gc, hc, qc, fc, pc and h ; ic the complexifications of g, h, q,

f, p and h ; i. Set gc
þ :¼

ffiffiffiffiffiffiffi
�1

p
fþ p and gc

� :¼ fþ
ffiffiffiffiffiffiffi
�1

p
p. Set h ; i 0 :¼ 2 Reh ; ic

and h ; i 0
g c
G
:¼ �p�

g c
�
h ; i 0 þ p�

g c
þ
h ; i 0, where pg c

� (resp. pg c
þ
) is the projection of

gc onto gc
� (resp. gc

þ). Let H 0ð½0; 1�; gcÞ be the space of all L2-integrable paths

u : ½0; 1� ! gc (with respect to h ; i 0
g c
G
). Define a non-degenerate symmetric bilinear

form h ; i 0
0 of H 0ð½0; 1�; gcÞ by hu; vi 0

0 :¼
Ð 1
0 huðtÞ; vðtÞi

0 dt. It is shown that

ðH 0ð½0; 1�; gcÞ; h ; i 0
0Þ is an infinite dimensional anti-Kaehlerian space. See [18]

about the definition of an infinite dimensional anti-Kaehlerian space. In similar

to f, the parallel transport map fc : H 0ð½0; 1�; gcÞ ! G c for G c is defined. This

submersion fc is an anti-Kaehlerian submersion. Let p : G ! G=H and pc : G c !
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G c=H c be the natural projections. By imitating the proof of Theorem 1 of [18],

we can show the following fact.

Proposition 2.2. For a Co-pseudo-Riemannian submanifold M in G=H, the

following statements (i)@(iii) are equivalent:

(i) M is complex equifocal,

(ii) each component of ðp � fÞ�1ðMÞ is complex isoparametric,

(iii) each component of ðpc � fcÞ�1ðM cÞ is anti-Kaehlerian isoparametric.

See [18] about the definitions of a complex isoparametric submanifold and an

anti-Kaehlerian isoparametric submanifold.

Definition 2.3. If each component of ðp � fÞ�1ðMÞ is proper complex

isoparametric in the sense of [17] (i.e., it is complex isoparametric and, for its

each normal vector v, there exists a pseudo-orthonormal base of the complexified

tangent space consisting of the eigenvectors of the complexified shape operator

for v), then we call M a proper complex equifocal submanifold.

Remark 2.2. It is shown that the complex focal set of a proper complex

isoparametric submanifold (in a pseudo-Hilbert space) at any point consists of

infinitely many complex hyperplanes in the complexified normal space at the

point and that the complex reflections of order two with respect to the complex

hyperplanes generates a Coxeter group (see [18], [20]). From this fact, it follows

that the same fact holds for a proper complex equifocal submanifold.

Now we shall define the notion of a Hermann type action on a semi-simple

pseudo-Riemannin symmetric space G=H and that of a reflective submanifold in

G=H.

Definition 2.4. If H 0 is a symmetric subgroup of G (i.e., ðFix s 0Þ0 HH 0 H
Fix s 0 for some involution s 0 of G), then the H 0-action on G=H is called a

Hermann type action.

Definition 2.5. Let M be a pseudo-Riemannian submanifold in a pseudo-

Riemannian manifold N. If there exists an involutive isometry of a neighborhood

of M having M as the fixed point set, then we call M a reflective submanifold.

Remark 2.3. As in the case of a Reimannian submanifold, we should not

define the reflectivity of a pseudo-Riemannian submanifold by the existence of a
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(global) involutive isometry of the ambient space having the submanifold as a

component of the fixed point set (see Fig. 1).

As in the case of a Riemannian submanifold, we can show the following

fact.

Proposition 2.3. The following statements (i) and (ii) are equivalent:

(i) M is reflective.

(ii) The set exp?ðT?
x MÞ is totally geodesic for each x of M, where exp? is the

normal exponential map of M.

Next we shall recall the notions of a complex Jacobi field and the parallel

translation along a holomorphic curve, which are introduced in [23], and we state

some facts related to these notions. These notions and facts will be used in the

next section. Let ðM; J; gÞ be an anti-Kaehlerian manifold, ‘ (resp. R) be the

Levi-Civita connection (resp. the curvature tensor) of g and ‘c (resp. Rc) be

the complexification of ‘ (resp. R). Let ðTMÞð1;0Þ be the holomorphic vector

bundle consisting of complex vectors of M of type ð1; 0Þ. Note that the restriction

of ‘c to TMð1;0Þ is a holomorphic connection of TMð1;0Þ (see Theorem 2.2 of

[6]). For simplicity, assume that ðM; J; gÞ is complete even if the discussion of

this section is valid without the assumption of the completeness of ðM; J; gÞ.
Let g : C ! M be a complex geodesic, that is, gðzÞ ¼ expgð0Þ

�
ðRe zÞg�

��
q
qs

�
0

�
þ

ðIm zÞJgð0Þg�
��

q
qs

�
0

��
, where ðzÞ is the complex coordinate of C and s :¼ Re z. Let

Y : C ! ðTMÞð1;0Þ be a holomorphic vector field along g. That is, Y assigns

Yz A ðTgðzÞMÞð1;0Þ to each z A C and, for each holomorphic local coordinate

ðU ; ðz1; . . . ; znÞÞ of M with U V gðCÞ0q, Yi : g
�1ðUÞ ! C (i ¼ 1; . . . ; n) defined

by Yz ¼
Pn
i¼1

YiðzÞ
�
q
qzi

�
gðzÞ are holomorphic.

Definition 2.6. If Y satisfies ‘c
g�ðd=dzÞ‘

c
g�ðd=dzÞY þ Rc

�
Y ; g�

�
d
dz

��
g�
�
d
dz

�
¼ 0,

then we call Y a complex Jacobi field along g.

Let d : C�DðeÞ ! M be a holomorphic two-parameter map, where DðeÞ
is the e-disk centered at 0 in C. Denote by z (resp. u) the first (resp. second)

parameter of d.

Definition 2.7. If dð�; u0Þ : C ! M is a complex geodesic for each u0 A DðeÞ,
then we call d a complex geodesic variation.
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It is shown that, for a complex geodesic variation d, the complex variational

vector field Y :¼ d�
�
q
qu

��
u¼0

�
is a complex Jacobi field along g :¼ dð�; 0Þ. A vector

field X on M is said to be real holomorphic if the Lie derivation LXJ of J with

respect to X vanishes. It is known that X is a real holomorphic vector field if and

only if the complex vector field X �
ffiffiffiffiffiffiffi
�1

p
JX is holomorphic. Let g : C ! M be a

complex geodesic and Y be a holomorphic vector field along g. Denote by YR the

real part of Y . Then the following fact holds.

Proposition 2.4 ([23]). Y is a complex Jacobi field along g if and only if, for

any z0 A C, s 7! ðYRÞsz0 is a Jacobi field along the geodesic gz0ð,def gz0ðsÞ :¼ gðsz0ÞÞ.

Next we shall recall the notion of the parallel translation along a holo-

morphic curve. Let a : D ! ðM; J; gÞ be a holomorphic curve, where D is an

open set of C. Let Y be a holomorphic vector field along a. If ‘c
a�ðd=dzÞY ¼ 0,

then we say that Y is parallel. For z0 A D and v A ðTaðz0ÞMÞð1;0Þ, there uniquely

exists a parallel holomorphic vector field Y along a with Yz0 ¼ v.

Definition 2.8. For each z1 A D, we define a C-linear isomorphism ðPaÞz0; z1ðvÞ
of ðTaðz0ÞMÞð1;0Þ onto ðTaðz1ÞMÞð1;0Þ by ðPaÞz0; z1ðvÞ :¼ Yz1 ðv A ðTaðz0ÞMÞð1;0ÞÞ, where
Y is the parallel holomorphic vector field along a with Yz0 ¼ v. We call ðPaÞz0; z1
the parallel translation along a from z0 to z1.

We consider the case where ðM; J; gÞ is an anti-Kaehlerian symmetric space

G c=H c. For v A ðTg0H cðG c=H cÞÞc, we define C-linear transformations D̂Dco
v and

D̂Dsi
v of ðTg0H cðG c=H cÞÞc by D̂Dco

v :¼ gc
0� � cosð

ffiffiffiffiffiffiffi
�1

p
adc

g cððgc
0�Þ

�1
vÞÞ � ðgc

0�Þ
�1 and

D̂Dsi
v :¼ gc

0� �
sinð

ffiffiffiffiffi
�1

p
ad c

g c ððg c
0�Þ

�1
vÞÞffiffiffiffiffi

�1
p

ad c
g c ððg c

0�Þ
�1
vÞ

� ðgc
0�Þ

�1, respectively, where adc
g c is the complex-

ification of the adjoint representation adg c of gc. Let Y be a holomorphic vector

field along gcv . Define ŶY : D ! ðTg0K cðG c=K cÞÞð1;0Þ by ŶYz :¼ ðPg cv
Þz;0ðYzÞ (z A D),

where D is the domain of gcv . Then we have

Proposition 2.5 ([23]). The following relation holds:

Yz ¼ ðPg cv
Þ0; z D̂Dco

zvð1; 0Þ
ðY0Þ þ zD̂Dsi

zvð1; 0Þ

dŶY

dz

����
z¼0

 ! !
:ð2:2Þ

3. The Isotropy Action of a Pseudo-Riemannian Symmetric Space

In this section, we investigate the complexified shape operators of the

orbits of the isotropy action of a semi-simple pseudo-Riemannian symmetric
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space by investigating the complexified action. Let G=H be a (semi-simple)

pseudo-Riemannian symmetric space (equipped with the metric h ; i induced from

the Killing form B of g) and s be an involution of G with ðFix sÞ0 HHHFix s.

Denote by the same symbol s the di¤erential of s at e. Let h :¼ Lie H and

q :¼ Kerðsþ idÞ, which is identified with TeHðG=HÞ. Let y be a Cartan invo-

lution of G with y � s ¼ s � y, f :¼ Kerðy� idÞ and p :¼ Kerðyþ idÞ. Let gc, hc,

qc, fc, pc and h ; ic be the complexifications of g, h, q, f, p and h ; i, respectively.

The complexification qc is identified with TeH cðG c=H cÞ. Under this identifica-

tion,
ffiffiffiffiffiffiffi
�1

p
X A qc corresponds to JeH cX A TeH cðG c=H cÞ, where J is the complex

structure of G c=H c. Give G c=H c the metric (which also is denoted by h ; i)

induced from the Killing form BA of gc regarded as a real Lie algebra. Note that

BA coincides with 2 Re Bc and ðJ; h ; iÞ is an anti-Kaehlerian structure of G c=H c,

where Bc is the complexification of B. Let a be a Cartan subspace of q (that is, a

is a maximal abelian subspace of q and each element of a is semi-simple). The

dimension of a is called the rank of G=H. Without loss of generality, we may

assume that a ¼ aV fþ aV p. Let qc
a :¼ fX A qc j adðaÞ2X ¼ aðaÞ2X for all a A acg

and hc
a :¼ fX A hc j adðaÞ2X ¼ aðaÞ2X for all a A acg for each a A ðacÞ� (ðacÞ� : the

(C-)dual space of ac) and s :¼ fa A ðacÞ�nf0g j qc
a 0 f0gg. Then we have

qc ¼ ac þ
X
a Asþ

qc
a and hc ¼ zh cðacÞ þ

X
a Asþ

hc
a ;ð3:1Þ

where sþðHsÞ is the positive root system under some lexicographical order-

ing and zh cðacÞ is the centralizer of ac in hc. Let ~aa be a Cartan subalgebra

of g containing a and gc
~aa :¼ fX A gc j adðaÞX ¼ ~aaðaÞX for all a A ~aacg for each

~aa A ð~aacÞ� and ~ss :¼ f~aa A ð~aacÞ�nf0g j gc
~aa 0 f0gg. Then we have gc ¼ ~aac þ

P
~aa A ~ss

gc
~aa

and dimc g
c
~aa ¼ 1 for each ~aa A ~ss. Also, we have s¼ f~aaja c j ~aa A ~ssgnf0g, qc

a ¼P
~aa A ~ss s:t: ~aaja c¼Ga

gc
~aa

 !
V qc (a As) and hc

a ¼
P

~aa A ~ss s:t: ~aaja c¼Ga

gc
~aa

 !
V hc (a As). The fol-

lowing fact is well-known.

Lemma 3.1. For each a As, aðaV pÞHR and aðaV fÞH
ffiffiffiffiffiffiffi
�1

p
R.

Remark 3.1. Each element of aV p (resp. aV f) is called a hyperbolic (resp.

elliptic) element.

For each a As, define aa A ac by aðaÞ ¼ Bcðaa; aÞ (a A ac). Take E~aað0 0Þ A gc
~aa

for each ~aa A ~ss and set Z~aa :¼ c~aaðE~aa þ sE~aaÞ and Y~aa :¼ c~aaðE~aa � sE~aaÞ, where c~aa is
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one of two solutions of the complex equation

z2 ¼ aðaaÞ
BcðE~aa � sE~aa;E~aa � sE~aaÞ

:

Then we have adðaÞZ~aa ¼ ~aaðaÞY~aa and adðaÞY~aa ¼ ~aaðaÞZ~aa for any a A ac. Hence

we have Z~aa A hc
~aaja c and Y~aa A qc

~aaja c
. Furthermore, for a A ac, it is shown that hc

a

(resp. qc
a) is spanned by fZ~aa j ~aa A ~ss s:t: ~aaja c ¼ ag (resp. fY~aa j ~aa A ~ss s:t: ~aaja c ¼ ag).

Then ½Z~aa;Y~aa� ¼ aðaaÞaa is shown. L. Verhoczki [38] investigated the shape operators

of orbits of the isotropy action of a Riemannian symmetric space of compact

type. By applying his method of investigation to the isotropy action of the anti-

Kaehlerian symmetric space G c=H c, we prove the following fact for orbits of the

isotropy action of G=H.

Proposition 3.2. Let M be an orbit of the isotropy action (i.e., the H-action)

on G=H through x :¼ expGðwÞH (w A q s.t. adðwÞ : semi-simple) and A be the

shape tensor of M. For simplicity, set g :¼ expGðwÞ. Let a be a Cartan subspace

of q containing w and qc ¼ ac þ
P

a Asþ

qc
a be the root space decomposition with

respect to ac. Then the following statements (i) and (ii) hold:

(i) We have

g�1
� ðTxMÞc ¼

X
a Asþ

s:t: aðwÞ B
ffiffiffiffiffi
�1

p
pZ

qc
a

and

g�1
� ðT?

x MÞc ¼ ac þ
X
a Asþ

s:t: aðwÞ A
ffiffiffiffiffi
�1

p
pZ

qc
a

hold. In particular, if M is a principal orbit, then we have g�1
� ðTxMÞc ¼

P
a Asþ

qc
a

and g�1
� ðT?

x MÞc ¼ ac.

(ii) Let Hx be the isotropy group of H at x and set Hxðg�aÞ :¼ fh�xg�a j
a A a; h A Hxg. Then Hxðg�aÞ is open in T?

x M and, for any v :¼ h�xg�a A Hxðg�aÞ
(a A a; h A Hx), we have Ac

v jh�xg�q c
a
¼ �

ffiffiffiffiffi
�1

p
aðaÞ

tanð
ffiffiffiffiffi
�1

p
aðwÞÞ

id (a Asþ s.t. aðwÞ B
ffiffiffiffiffiffiffi
�1

p
pZ),

where Ac is the complexification of A.

Proof. First we shall show the statement (i) by imitating the proof of

Proposition 3 in [38]. Let M c be the extrinsic complexification of M, that
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is, M c :¼ H c � xðHG c=H cÞ, where G=H is identified with GðeH cÞ. We shall

investigate TxðM cÞ instead of ðTxMÞc because ðTxMÞc is identified with TxðM cÞ.
Let aa (a As), ~ss, Z~aa and Y~aa (~aa A ~ss) be the above quantities defined for a

and a Cartan subalgebra ~aa of g containing a. Let ~aa A ~ss and a :¼ ~aaja c . Since

½Z~aa;w� ¼ �aðwÞY~aa and ½Z~aa;Y~aa� ¼ aðaaÞaa, we have

d

dt

����
t¼0

AdG cðexp tZ~aaÞw ¼ �aðwÞY~aa;

where AdG c is the adjoint representation of G c. Hence we have

Tw AdG cðH cÞw ¼
X

a Asþ s:t: aðwÞ00

qc
a:

Denote by Exp the exponential map of the anti-Kaehlerian symmetric space

ðG c=H c; J; h ; iÞ. Assume that aðwÞ0 0. Define a complex geodesic variation

d : C2 ! G c=H c of the complex geodesic gcwðzÞ ¼ ExpðzwÞ by

dðz; uÞ :¼ Exp z cos u � wþ sin u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw;wi

hY~aa;Y~aai

s
Y~aa

 ! !

(ðz; uÞ A C2). Set W :¼ qd
qu

��
u¼0

, which is a complex Jacobi field along gcw. Hence

it follows from ð2:2Þ that

W1 ¼
sinð

ffiffiffiffiffiffiffi
�1

p
aðwÞÞffiffiffiffiffiffiffi

�1
p

aðwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw;wi

hY~aa;Y~aai

s
g�Y~aa;

where W1 :¼ W jz¼1. On the other hand, we have W1 ¼ ðd ExpÞw
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hw;wi
hY~aa;Y~aai

q
Y~aa

� �
.

Hence we have

ðd ExpÞwðY~aaÞ ¼
sinð

ffiffiffiffiffiffiffi
�1

p
aðwÞÞffiffiffiffiffiffiffi

�1
p

aðwÞ
g�Y~aa:ð3:1Þ

Since M c ¼ ExpðAdG cðH cÞwÞ, we have TxðM cÞ ¼ ðd ExpÞwðTwðAdG cðH cÞwÞÞ.
Hence the relations in the statement (i) follow from ð3:1Þ.

Next we shall show the statement (ii). The Hx-action on TxðG=HÞ preserves

TxM and T?
x M invariantly, respectively. The Hx-action on T?

x M is so-called slice

representation and it is equivalent to an s-representation (the isotropy repre-

sentation of a pseudo-Riemannian symmetric space) (see Page 359–360 of [39]).

Therefore Hxðg�aÞ is open in T?
x M (see [12]). In the sequel, we shall show the

remaining part of the statement (ii) by imitating the proof of Theorem 1 in

[38] for the isotropy action of a Riemannian symmetric space of compact type.
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Denote by ÂA the shape tensor of M c. Under the identification of ðTxMÞc

with TxðM cÞ, the complexified shape operator Ac
w is identified with ÂAw. Hence

we su‰ce to investigate ÂAw instead of Ac
w. Let a be an element of sþ with

aðwÞ B
ffiffiffiffiffiffiffi
�1

p
pZ. Take ~aa1 A ~ss with ~aa1ja c ¼ a. Also, in case of 2a As, ~aa2 A ~ss with

~aa2ja c ¼ 2a. Set ĥhc
a :¼ zh cðacÞ þ hc

a þ hc
2a (hc

2a ¼ f0g in case of 2a Bs) and ĤH c
a :¼

expG cðĥhc
aÞ. Easily we can show

AdG cðexp zZ~aak Þaa ¼ cosðk2zaðaaÞÞaa �
1

k
sinðk2zaðaaÞÞY~aak ðk ¼ 1; 2Þ:

From this relation, it follows that AdðĤH c
a ÞðaaÞ is a complex hypersurface in

q̂qc
a :¼ Caa þ qc

a þ qc
2a (qc

2a ¼ f0g in case of 2a Bs). On the other hand, it is

clear that AdðĤH c
a ÞðaaÞ is contained in the complex hypersphere ðBcjq c

a�q c
a
Þðz; zÞ ¼

Bcðaa; aaÞ of q̂qc
a . Hence AdðĤH c

a ÞðaaÞ coincides with this complex hypersphere. The

vector w is expressed as w ¼ aðwÞ
aðaaÞ aa þ b for some b A a�1ð0Þ. Then we have

AdG cðexp zZ~aak Þw ¼ bþ aðwÞ
aðaaÞ

cosðk2zaðaaÞÞaa �
1

k
sinðk2zaðaaÞÞY~aak

� �
ðk ¼ 1; 2Þ. From this relation, it follows that AdðĤH c

a ÞðwÞ coincides with the

complex hypersphere ðBcjq̂q c
a�q̂q c

a
Þðz� b; z� bÞ ¼ aðwÞ2

aðaaÞ of bþ q̂qc
a . Set Q̂Qc

a :¼ Expðq̂qc
aÞ

and Q̂Qc
aðbÞ :¼ Expðbþ q̂qc

aÞ. It is easy to show that Q̂Qc
a is a totally geodesic

complex rank one anti-Kaehlerian symmetric space in G c=H c. Furthermore, by

imitating the proof of Proposition 4 in [38], it is shown that Q̂Qc
aðbÞ is a totally

geodesic complex rank one anti-Kaehlerian symmetric space and it is isometric to

Q̂Qc
a . In fact, a map f : Q̂Qc

a ! Q̂Qc
aðbÞ defined by fðExp zÞ ¼ Expðzþ bÞ (z A q̂qc

a) is

an isometry. Since AdðĤH c
aÞðwÞ is equal to the complex hypersphere of complex

radius

ffiffiffiffiffiffiffiffiffi
aðwÞ2

aðaaÞ

r
of bþ q̂qc

a , ĤH c
a � x is a complex geodesic hypersphere of complex

radius
ffiffiffiffiffiffiffiffiffiffi
aðwÞ

p
in Q̂Qc

aðbÞ. Set Q̂Qc 0
a :¼ Expðac þ qc

a þ qc
2aÞ, which is isometric to the

anti-Kaehlerian product Q̂Qc
aðbÞ � Cr�1 (r :¼ rankðG=HÞ).

We have ĤH c
a � x H M c V Q̂Qc

aðbÞ H M c V Q̂Qc 0
a . Also, since TxðM cÞ ¼

g�
P

a Asþ s:t: aðwÞ B
ffiffiffiffiffi
�1

p
pZ

qc
a

 !
and TxQ̂Q

c 0
a ¼ g�ðac þ qc

a þ qc
2aÞ, we have TxðM c V Q̂Qc 0

a Þ

¼ qc
a þ qc

2a and hence dim TxðM c V Q̂Qc 0
a Þ ¼ dimðĤH c

a � xÞ. Therefore ĤH c
a � x is a

component of M c V Q̂Qc 0
a . Denote by A the shape tensor of ĤH c

a � x ,! Q̂Qc 0
a . Since

Q̂Qc 0
a is totally geodesic in G c=H c and T?

x ðM cÞ contains the normal space of ĤH c
a � x

in Q̂Qc 0
a , it follows from pseudo-Riemannian version of Lemma 6 of [38] that

ÂAg�aa preserves TxðĤH c
a � xÞ invariantly and that ÂAg�aa ¼ Ag�aa on TxðĤH c

a � xÞ. Let

f be the above isometry of Q̂Qc
a onto Q̂Qc

aðbÞ. Set r0 :¼ aðwÞ
aðaaÞ and denote by A 0 the

shape tensor of ĤH c
a � ðr0aaÞ ,! Q̂Qc 0

a . Clearly we have fðĤH c
a � ðr0aaÞÞ ¼ ĤH c

a � x and
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f�ððexpG cðr0aaÞÞ�ðaaÞÞ ¼ g�aa. Hence we have Ag�aa ¼ f� � A 0
ðexpG c ðr0aaÞÞ�ðaaÞ

� f�1
� .

For simplicity, set g :¼ expG cðr0aaÞ. Now we shall investigate A 0
g�aa

. Define a

complex geodesic variation d : C2 ! G c=H c by

dðz; uÞ :¼ Exp z r0 cos u � aa þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20haa; aai

hY~aa1 ;Y~aa1i

s
sin u � Y~aa1

 ! !
ððz; uÞ A C2Þ:

Set W :¼ qd
qu

��
u¼0

. Since W is a complex Jacobi field along gcr0aa , it follows from

ð2:2Þ that

Wz ¼
sinð

ffiffiffiffiffiffiffi
�1

p
zaðr0aaÞÞffiffiffiffiffiffiffi

�1
p

aðr0aaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20haa; aai

hY~aa1 ;Y~aa1i

s
ðPg cr0aa

Þ0; zðY~aa1Þ:ð3:2Þ

We have

~‘‘ðqd=quÞjz¼1; u¼0

qd

qz
¼ ~‘‘ðqd=qzÞjz¼1; u¼0

qd

qu
¼ W 0

1

¼ cosð
ffiffiffiffiffiffiffi
�1

p
aðr0aaÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20haa; aai

hY~aa1 ;Y~aa1i

s
g�Y~aa1 A TExpðr0aaÞĤH

c
a � ðr0aaÞ

and hence

A 0
g�ðr0aaÞW1 ¼ �cosð

ffiffiffiffiffiffiffi
�1

p
aðr0aaÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20haa; aai

hY~aa1 ;Y~aa1i

s
g�Y~aa1 ;

which together with ð3:2Þ and aðbÞ ¼ 0 deduces

A 0
g�aa

g�Y~aa1 ¼ �
ffiffiffiffiffiffiffi
�1

p
aðaaÞ

tanð
ffiffiffiffiffiffiffi
�1

p
aðwÞÞ

g�Y~aa1 :

Therefore we have

ÂAg�aag�Y~aa1 ¼ �
ffiffiffiffiffiffiffi
�1

p
aðaaÞ

tanð
ffiffiffiffiffiffiffi
�1

p
aðwÞÞ

g�Y~aa1 :

Similarly we have

ÂAg�aag�Y~aa2 ¼ � 2
ffiffiffiffiffiffiffi
�1

p
aðaaÞ

tanð2
ffiffiffiffiffiffiffi
�1

p
aðwÞÞ

g�Y~aa2 :

Take b A a�1ð0Þ. Since Q̂Qc
aðbÞ is totally geodesic and T?Q̂Qc

aðbÞjĤH c
a �x VT?MjĤH c

a �x is

parallel along ĤH c
a � x with respect to the normal connection of Q̂Qc

aðbÞ ,! G c=H c,

we have

ÂA
g�b

g�Y~aa1 ¼ ÂA
g�b

g�Y~aa2 ¼ 0:
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Take an arbitrary a A a. We can express as a ¼ aðaÞ
aðaaÞ aa þ b̂b for some b̂b A a�1ð0Þ.

Thus, for each a A a, we have

ÂAg�ajg�q c
b
¼ �

ffiffiffiffiffiffiffi
�1

p
bðaÞ

tanð
ffiffiffiffiffiffiffi
�1

p
bðwÞÞ

id ðb Asþ s:t: bðwÞ B
ffiffiffiffiffiffiffi
�1

p
pZÞ:

Take an arbitrary h�xg�a A Hxðg�aÞ (a A a, h A Hx). Since h is an isometry of

G c=H c, we have ÂAh�xg�a ¼ h�x � ÂAg�a � h�1
�x . Hence we have

ÂAh�xg�ajh�xg�q c
b
¼ �

ffiffiffiffiffiffiffi
�1

p
bðaÞ

tanð
ffiffiffiffiffiffiffi
�1

p
bðwÞÞ

id ðb Asþ s:t: bðwÞ B
ffiffiffiffiffiffiffi
�1

p
pZÞ:

Therefore, we obtain the relation in the statement (ii). q.e.d.

4. Shape Operators of Partial Tubes

In this section, we investigate the shape operators of partial tubes over a

pseudo-Riemannian submanifold with section in a (semi-simple) pseudo-Rie-

mannian symmetric space G=H equipped with the metric induced from the

Killing form of g :¼ Lie G. Let M be a pseudo-Riemannian submanifold with

section in G=H, that is, for each x ¼ gH of M, g�1
� T?

x M is a Lie triple system.

Let tðMÞ be a connected submanifold in the normal bundle T?M of M such that,

for any curve c : ½0; 1� ! M, P?
c ðtðMÞVT?

cð0ÞMÞ ¼ tðMÞVT?
cð1ÞM holds, where

P?
c is the parallel transport along c with respect to the normal connection. Denote

by F the set of all critical points of the normal exponential map exp? of M.

Assume that tðMÞVF ¼ q. Then the restriction exp?jtðMÞ of exp
? to tðMÞ is an

immersion of tðMÞ into G=H. Assume that exp?jtðMÞ : tðMÞ ,! G=H is a pseudo-

Riemannian submanifold. Then we call tðMÞ a partial tube over M. Define a

distribution DV on tðMÞ by DV
v ¼ TvðtðMÞVT?

pðvÞMÞ (v A tðMÞ), where p is the

bundle projection of T?M. We call this distribution a vertical distribution on

tðMÞ. Let X A TpðvÞM. Take a curve c in M with _ccð0Þ ¼ X . Let ~vv be a parallel

normal vector field along c with ~vvð0Þ ¼ v. Denote by ~XXv the velocity vector _~vv~vvð0Þ
of the curve ~vv in T?M at 0. We call ~XXv the horizontal lift of X to v. Define

a distribution DH on tðMÞ by DH
v ¼ f ~XXv jX A TpðvÞMg (v A tðMÞ). We call this

distribution a horizontal distribution on tðMÞ. From ð2:1Þ, we have

exp?� ð ~XXvÞ ¼ Pgv Dco
v X �Dsi

v ðAvXÞ
� �

:ð4:1Þ

Assume that tðMÞ is contained in the e-tube teðMÞ :¼
n
v A T?M

��� hv;viffiffiffiffiffiffiffiffiffiffi
jhv;vij

p ¼ e
o

(e0 0). Define a subbundle D? of the normal bundle T?tðMÞ of tðMÞ by D?
v :¼

T?
v tðMÞVTvðteðMÞÞ (v A tðMÞ). Clearly we have TvtðMÞ ¼ DH

v lDV
v (orthog-
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onal direct sum) and T?
v tðMÞ ¼ D?

v l Spanf_ggvð1Þg (orthogonal direct sum),

where gv is defined by gvðtÞ :¼ tv. Denote by A (resp. At) the shape tensor of M

(resp. tðMÞ). Also, denote by Ax that of a submanifold tðMÞVT?
x M in

exp?ðT?
x MÞ immersed by exp?jtðMÞVT?

x M . In the sequel, we omit exp?� . For

a real analytic function F and v A TgHðG=HÞ, we denote the operator g� �
F ðadðg�1

� vÞÞ � g�1
� by F ðadðvÞÞ for simplicity. Then, by imitating the proof of

Proposition 3.1 in [19], we can show the the following relations.

Proposition 4.1. Let v A tðMÞ and w A D?
v . Also, let pðvÞ ¼ g1H, g2 :¼

expGðg�1
1� vÞ and g :¼ g1g2g

�1
1 , where expG is the exponential map of the Lie group

G.

(i) For Y A DV
v , we have

At
g�v

Y ¼ ApðvÞ
g�v

Y ; At
wY ¼ ApðvÞ

w Y :ð4:2Þ

(ii) Assume that Spanfg�1
1� v; ðg1g2Þ

�1
� wg is abelian. Then, for X A TpðvÞM, we

have

At
w
~XXv ¼

ffiffiffiffiffiffiffi
�1

p
adðg�1

� wÞ sinð
ffiffiffiffiffiffiffi
�1

p
adðvÞÞðXÞð4:3Þ

�
ffiffiffiffiffiffiffi
�1

p
sinð

ffiffiffiffiffiffiffi
�1

p
adðvÞÞ

adðvÞ ðAg�1
� wX Þ

þ cosð
ffiffiffiffiffiffiffi
�1

p
adðvÞÞ � id

adðvÞ þ
ffiffiffiffiffiffiffi
�1

p
sinð

ffiffiffiffiffiffiffi
�1

p
adðvÞÞ þ adðvÞ

adðvÞ2

 !

� adðg�1
� wÞðAvX Þ:

Remark 4.1. The parallel translation Pgv along gv is equal to g�.

5. Proper Complex Equifocality

In this section, we investigate the proper complex equifocality of a complex

equifocal submanifold in a pseudo-Riemannian symmetric space. Let G=H be a

(semi-simple) pseudo-Riemannian symmetric space and R be the curvature tensor

of G=H. First we prepare the following lemma for a curvature-adapted sub-

manifold with flat section such that the normal holonomy group is trivial.

Lemma 5.1. Let M be a curvature-adapted submanifold in G=H with flat

section such that the normal holonomy group is trivial. Assume that, for any normal
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vector v of M, Av and adðg�1
� vÞ are semi-simple, where A is the shape tensor of

M and g is an element of G such that gH is the base point of v. Then, for any

x A M, fAv j v A T?
x MgU fRð�; vÞvjTxM

j v A T?
x Mg is a commuting family of linear

transformations of TxM.

Proof. Let vi A T?
x M (i ¼ 1; 2). Since M has flat section, Rð�; v1Þv1jTxM

and

Rð�; v2Þv2jTxM
commute with each other. Since M has flat section and the normal

holonomy group is trivial, Av1 and Av2 commute with each other. In the sequel,

we shall show that Rð�; v1Þv1jTxM
and Av2 commute with each other. Let x ¼ gH.

Since g�1
� T?

x M is abelian and, for any v A T?
x M, adðg�1

� vÞ is semi-simple, there

exists a Cartan subspace a of qð¼ TeHðG=HÞÞ containing b :¼ g�1
� ðT?

x MÞ. Let

s be the root system with respect to ac and set s :¼ fajb c j a As s:t: ajb c 0 0g.
For each b As, we set qc

b :¼ fX A qc j adðbÞ2ðXÞ ¼ bðbÞ2X ðEb A bcÞg. Then we

have qc ¼ zq cðbcÞ þ
P

b Asþ
qc
b, where sþ is the positive root system under some

lexicographical ordering and zq cðbcÞ is the centralizer of bc in qc. Consider

D :¼ fv A ðT?
x MÞc j bðg�1

� vÞ’s ðb AsþÞ are mutually distinctg:

It is clear that D is open and dense in ðT?
x MÞc. Take v A D. Since bðg�1

� vÞ’s
(b Asþ) are mutually distinct, the decomposition ðTxMÞc ¼ g�ðzq cðbcÞm bcÞþP
b Asþ

g�q
c
b is the eigenspace decomposition of Rcð�; vÞvjðTxMÞ c , where we note

that Rcð�; vÞv ¼ �g� � adcðg�1
� vÞ2 � g�1

� . Since M is curvature-adapted and hence

½Rcð�; vÞvjðTxMÞ c ;A
c
v � ¼ 0, we have

ðTxMÞc ¼
X

l A Spec A c
v

ðg�ðzq cðbcÞm bcÞVKerðAc
v � l idÞÞð5:1Þ

þ
X

l A Spec A c
v

X
b Asþ

ðg�qc
b VKerðAc

v � l idÞÞ:

Suppose that ð5:1Þ does not hold for some v0 A ðT?
x MÞcnD. Then it is easy to

show that there exists a neighborhood U of v0 in ðT?
x MÞc such that ð5:1Þ does

not hold for any v A U . Clearly we have U VD ¼ q. This contradicts the fact

that D is dense in ðT?
x MÞc. Hence ð5:1Þ holds for any v A ðT?

x MÞcnD. Therefore,

ð5:1Þ holds for any v A ðT?
x MÞc. In particular, ð5:1Þ holds for v2. On the other

hand, the decomposition ðTxMÞc ¼ g�ðzq cðbcÞm bcÞ þ
P

b Asþ

g�q
c
b is the common

eigenspace decomposition of Rcð�; vÞvjðTxMÞ c ’s (v A ðT?
x MÞc). From these facts, it

follows that Rcð�; v1Þv1jðTxMÞ c and Ac
v2

commute with each other. This completes

the proof. q.e.d.
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By this lemma, Lemma 5.3, Propositions 5.6 and 5.7 of [17] (these lemmas

are valid even if the ambient space is a pseudo-Riemannian symmetric space), we

can show the following fact.

Proposition 5.2. Let M be a curvature-adapted complex equifocal sub-

manifold in G=H. Assume that, for any normal vector v of M, Av and adðg�1
� vÞ are

semi-simple and that Gbðg�1
� vÞ B Spec Ac

v jg�q c
b
(b Asþ), where g is an element of

G such that gH is the base point of v. Then M is proper complex equifocal.

Proof. Let ~MM :¼ ðp � fÞ�1ðMÞ and denote by ~AA the shape tensor of ~MM. Fix

u A ~MM and ~vv A T?
u

~MM. For simplicity, set xð¼ gHÞ ¼ ðp � fÞðuÞ and v :¼ ðp � fÞ�ð~vvÞ.
According to Lemma 5.1, it follows from the assumptions that Ac

v commutes with

Rcð�;wÞwjðTxMÞ c ’s (w A ðT?
x MÞc). Also, it follows from the assumptions that Ac

v

and Rcð�;wÞwjTxM
’s (w A ðT?

x MÞc) are diagonalizable. Hence they are simulta-

neously diagonalizable, that is, we have the relation (5.1). On the other hand, by

the assumption, we have Gbðg�1
� vÞ B SpecðAc

v jg�q c
b
Þ for each b Asþ. Therefore, it

follows from Lemma 5.3, Propositions 5.6 and 5.7 of [17] that there exists a

pseudo-orthonormal base of ðTu
~MMÞc consisting of eigenvectors of ~AAc

~vv . Therefore
~MM is proper complex isoparametric, that is, M is proper complex equifocal.

q.e.d.

6. Proof of Theorems A, C and E

In this section, we shall prove Theorems A, C and E. First we prove

Theorem A in terms of Propositions 3.2, 4.1 and 5.2.

Proof of Theorem A. Since TeHðH 0ðeHÞÞ ¼ qV h 0 and qV h 0 is a non-

degenerate subsapce of q, we see that H 0ðeHÞ is a pseudo-Riemannian sub-

manifold. Since s � s 0 ¼ s 0 � s, we can show that H 0ðeHÞ is a reflective sub-

manifold by imitating the first-half part of the proof of Lemma 4.2 in [19]. Thus

the first-half part of the statement (i) is shown. Furthermore, by imitating the

second-half part of the proof of Lemma 4.2 in [19], we can show the second-half

part of the statement (i). In the sequel, we shall show the statement (ii). Let M be

a principal orbit of the H 0-action as in the statement (ii). For simplicity, set

x :¼ expGðwÞH and g :¼ expGðwÞ, where w is as in the statement (ii). By imitating

the second-half part of the proof of Lemma 4.2 in [17], it is shown that M is

a partial tube over H 0ðeHÞ and M VSeH is an orbit of the isotropy action of

the symmetric space SeHðGL=H VH 0Þ. Since M is a principal orbit, M VSeH

is a principal orbit of the isotropy action. Hence, since adðwÞjl is semi-simple,
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b :¼ g�1
� T?

x M is a Cartan subspace of qV q 0 by (i) of Proposition 3.2. Take

a Cartan subspace a of q containing b. Let qc ¼ ac þ
P

a Asþ
qc
a be the root

space decomposition with respect to ac. Set sb c :¼ fajb c j a As s:t: ajb c 0 0g
and qc

b :¼
P

a As s:t: ajb c¼b q
c
a (b Asb c ). Then we have qc ¼ zq cðbcÞ þ

P
b A ðsb c Þþ q

c
b ,

where ðsb cÞþ is the positive root system under some lexicographical ordering.

Also, since qc V h 0c and qc V q 0c are adðbÞ2-invariant for any b A bc, we have

qc V h 0c ¼ zq cðbcÞV h 0c þ
P

b A ðsb c Þþðq
c
b V h 0cÞ and qc V q 0c ¼ bc þ

P
b A ðsb c Þþðq

c
b V q 0cÞ.

Hence we have

ðTxMÞc ¼ gc
�ðzq cðbcÞV h 0cÞ þ

X
b A ðsb c Þþ

ðgc
�ðqc

b V h 0cÞ þ gc
�ðqc

b V q 0cÞÞ;

ðTeHðH 0ðeHÞÞÞc ¼ zq cðbcÞV h 0c þ
X

b A ðsb c Þþ

ðqc
b V h 0cÞ

and

ðTxðM VSeHÞÞc ¼
X

b A ðsb c Þþ

gc
�ðqc

b V q 0cÞ:

Also we have T?
x M ¼ g�b. Take v A T?

x M ¼ g�b. It is clear that Rð�; vÞv is semi-

simple. Since H 0ðeHÞ is totally geodesic, it follows from (ii) of Proposition 4.1

and ð4:1Þ that Ac
v
~XXw ¼ 0 ðX A zq cðbcÞV h 0cÞ and

Ac
v
~XXw ¼

ffiffiffiffiffiffiffi
�1

p
bðg�1

� vÞ tanð
ffiffiffiffiffiffiffi
�1

p
bðwÞÞ ~XXw ðX A qc

b V h 0c ðb A ðsb cÞþÞÞ:ð6:1Þ

Also, since M VSeH is a principal orbit of the isotropy action of SeHðGL=H V

KÞ, it follows from Proposition 3.2 and (i) of Proposition 4.1 that

Ac
vY ¼ �

ffiffiffiffiffiffiffi
�1

p
bðg�1

� vÞ
tanð

ffiffiffiffiffiffiffi
�1

p
bðwÞÞ

Y ðY A g�ðqc
b V q 0cÞÞð6:2Þ

up to constant-multiple, where we note that the induced metric on SeHð¼ L=H

VKÞ is homothetic to the metric induced from the Killing form of l. Thus Ac
v is

diagonalizable, that is, Av is semi-simple. Also we have ½Ac
v ;R

cð�; vÞvjðTxMÞ c � ¼ 0

and hence ½Av;Rð�; vÞvjTxM
� ¼ 0. Therefore M is curvature-adapted. Next we shall

show that M is proper complex equifocal. Since g�1
� T?

x M is a Cartan subspace

of qV q 0 for each xð¼ gHÞ A M, M has flat section. Since M is a principal orbit

of the H 0-action, each normal vector of M extend to an H 0-equivariant nor-

mal vector field, which is parallel with respect to the normal connection of M

because M has flat section. From this fact, it follows that the normal holonomy
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group of M is trivial. Furthermore, it follows from the homogeneity of M that

M is complex equifocal, where we use Fact 3 stated in Introduction. From ð6:1Þ
and ð6:2Þ, we have SpecðAc

v jg c
�q

c
b
ÞH

n ffiffiffiffiffiffiffi
�1

p
bðg�1

� vÞ tanð
ffiffiffiffiffiffiffi
�1

p
bðwÞÞ;�

ffiffiffiffiffi
�1

p
bðg�1

� vÞ
tanð

ffiffiffiffiffi
�1

p
bðwÞÞ

o
(b A ðsb cÞþ), that is, Gbðg�1

� vÞ B Spec Ac
v jg c

�q
c
b
. Therefore, it follows from Prop-

osition 5.2 that M is proper complex equifocal. Furthermore it follows from the

result of [23] stated in Introduction that M is an isoparametric submanifold with

flat section. This completes the proof. q.e.d.

Next we prove Theorem C.

Proof of Theorem C. According to Theorem A, we have only to show that

KðeHÞ has no focal point and that, for any normal vector v of Mi, Rð�; vÞvjTxMi

and Av are diagonalizable. Let g ¼ fþ p be the Cartan decomposition of g

associated with y. Take an arbitrary normal vector v of KðeHÞ at eH. Take a

maximal abelian subspace b of qV p containing v and a Cartan subspace a of q

containing b. Let qc ¼ ac þ
P

a Asþ
qc
a be the root space decomposition of qc with

respect to ac. Let sb :¼ fajb j a As s:t: ajb 0 0g and qb :¼ ð
P

a As s:t: ajb¼b q
c
aÞV q

(b Asb). Since bH p, we have bðbÞHR (b Asb) (see Lemma 3.1) and hence

q ¼ zqðbÞ þ
P

b A ðsbÞþ qb. Furthermore, since adðbÞ2ðqV fÞH qV f for any b A b,

we have qV f ¼ zqðbÞV fþ
P

b A ðsbÞþðqb V fÞ. Let X A qb V f (b A ðsbÞþ), Y be the

strongly KðeHÞ-Jacobi field along gv with Yð0Þ ¼ X . Since KðeHÞ is totally

geodesic, we have YðsÞ ¼ coshðsbðvÞÞPgvj½0; s� ðX Þ. Since bðvÞ is a real number,

Y has no zero point. Also any strongly KðeHÞ-Jacobi field ŶY along gv with

ŶY ð0Þ A zqðbÞV f is expressed as ŶYðsÞ ¼ Pgvj½0; s� ðŶYð0ÞÞ and hence it has no zero

point. On the other hand, since KðeHÞ is reflective and hence it has section,

any non-strongly KðeHÞ-Jacobi field along gv has no zero point. After all

there exists no focal point of KðeHÞ along gv. From the arbitrariness of v, it

follows that KðeHÞ has no focal point. For convenience, set H1 :¼ K , H2 :¼ L,

h1 :¼ f, h2 :¼ l, q1 :¼ p and q2 :¼ fV qþ pV h. Let M1 (resp. M2) be a principal

orbit of the H1-action (resp. the H2-action) through x1 ¼ expGðw1ÞH A H2ðeHÞ
(w1 A qV q1) (resp. x2 ¼ expGðw2ÞH A H1ðeHÞnF (w2 A qV q2)). Set gi :¼ expGðwiÞ
(i ¼ 1; 2). Since b1 :¼ g�1

1� ðT?
x1
M1Þ and b2 :¼ g�1

2� ðT?
x2
M2Þ are maximal abelian

subspaces of qV p and qV f, respectively, they are maximal split abelian subspaces

of q. Hence we have the root space decomposition q ¼ zqðbiÞ þ
P

b Asi
þ
qb of q with

respect to bi (i ¼ 1; 2), where qb :¼ fX A q j adðbÞ2ðX Þ ¼ ð�1ÞeibðbÞ2X ðEb A biÞg
(b A b�

i ) (e1 ¼ 0 and e2 ¼ 1 by Lemma 3.1) and si
þ is the positive root system

of si :¼ fb A b�
i j qb 0 f0gg with respect to a lexicographical ordering of b�

i .
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Also, it is easy to show that qV hi ¼ zqðbiÞV hi þ
P

b Asi
þ
ðqb V hiÞ and qV qi ¼

bi þ
P

b Asi
þ
ðqb V qiÞ, where i ¼ 1; 2. Hence we have

TxiMi ¼ gi�ðzqðbiÞV hiÞ þ
X
b Asi

þ

ðgi�ðqb V hiÞ þ gi�ðqb V qiÞÞ;

TeHðHiðeHÞÞ ¼ zqðbiÞV hi þ
X
b Asi

þ

ðqb V hiÞ

and

TxiðMi VS i
eHÞ ¼

X
b Asi

þ

gi�ðqb V qiÞ;

where S i
eH is the section of HiðeHÞ through eH. Take vi A T?

xi
Mi ¼ gi�bi. It is

clear that Rð�; viÞvi is diagonalizable. Denote by Ai the shape tensor of Mi. By

using Propositions 3.2, 4.1 and ð4:1Þ, we can show Ai
vi
~XXwi

¼ 0 ðX A zqðbiÞV hiÞ,

Ai
vi
~XXwi

¼
ffiffiffiffiffiffiffi
�1

p i
bðg�1

i� viÞ tanð
ffiffiffiffiffiffiffi
�1

p i
bðwiÞÞ ~XXwi

ðX A qb V hi ðb Asi
þÞÞ

and

Ai
vi
Y ¼ �

ffiffiffiffiffiffiffi
�1

p i
bðg�1

i� viÞ
tanð

ffiffiffiffiffiffiffi
�1

p i
bðwiÞÞ

Y ðY A gi�ðqb V qiÞ ðb Asi
þÞÞ:

Thus Ai
vi

is diagonalizable. This completes the proof. q.e.d.

Next we shall prove Theorem E. By imitating the proof of Lemma 2.1 of

[21], we can show the following fact.

Lemma 6.1. Let Gð¼ ðG � GÞ=sGÞ be a semi-simple Lie group equipped with

the bi-invariant pseudo-Riemannian metric induced from the Killing form of gþ g,

H 0 be a closed subgroup of G � G and a be an abelian subspace of the normal

space T?
e ðH 0 � eÞ of H 0 � e. Set S :¼ expGðaÞ. Then all H 0-orbits through S meet S

orthogonally.

By using this lemma and imitating the proof of Lemma 2.2 of [21], we can

show tyhe following fact.

Lemma 6.2. Let G=H be a semi-simple pseudo-Riemannian symmetric space,

H 0 be a closed subgroup of G and a be an abelian subspace of the normal space
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T?
eHHðeHÞ of H 0ðeHÞ. Set S :¼ ExpðaÞ. Then all H 0-orbits through S meet S

orthogonally.

By using this lemma, we prove Theorem E.

Proof of Theorem E. Let M, F and G=H be as in the statement of

Theorem E. Without loss of generality, we may assume that G is simply con-

nected. Since M is homogeneous, there exists a closed subgroup H1 of G having

M as an orbit. Without loss of generality, we may assume that H1ðeHÞ ¼ M.

Set S :¼ ExpðT?
eHMÞ. Since M has flat section, that is, T?

eHM is abelian, it

follows from Lemma 6.2 that all H1-orbits through S meet S orthogonally. Hence

their dimensions are lower than dim M þ 1. This fact implies that all H1-orbits

through W are of the same dimension as dim M for some neighborhood W of

eH in S. Hence they are principal orbits or exceptional orbits of the H1-action.

By imitating the proof of the fact that a hyperpolar action has no excep-

tional orbit (see [28]), we can show that there exists no exceptonal orbit among

the H1-orbits through W . Hence the H1-orbits through W are principal. Set

U :¼ H1 �W , which is an open set of G=H. Fix g0H A F . Set H2 :¼ g�1
0 H1g0,

t :¼ TeHg
�1
0 F and t? :¼ T?

eHg
�1
0 F . Furthermore set h 0 :¼ nhðtÞ þ t and q 0 :¼

ðhm nhðtÞÞ þ t?. Since nhðtÞ is a non-degenerate subspace of h by the assump-

tion, we have g ¼ h 0 l q 0 (orthogonal direct sum). Since F is a reflective by the

assumption, t and t? are Lie triple systems. By using this fact, we can show

½h 0; h 0�H h 0, ½h 0; q 0�H q 0 and ½q 0; q 0�H h 0. Thus the connected subgroup H 0 of G

having h 0 as its Lie algebra is symmetric, where we use the simply connectedness

of G. That is, the H 0-action on G=H is a Hermann type action. Easily we can

show TeððH2 �HÞ � eÞ ¼ prqðh2Þ þ h and TeððH 0 �HÞ � eÞ ¼ prqðh 0Þ þ h ¼ tþ h,

where prq is the orthogonal projection of g onto q and h2 :¼ Lie H2. Since

p�1ðH2ðeHÞÞ ¼ ðH2 �HÞ � e, we have TeHðH2ðeHÞÞ ¼ prqðTeððH2 �HÞ � eÞÞ ¼
prqðh2Þ, that is, prqðh2Þ ¼ t. Hence we have TeððH 0 �HÞ � eÞ ¼ TeððH2 �HÞ � eÞÞ,
which implies ðH 0 �HÞ � e ¼ ðH2 �HÞ � e. Therefore we have H 0ðeHÞ ¼ H2ðeHÞ.
Set S 0 :¼ ExpðT?

g�1
0

H
ðg�1

0 MÞÞ, which passes through eH. Set a 0 :¼ TeHS
0, which is

abelian. Since T?
eHðH 0ðeHÞÞ ¼ T?

eHðH2ðeHÞÞ includes a 0, it follows from Lemma

6.2 that all H 0-orbits and all H2-orbits through S 0 meet S 0 orthogonally. Since

all H2-orbits through g�1
0 WðHS 0Þ are principal and hence T?

gHðH2ðgHÞÞ ¼ TgHS
0

for all gH A g�1
0 W , we have TgHðH 0ðgHÞÞHTgHðH2ðgHÞÞ for all gH A g�1

0 W .

On the other hand, we have ½prhðh2Þ; t� ¼ prqð½h2; t�ÞH prqðTeððH2 �HÞ � eÞÞ ¼
TeHððH2ðeHÞÞ ¼ t, that is, prhðh2ÞH nhðtÞ, where prh is the orthogonal projection

of g onto h. Hence we have h2 H prhðh2Þ þ prqðh2ÞH h 0, that is, H2 HH 0.
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Therefore we see that H 0ðgHÞ ¼ H2ðgHÞ for all gH A g�1
0 W . In particular,

g�1
0 M is a principal orbit of the H 0-action. Hence M is a principal orbit of the

Hermann type action g0H
0g�1

0 . This completes the proof. q.e.d.

7. Cohomogeneities of Special Hermann Type Actions

In this section, we shall list up the cohomogeneities of the K-action and

the L-action as in Theorem C on irreducible (semi-simple) pseudo-Riemannian

symmetric spaces G=H in terms of the fact that the cohomogeneity of the K-

action (resp. L-action) is equal to the rank of L=H VK (resp. K=H VK). In

Tables 1@5, A � B denotes A� B=P, where P is the discrete center of A� B. The

symbol gSO0ð1; 8ÞSO0ð1; 8Þ in Table 6 denotes the universal covering of SO0ð1; 8Þ and the

symbol a in Table 6 denotes an outer automorphism of G2
2 .

Table 1.

G=H K L

cohomK cohomL

SLðn;RÞ=SO0ðp; n� pÞ
�
pa n

2

�
SOðnÞ ðSLðp;RÞ � SLðn� p;RÞÞ

�R�

n� 1 p

SOðnÞ SO0ðp; n� pÞSLðn;RÞ=ðSLðp;RÞ � SLðn� p;RÞÞ � R��
pa n

2

�
p p

SLð2n;RÞ=Spðn;RÞ SOð2nÞ SLðn;CÞ �Uð1Þ

n� 1
	
n
2



SLð2n;RÞ=SLðn;CÞ �Uð1Þ SOð2nÞ Spðn;RÞ

n
	
n
2



SU �ð2nÞ=SO�ð2nÞ SpðnÞ SLðn;CÞ �Uð1Þ

n� 1 n

SU �ð2nÞ=SLðn;CÞ �Uð1Þ SpðnÞ SO�ð2nÞ	
n
2



n

SU �ð2nÞ=Spðp; n� pÞ
�
pa n

2

�
SpðnÞ SU �ð2pÞ � SU �ð2n� 2pÞ

�Uð1Þ

n� 1 p

SpðnÞ Spðp; n� pÞSU �ð2nÞ=ðSU �ð2pÞ � SU �ð2n� 2pÞ �Uð1ÞÞ�
pa n

2

�
p p
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Table 1 (continued)

G=H K L

cohomK cohomL

SUðp; qÞ=SO0ðp; qÞ ðpa qÞ SðUðpÞ �UðqÞÞ SO0ðp; qÞ

p n� 1

SUðp; pÞ=SO�ð2pÞ SðUðpÞ �UðpÞÞ Spðp;RÞ

p p� 1

SUðp; pÞ=Spðp;RÞ SðUðpÞ �UðpÞÞ SO�ð2pÞ	 p
2



p� 1

SUðp; pÞ=SLðp;CÞ �Uð1Þ SðUðpÞ �UðpÞÞ SLðp;CÞ �Uð1Þ

p p� 1

SUð2p; 2qÞ=Spðp; qÞ ðpa qÞ SðUð2pÞ �Uð2qÞÞ Spðp; qÞ

p n� 1

SUðp; qÞ=SðUði; jÞ �Uðp� i; q� jÞÞ SðUðpÞ �UðqÞÞ SðUðp� i; jÞ �Uði; q� jÞÞ

minfp� i; jg
þ minfi; q� jg

minfi; p� ig
þ minf j; q� jg

Table 2.

G=H K L

cohomK cohomL

SLðn;CÞ=SOðn;CÞ SUðnÞ SLðn;RÞ

n� 1 n� 1

SLðn;CÞ=SLðn;RÞ SUðnÞ SOðn;CÞ	
n
2



n� 1

SUðnÞ SUðp; n� pÞSLðn;CÞ=ðSLðp;CÞ � SLðn� p;CÞ �Uð1ÞÞ�
pa n

2

�
p p

SLðn;CÞ=SUðp; n� pÞ
�
pa n

2

�
SUðnÞ SLðp;CÞ � SLðn� p;CÞ

�Uð1Þ

n� 2 p

SLð2n;CÞ=Spðn;CÞ SUð2nÞ SU �ð2nÞ

n� 1 n� 1
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Table 2 (continued)

G=H K L

cohomK cohomL

SLð2n;CÞ=SU �ð2nÞ SUð2nÞ Spðn;CÞ

n n� 1

SO0ðp; qÞ=SO0ði; jÞ � SO0ðp� i; q� jÞ SOðpÞ � SOðqÞ SO0ðp� i; jÞ � SO0ði; q� jÞ

minfp� i; jg
þ minfi; q� jg

minfi; p� ig þminf j; q� jg

SO0ðp; pÞ=SOðp;CÞ SOðpÞ � SOðpÞ SLðp;RÞ �Uð1Þ

p
	 p
2



SO0ðp; pÞ=SLðp;RÞ �Uð1Þ SOðpÞ � SOðpÞ SOðp;CÞ	 p

2


 	 p
2



SO0ð2p; 2qÞ=SUðp; qÞ �Uð1Þ ðpa qÞ SOð2pÞ � SOð2qÞ SUðp; qÞ �Uð1Þ

p
	 p
2



þ
	q
2



SO�ð2nÞ=SO�ð2pÞ � SO�ð2n� 2pÞ

�
pa n

2

�
UðnÞ SUðp; n� pÞ �Uð1Þ

p p

SO�ð2nÞ=SUðp; n� pÞ �Uð1Þ
�
pa n

2

�
UðnÞ SO�ð2pÞ � SO�ð2n� 2pÞ	 p

2



þ
	n� p

2



p

SO�ð2nÞ=SOðn;CÞ UðnÞ SOðn;CÞ	
n
2



n

SO�ð4nÞ=SU �ð2nÞ �Uð1Þ Uð2nÞ SU �ð2nÞ �Uð1Þ

n� 1 n� 1

SOðn;CÞ=SOðp;CÞ � SOðn� p;CÞ
�
pa n

2

�
SOðnÞ SO0ðp; n� pÞ

p p

SOðn;CÞ=SO0ðp; n� pÞ
�
pa n

2

�
SOðnÞ SOðp;CÞ � SOðn� p;CÞ	 p

2



þ
	n� p

2



p

SOð2n;CÞ=SLðn;CÞ � SOð2;CÞ SOð2nÞ SO�ð2nÞ	
n
2


 	
n
2



SOð2n;CÞ=SO�ð2nÞ SOð2nÞ SLðn;CÞ � SOð2;CÞ

n
	
n
2
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Table 3.

G=H K L

cohomK cohomL

Spðn;RÞ=SUðp; n� pÞ �Uð1Þ
�
pa n

2

�
UðnÞ Spðp;RÞ � Spðn� p;RÞ

n p

Spðn;RÞ=Spðp;RÞ � Spðn� p;RÞ
�
pa n

2

�
UðnÞ SUðp; n� pÞ �Uð1Þ

p p

Spðn;RÞ=SLðn;RÞ �Uð1Þ UðnÞ SLðn;RÞ �Uð1Þ

n� 1 n� 1

Spð2n;RÞ=Spðn;CÞ Uð2nÞ Spðn;CÞ

n n

Spðp; qÞ=SUðp; qÞ �Uð1Þ SpðpÞ � SpðqÞ SUðp; qÞ �Uð1Þ

p pþ q

Spðp; pÞ=SU �ð2pÞ �Uð1Þ SpðpÞ � SpðpÞ Spðp;CÞ

p p

Spðp; pÞ=Spðp;CÞ SpðpÞ � SpðpÞ SU �ð2pÞ �Uð1Þ

p� 1 p

Spðp; qÞ=Spði; jÞ � Spðp� i; q� jÞ SpðpÞ � SpðqÞ Spðp� i; jÞ � Spði; q� jÞ

minfp� i; jg
þ minfi; q� jg

minfi; p� ig þminf j; q� jg

Spðn;CÞ=SLðn;CÞ � SOð2;CÞ SpðnÞ Spðn;RÞ

n n

Spðn;CÞ=Spðn;RÞ SpðnÞ SLðn;CÞ � SOð2;CÞ

n n

Spðn;CÞ=Spðp;CÞ � Spðn� p;CÞ
�
pa n

2

�
SpðnÞ Spðp; n� pÞ

p p

Spðn;CÞ=Spðp; n� pÞ
�
pa n

2

�
SpðnÞ Spðp;CÞ � Spðn� p;CÞ

n p
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Table 4.

G=H K L cohomK cohomL

E 6
6 =Spð4;RÞ Spð4Þ=fG1g SLð6;RÞ � SLð2;RÞ 6 4

E 6
6 =SLð6;RÞ � SLð2;RÞ Spð4Þ=fG1g Spð4;RÞ 4 4

E 6
6 =Spð2; 2Þ Spð4Þ=fG1g SO0ð5; 5Þ � R 6 2

E 6
6 =SO0ð5; 5Þ � R Spð4Þ=fG1g Spð2; 2Þ 2 2

E 6
6 =SU

�ð6Þ � SUð2Þ Spð4Þ=fG1g F 4
4 4 1

E 6
6 =F

4
4 Spð4Þ=fG1g SU �ð6Þ � SUð2Þ 2 1

E 2
6 =Spð1; 3Þ SUð6Þ � SUð2Þ F 4

4 4 2

E 2
6 =F

4
4 SUð6Þ � SUð2Þ Spð1; 3Þ 1 2

E 2
6 =Spð4;RÞ SUð6Þ � SUð2Þ Spð4;RÞ 4 2

E 2
6 =SUð2; 4Þ � SUð2Þ SUð6Þ � SUð2Þ SO0ð4; 6Þ �Uð1Þ 4 2

E 2
6 =SO0ð4; 6Þ �Uð1Þ SUð6Þ � SUð2Þ SUð2; 4Þ � SUð2Þ 2 2

E 2
6 =SUð3; 3Þ � SLð2;RÞ SUð6Þ � SUð2Þ SUð3; 3Þ � SLð2;RÞ 4 4

E 2
6 =SO

�ð10Þ �Uð1Þ SUð6Þ � SUð2Þ SO�ð10Þ �Uð1Þ 2 2

E�14
6 =Spð2; 2Þ Spinð10Þ �Uð1Þ Spð2; 2Þ 2 6

E�14
6 =SUð2; 4Þ � SUð2Þ Spinð10Þ �Uð1Þ SUð2; 4Þ � SUð2Þ 2 4

E�14
6 =SUð1; 5Þ � SLð2;RÞ Spinð10Þ �Uð1Þ SO�ð10Þ �Uð1Þ 2 2

E�14
6 =SO�ð10Þ �Uð1Þ Spinð10Þ �Uð1Þ SUð1; 5Þ � SLð2;RÞ 2 2

E�14
6 =SO0ð2; 8Þ �Uð1Þ Spinð10Þ �Uð1Þ SO0ð2; 8Þ �Uð1Þ 2 2

E�14
6 =F�20

4 Spinð10Þ �Uð1Þ F�20
4 1 2

E�26
6 =Spð1; 3Þ F4 SU �ð6Þ � SUð2Þ 2 4

E�26
6 =SU �ð6Þ � SUð2Þ F4 Spð1; 3Þ 1 4

E�26
6 =SO0ð1; 9Þ �Uð1Þ F4 F�20

4 1 1

E�26
6 =F�20

4 F4 SO0ð1; 9Þ �Uð1Þ 2 1

Ec
6=E

6
6 E6 Spð4;CÞ 4 6

Ec
6=Spð4;CÞ E6 E 6

6 6 6

Ec
6=E

2
6 E6 SLð6;CÞ � SLð2;CÞ 6 4

Ec
6=SLð6;CÞ � SLð2;CÞ E6 E 2

6 4 4
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Table 4 (continued)

G=H K L cohomK cohomL

Ec
6=E

�14
6 E6 SOð10;CÞ � Spð1Þ 6 2

Ec
6=SOð10;CÞ � Spð1Þ E6 E�14

6 2 2

Ec
6=F

C
4 E6 E�26

6 2 2

Ec
6=E

�26
6 E6 FC

4 4 2

Table 5.

G=H K L cohomK cohomL

E 7
7 =SLð8;RÞ SUð8Þ=fG1g SLð8;RÞ 7 7

E 7
7 =SU

�ð8Þ SUð8Þ=fG1g E 6
6 �Uð1Þ 7 3

E 7
7 =E

6
6 �Uð1Þ SUð8Þ=fG1g SU �ð8Þ 3 3

E 7
7 =SUð4; 4Þ SUð8Þ=fG1g SO0ð6; 6Þ � SLð2;RÞ 7 4

E 7
7 =SO0ð6; 6Þ � SLð2;RÞ SUð8Þ=fG1g SUð4; 4Þ 4 4

E 7
7 =SO

�ð12Þ � SUð2Þ SUð8Þ=fG1g E 2
6 �Uð1Þ 4 2

E 7
7 =E

2
6 �Uð1Þ SUð8Þ=fG1g SO�ð12Þ � SUð2Þ 3 2

E�5
7 =SUð4; 4Þ SO 0ð12Þ � SUð2Þ SUð4; 4Þ 4 7

E�5
7 =SUð2; 6Þ SO 0ð12Þ � SUð2Þ E 2

6 �Uð1Þ 4 3

E�5
7 =E 2

6 �Uð1Þ SO 0ð12Þ � SUð2Þ SUð2; 6Þ 2 3

E�5
7 =SO�ð12Þ � SLð2;RÞ SO 0ð12Þ � SUð2Þ SO�ð12Þ � SLð2;RÞ 4 4

E�5
7 =SO0ð4; 8Þ � SUð2Þ SO 0ð12Þ � SUð2Þ SO0ð4; 8Þ � SUð2Þ 4 4

E�5
7 =E�14

6 �Uð1Þ SO 0ð12Þ � SUð2Þ E�14
6 �Uð1Þ 2 3

E�25
7 =SU �ð8Þ E6 �Uð1Þ SU �ð8Þ 3 7

E�25
7 =SUð2; 6Þ E6 �Uð1Þ SO�ð12Þ � SUð2Þ 3 5

E�25
7 =SO�ð12Þ � SUð2Þ E6 �Uð1Þ SUð2; 6Þ 2 5

E�25
7 =SO0ð2; 10Þ � SLð2;RÞ E6 �Uð1Þ E�14

6 �Uð1Þ 2 2

E�25
7 =E�14

6 �Uð1Þ E6 �Uð1Þ SO0ð2; 10Þ � SLð2;RÞ 3 2

E�25
7 =E�26

6 �Uð1Þ E6 �Uð1Þ E�26
6 �Uð1Þ 2 3
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Table 5 (continued)

G=H K L cohomK cohomL

Ec
7=E

7
7 E7 SLð8;CÞ 7 7

Ec
7=SLð8;CÞ E7 E 7

7 7 7

Ec
7=E

�5
7 E7 SOð12;CÞ � SLð2;CÞ 7 4

Ec
7=SOð12;CÞ � SLð2;CÞ E7 E�5

7 4 4

Ec
7=E

�25
7 E7 Ec

6 � C
� 7 3

Ec
7=E

c
6 � C

� E7 E�25
7 3 3

E 8
8 =SO

�ð16Þ SO 0ð16Þ E 7
7 � SLð2;RÞ 4 4

E 8
8 =E

7
7 � SLð2;RÞ SO 0ð16Þ SO�ð16Þ 4 4

E 8
8 =SO0ð8; 8Þ SO 0ð16Þ SO0ð8; 8Þ 8 8

E 8
8 =E

�5
7 � Spð1Þ SO 0ð16Þ E�5

7 � Spð1Þ 4 4

E�24
8 =SO�ð16Þ E7 � Spð1Þ SO�ð16Þ 4 8

E�24
8 =SO0ð4; 12Þ E7 � Spð1Þ E�5

7 � Spð1Þ 4 4

E�24
8 =E�5

7 � Spð1Þ E7 � Spð1Þ SO0ð4; 12Þ 4 4

E�24
8 =E�25

7 � SLð2;RÞ E7 � Spð1Þ E�25
7 � SLð2;RÞ 4 4

Ec
8=E

8
8 E8 SOð16;CÞ 8 8

Ec
8=SOð16;CÞ E8 E 8

8 8 8

Ec
8=E

�24
8 E8 Ec

7 � SLð2;CÞ 8 4

Ec
8=E

c
7 � SLð2;CÞ E8 E�24

8 4 4
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[32] R. Szöke, Adapted complex structures and geometric quantization, Nagoya Math. J. 154 (1999),

171–183.
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