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HERMANN TYPE ACTIONS ON
A PSEUDO-RIEMANNIAN SYMMETRIC SPACE
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Naoyuki KOIKE

Abstract. In this paper, we first investigate the shape operators of
certain kind of orbits of the isotropy action of a semi-simple pseudo-
Riemannian symmetric space. The investigation is performed by
investigating the complexified action. Next, by using the fact ob-
tained by the investigation, we show that certain kind of principal
orbits of a Hermann type action on a semi-simple pseudo-
Riemannian symmetric space are curvature-adapted proper complex
equifocal submanifolds and that their shape operators are semi-
simple. It follows from this fact that the principal orbits are iso-
parametric submanifolds with flat section. Also, we derive an in-
teresting structure of a semi-simple pesudo-Riemannian symmetric
space (in particular, the complexification of a Riemannian symmetric
space) from two special Hermann type actions on the space.

1. Introduction

In Riemannian symmetric spaces, the notion of an equifocal submanifold was
introduced by Terng-Thorbergsson in [36]. This notion is defined as a compact
submanifold with flat section such that the normal holonomy group is trivial and
that the focal radius functions for each parallel normal vector field are constant.
However, the condition of the equifocality is rather weak in the case where the
Riemannian symmetric spaces are of non-compact type and the submanifold is
non-compact. So we [17, 18] have recently introduced the notion of a complex
equifocal submanifold in a Riemannian symmetric space G/K of non-compact
type. This notion is defined by imposing the constancy of the complex focal
radius functions in more general. Here we note that the complex focal radii are
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the quantities indicating the positions of the focal points of the extrinsic
complexification of the submanifold, where the submanifold needs to be assumed
to be complete and of class C® (i.e., real analytic). On the other hand, Heintze-
Liu-Olmos [13] has recently defined the notion of an isoparametric submanifold
with flat section in a general Riemannian manifold as a submanifold such that
the normal holonomy group is trivial, its sufficiently close parallel submanifolds
are of constant mean curvature with respect to the radial direction and that the
image of the normal space at each point by the normal exponential map is flat
and totally geodesic. We [18] showed that all isoparametric submanifolds with flat
section in a Riemannian symmetric space G/K of non-compact type are com-
plex equifocal and that conversely, all curvature-adapted and complex equifocal
submanifolds are isoparametric ones with flat section. Here the curvature-
adaptedness means that, for each normal vector v of the submanifold, the Jacobi
operator R(-,v)v preserves the tangent space of the submanifold invariantly and
the restriction of R(-,v)v to the tangent space commutes with the shape operator
A,, where R is the curvature tensor of G/K. As a subclass of the class of complex
equifocal submanifolds, we [19] defined the notion of a proper complex equifocal
submanifold in G/K as a complex equifocal submanifold such that its complex
focal set at any point consists of infinitely many complex hyperplanes in the
complexified normal space at the point and that the complex reflections of order
two with respect to the complex hyperplanes generates a Coxeter group. Let G/K
be a Riemannian symmetric space of non-compact type and H be a closed
subgroup of G. If the H-action is proper and there exists a complete embedded
flat submanifold meeting all H-orbits orthogonally, then it is called a complex
hyperpolar action. Principal orbits of a complex hyperpolar action are complex
equifocal (see [18]). If H is a symmetric subgroup of G (i.e., (Fix o), c H c Fix o
for some involution ¢ of G), then the H-action is called a Hermann type action,
where Fix ¢ is the fixed point group of ¢ and (Fix o), is the identity component
of the group. Hermann type actions are complex hyperpolar. We ([18, 19])
showed the following facts.

Fact 1. Let 0 be the Cartan involution of G with (Fix 0), c K < Fix 0, o
be an involution of G with (Fix ), « H < Fix o and L := (Fix(¢ 0 0)),, where
we may assume that @oag = aol by replacing H to its conjugate group. Then
the orbit H(eK) of the H-action on G/K is a reflective submanifold and it is
homothetic to the Riemannian symmetric space H/H N K. For each x € H(eK), the
section X, of H(eK) through x is homothetic to the Riemannian symmetric space
L/HNK.
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FAct 2. Principal orbits of a Hermann type action are curvature-adapted
and proper complex equifocal. Hence it is an isoparametric submanifold with flat
section.

Similarly, we can define the notions of a complex equifocal submanifold and
a proper complex equifocal one in a pseudo-Riemannian symmetric space, and
the notion of an isoparametric submanifold with flat section in a general pseudo-
Riemannian manifold. Also, we can define the notions of a complex hyperpolar
action and a Hermann type action on a pseudo-Riemannian symmetric space. We
[23] showed the following fact.

Fact 3. All isoparametric submanifolds with flat section in a pseudo-
Riemannian symmetric space G/K are complex equifocal. Conversely all curvature-
adapted complex equifocal submanifolds such that A, and R(-,v)v are semi-simple
for any normal vector v are isoparametric ones with flat section, where A, is the
shape operator and R is the curvature tensor of G/K and the semi-simplenesses of
A, and R(-,v)v mean that their complexifications are diagonalizable.

L. Geatti and C. Gorodski [9] has recently showed that a polar representation
of a real reductive algebraic group on a pseudo-Euclidean space has the same
closed orbits as the isotropy representation (i.e., the linear isotropy action) of a
pseudo-Riemannian symmetric space (see Theorem 1 of [9]). Also, they showed
that the principal orbits of the polar representation through a semi-simple element
(i.e., the orbit through a regular element (in the sense of [9])) is an isoparametric
submanifold by investigating the complexified representation (see Theorem 11
(also Example 12) of [9]), where an isoparametric submanifold means a pseudo-
Riemannian submanifold (in a pseudo-Euclidean space) such that the (restricted)
normal holonomy group is trivial and that the shape operator for each (local)
parallel normal vector field is semi-simple and has constant complex principal
curvature. All isoparametric submanifold (in a pseudo-Euclidean space) in this
sense are isoparametric ones (with flat section) in the sense of [13]. Let G/H be a
(semi-simple) pseudo-Riemannian symmetric space (equipped with the metric <, >
induced from the Killing form of the Lie algebra g of G). In this paper, we first
investigate the complexified shape operators of the orbits of the isotropy action of
G/H (i.e., the H-action on G/H) by investigating the orbits of the isotropy action
of G¢/H® (see Section 3). Next, by using the investigation, we prove the fol-
lowing fact for the orbits of Hermann type action.
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THEOREM A. Let G/H be a (semi-simple) pseudo-Riemannian symmetric
space, H' be a symmetric subgroup of G, o (resp. ¢') be an involution of G
with (Fix ¢), « H < Fix ¢ (resp. (Fix ¢’), ¢ H' < Fix ¢’), L := (Fix(c 0 ¢')), and
[:= Lie L. Assume that G is not compact and oo’ = ' oa. Then the following
statements (1) and (ii) hold:

(i) The orbit H'(eH) of the H'-action on G/H is a reflective pseudo-
Riemannian submanifold and it is homothetic to the semi-simple pseudo-Riemannian
symmetric space H'/HNH'. For each x € H'(eH), the section X, of H'(eH)
through x is homothetic to the semi-simple pseudo-Riemannian symmetric space
L/HNH'.

(i) Let M be a principal orbit of the H'-action through a point
expg(W)H (weqNq' s.t. ad(w)|, : semi-simple) of Z.u\F, where q := Ker(o +1id)
(=T.n(G/H)), §' :=Ker(c' +1d) and F is a focal set of H'(eH). Then M is
curvature-adapted and proper complex equifocal, for any normal vector v of M,
R(-,v)v and the shape operator A, are semi-simple. Hence it is an isoparametric
submanifold with flat section.

RemMark 1.1. (i) Since U (H'NH)(expg(w)H) is an
weqNq’ s.t. ad(w)];:semi-simple

open dense subset of L(eH), it is shown that

U H'(expg(w)H)

weqNq’ s.t. ad(w)|;:semi-simple

is an open dense subset of G/H.
(ii) In the case where G/H is a Riemannian symmetric space of non-compact
type, ad(w)|; is semi-simple for any we qNgq’, R(-,v)v and A4, is semi-simple for

any normal vector v of M, F=fand () .= G/H. Hence the statement
xeH'(eH)
(i) of Theorem A is a generalized result of the above Fact 2.

L. Geatti [8] has recently defined a pseudo-Kaehlerian structure on some
G-invariant domain of the complexification G¢/H® of a semi-simple pseudo-
Riemannian symmetric space G/H. On the other hand, we [23] have recently
defined an anti-Kaehlerian structure on the whole of the complexification G¢/H*.
By applying Theorem A to the complexification G¢/H® (equipped with the
natural anti-Kaehlerian structure) of a semi-simple pseudo-Riemannian sym-
metric space G/H and a symmetric subgroup G of G¢, we recognize an in-
teresting structure of G¢/H¢. Here we note that an involution o of G¢ with
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(Fix ), « H®* = Fix ¢ and the conjugation 7 of G° with respect to G are
commutative. In this case, the group corresponding to L in the statement of
Theorem A is the dual G*# of G with respect to H. Hence we have the following
fact.

COoROLLARY B. Let G°/H® and G*" be as above. Then the following
statements (1) and (ii) hold:

(i) The orbit G(eH®) is a reflective pseudo-Riemannian submanifold and it is
homothetic to the pseudo-Riemannian symmetric space G/H. For each x € G(eH*),
the section Xy of G(eH®) through x is homothetic to the pseudo-Riemannian
symmetric space G* [H.

(i) For principal orbits of the G-action on G/H€, the same fact as the
statement (ii) of Theorem A holds.
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By considering two special Hermann type actions on a semi-simple pseudo-
Riemannian symmetric space, we obtain the following interesting fact for the
structure of the semi-simple pseudo-Riemannian symmetric space.

THEOREM C. Let G/H and o be as in Theorem A, 0 the Cartan involution of
G with Qoo =000, K := (Fix0), and L := (Fix(c00)), Then the following
statements (1) and (i) hold.:

(i) The orbits K(eH) and L(eH) are reflective submanifolds satisfying
T.n(G/H) = Tn(K(eH)) ® T,y (L(eH)) (orthogonal direct sum), K(eH) is anti-
homothetic to the Riemannian symmetric space K/HNK of compact type and
L(eH) is homothetic to the Riemannian symmetric space L/H N K of non-compact
type. Also, the orbit K(eH) has no focal point.

(i) Let M, be a principal orbit of the K-action and M, be a principal orbit of
the L-action through a point of K(eH)\F, where F is the focal set of L(eH). Then
M; (i =1,2) are curvature-adapted and proper complex equifocal, for any normal
vector v of M, R(-,v)v|r . (x: the base point of v) and the shape operator A, are
diagonalizable. Hence they are isoparametric submanifolds with flat section.

REMARK 1.2. For any involution ¢ of G, the existence of a Cartan invo-
lution 6 of G with oo =006 is assured by Lemma 10.2 in [1].

L(eH)

sections of L(eH)

v

sections of K (eH)

Figure 2

By applying Theorem C to the complexification G¢/K¢ (equipped with the
natural anti-Kaehlerian structure) of a Riemannian symmetric space G/K of non-
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compact type, we can recognize the interesting structure of G¢/K€. In this case,
the groups corresponding to K, L and H N K in the statement of Theroem C are
the compact dual G* of G, G and K, respectively. Hence we have the following
fact.

THEOREM D. Let G¢/K€ be the complexification (equipped with the natural
anti-Kaehlerian structure) of a Riemannian symmetric space G/K of non-compact
type and G* be the compact dual of G. Then the following statements (i) and (ii)
hold:

(i) The orbits G*(eK®) and G(eK®) are reflective submanifolds of G¢/K®
satisfying Tege(G¢/K®) = Toge(G*(eK®)) @ Toxe(G(eK*®)) (orthogonal direct sum),
G*(eK*®) is anti-homothetic to the Riemannian symmetric space G*/K of compact
type and G(eK*®) is homothetic to the Riemannian symmetric space G/K of non-
compact type. Also, the orbit G*(eK*®) has no focal point.

(i) For principal orbits of the G*-action and G-action on G¢/K€, the same fact
as the statement (i) of Theorem C holds.

Homogeneous submanifolds with flat section in a pseudo-Riemannian
symmetric space are complex equifocal. We obtain the following fact for a
homogeneous submanifold with flat section in a semi-simple pseudo-Riemannian
symmetric space which admits a reflective focal submanifold, where a reflective
submanifold means a totally geodesic pseudo-Riemannian submanifold with
section.

THEOREM E. Let M be a homogeneous submanifold with flat section in a
semi-simple pseudo-Riemannian symmetric space G/H. Assume that M admits a
reflective focal submanifold F such that ny(g; ! TyuF) is a non-degenerate subspace
of b, where gH is an arbitrary point of F and wy(g ' T,y F) is the normalizer of
g ' TynF in V). Then M is a principal orbit of a Hermann type action.

REMARK 1.4. (i) For the H'-action in Theorem A, we have ny(T.ny(H'(eH)))
=1y(qNh") =HNH + 350, (aND’), where 3yn,(aND’) is the centralizer of qN b’
in hNq'. Hence, if 3, (qaNh’) = {0}, then ny(T.z(H'(eH))) is a non-degenerate
subspace of }). Thus almost all principal orbits of the H'-action have H'(eH) as a
reflective focal submanifold as in the statement of Theorem E.

(ii) For the K-action in Theorem C, we have ny(T.x(K(eH))) = my(qNf) =
HN i+ 3y, (aNF). Hence, ny(7.n(K(eH))) is a non-degenerate subspace of b.
Similarly, for the L-action in Theorem C, it is shown that ny(7T.x(L(eH))) is a
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non-degenerate subspace of ). Thus almost all principal orbits of the K-action
(resp. the L-action) have K(eH) (resp. L(eH)) as a reflective focal submanifold as
in the statement of Theorem E.

(i) In the case where G/H is a Riemannian symmetric space of non-
compact type, the statement of Theorem E has already been shown in [21], where
we note that ny(g,!T,nF) is automatically a non-degenerate subspace of b
because H is compact.

2. New Notions in a Pseudo-Riemannian Symmetric Space

In this section, we shall define new notions in a (semi-simple) pseudo-Rie-
mannian symmetric space, which are analogies of notions in a Riemannian
symmetric space of non-compact type defined in [18]. Let M be an immersed
pseudo-Riemannian submanifold with flat section (that, is, g;'7-M is abelian
for any x =gH € M) in a (semi-simple) pseudo-Riemannian symmetric space
N = G/H (equipped with the metric induced from the Killing form of g := Lie G),
where TF M is the normal space of M at x. Denote by A the shape tensor of M.
Let ve TEM and X € TyM (x = gK), where T M is the tangent space of M at
x. Denote by y, the geodesic in N with p,(0) = v, where 7,(0) is the velocity
vector of y, at 0. The strongly M-Jacobi field Y along y, with Y(0) = X (hence
Y'(0) = —4,X) is given by

(2.1) Y(s) = (P, © (D —sDy 0 4,))(X),

where Y'(0) =V,Y (V:the Levi-Civita connection of N), Py, is the parallel
translation along 7,/ 4 and D (resp. D) is given by

D =g, ocos(V—1ad(sg; 'v)) o g,

sin(v/—1 ad(sg'v)) 0l
VTadsg'n)

Here ad is the adjoint representation of the Lie algebra g and cos(v/—1 ad(sg; 'v))

sin(v/—1 ad(sg'v))\ -
(resp. Tadtg s ) is defined by

(resp. D¥ =g. o ).

cos(vV—1 ad(sg; 'v)) = Zw: ! ad(sg'v)*

sin(v—1 ad(sg;'v)) & 1 »
(resp. = ad(sg
v —1ad(sg 1v) £ (2k + 1)!
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All focal radii of M along y, are obtained as real numbers s with Ker(Dg—

soD;l, 0 A,) # {0}. So, we call a complex number zy with Ker(D$%, — z)D3l o Af)
# {0} a complex focal radius of M along y, and call dim Ker(D%, — zoD3!, o Af)
the multiplicity of the complex focal radius zy, where A is the complexification of

A, and D, (resp. DY) is a C-linear transformation of (7.N)¢ defined by

D = g¢ o cos(V—1 ad®(zog; 'v)) 0 (¢°) "

Zov

 _ sin(v/"T ad*(z0g."0))

g =0 (997",
V-1 ad®(zog;1v)

(resp. D¥ =

where ¢g¢ (resp. ad®) is the complexification of g, (resp. ad). Here we note that,
in the case where M is of class C®, complex focal radii along yp, indicate the
positions of focal points of the (extrinsic) complexification M¢(— G¢/H*®) of
M along the complexified geodesic y;,. Here G¢/H€ is the pseudo-Riemannian
symmetric space equipped with the metric induced from the Killing form of g°
regarded as a real Lie algebra (which is called the anti-Kaehlerian symmetric space
associated with G/H) and 1 is the natural embedding of G/H into G¢/H¢. See [23]
([18] also) about the definition of the (extrinsic) complexification M¢(— G¢/H®).
Furthermore, assume that the normal holonomy group of M is trivial. Let v be
a parallel unit normal vector field of M. Assume that the number (which may
be 0 and o) of distinct complex focal radii along y; is independent of the
choice of x € M. Furthermore assume that the number is not equal to 0. Let
{rixli=1,2,...} be the set of all complex focal radii along y; , where |r; .| <
[Fic1, x| or “lriy| =|riz1x] & Rerix >Reripy " or “Irix|=|ric1x] &Reriy=
Reripx&Imr = —-Imry, <0

DerFmiTION 2.1.  Assume that M is a submanifold with flat section in N such
that the normal holonomy group of M is trivial and that the number (which may
be 0 and o) of distinct complex focal radii along y; is independent of the choice
of x e M, where v is as above. Define complex valued functions r; (i =1,2,...)
on M by assigning r; . to each x € M. We call these functions r; (i=1,2,...)
complex focal radius functions for v and r;v a complex focal normal vector field
for 0.

ReEMARK 2.1. The complex focal radius functions r;’s (i=1,2,...) are of
class C™.
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DEerFmNITION 2.2.  Let M be a submanifold with flat section in NV such that the
normal holonomy group of M is trivial. If, for any parallel normal vector field o,
the number of distinct complex focal radii along y; is independent of the choice
of x € M, if complex focal radius functions for any parallel normal vector field v
are constant over M and have constant multiplicities, then we call M a complex
equifocal submanifold.

Let N=G/H be a (semi-simple) pseudo-Riemannian symmetric space and
7 be the natural projection of G onto G/H. Let ¢ be an involution of G
with (Fix ¢), « H c Fix ¢ and denote by the same symbol ¢ the involution of
g:=LieG. Let h:={X eg|o(X) =X} and q:={X e g|o(X) = —X}, which is
identified with the tangent space T,y N. Let <, ) be the Killing form of g. Denote
by the same symbol {,) both the bi-invariant pseudo-Riemannian metric of G
induced from <, and the pseudo-Riemannian metric of N induced from {, ).
Let 6 be a Cartan involution of G with fog =00 0. Denote by the same
symbol @ the involution of g induced from 6. Let j:={X eg|0(X)= X} and
p:={Xeg|0(X)=—-X}. From foo =000, it follows that h=HNf+bHhNp
and q=qNf+qNp.Set g, :==p,g_:=fand {,), := —7T§7<7>+7T§+<,>> where
mg_ (resp. my, ) is the projection of g onto g_ (resp. g.). Let H°([0,1],g) be
the space of all L’-integrable paths u:[0,1] — g (with respect to (i 0g,)- Tt is
shown that (H°([0,1],q),<{,>,) is a pseudo-Hilbert space, where {,», is de-
fined by <u,vdy:= [y Cu(t),v(t)> dr (u,v e H'([0,1],g)). Let H'([0,1],G) be the
Hilbert Lie group of all absolutely continuous paths g:[0,1] — G such that
the weak derivative g’ of g is squared integrable (with respect to <, ), ), that
is, g.'g'e H([0,1],9). Define a map ¢:H'([0,1],6) > G by ¢(u)=gu(l)
(ue H([0,1],g)), where g, is the element of H'([0, 1], G) satisfying g,(0) = e and
g.lg) =u. We call this map the parallel transport map (from 0 to 1). This
submersion ¢ is a pseudo-Riemannian submersion of (H°([0,1],g),<, ) onto
(G,<{,>). Denote by g¢, b°, q¢, §°, p¢ and {,)° the complexifications of g, b, q,
f, p and ¢, ). Set g¢ :=v—1f+p and ¢° :=f+v—1Ip. Set {,> :=2Re(,)*
and <’>€/!$ = _”§E<’>/+”9*$<’>/’ where mge (resp. 7ge) is the projection of
g¢ onto g¢ (resp. g¢). Let H°([0,1],g¢) be the space of all L*-integrable paths
u:[0,1] — g¢ (with respect to <,>:ﬁ). Define a non-degenerate symmetric bilinear
form (,>) of H°([0,1],8¢) by {u,v)y:= fol u(t),v(t)y’ dr. Tt is shown that
(H°([0,1],8%),<, ;) is an infinite dimensional anti-Kaehlerian space. See [18]
about the definition of an infinite dimensional anti-Kaehlerian space. In similar
to ¢, the parallel transport map ¢°: H°([0,1],g%) — G for G* is defined. This
submersion ¢° is an anti-Kaehlerian submersion. Let 7 : G — G/H and =€ : G¢ —
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G¢/H*® be the natural projections. By imitating the proof of Theorem 1 of [18],
we can show the following fact.

ProposITION 2.2.  For a C®-pseudo-Riemannian submanifold M in G/H, the
following statements (1)~(iil) are equivalent:

(i) M is complex equifocal,

(i) each component of (mo¢) (M) is complex isoparametric,

(iii) each component of (n¢o ¢¢) "' (M®) is anti-Kaehlerian isoparametric.

See [18] about the definitions of a complex isoparametric submanifold and an
anti-Kaehlerian isoparametric submanifold.

DEFINITION 2.3. If each component of (mo¢) ' (M) is proper complex
isoparametric in the sense of [17] (i.e., it is complex isoparametric and, for its
each normal vector v, there exists a pseudo-orthonormal base of the complexified
tangent space consisting of the eigenvectors of the complexified shape operator
for v), then we call M a proper complex equifocal submanifold.

REMARK 2.2. It is shown that the complex focal set of a proper complex
isoparametric submanifold (in a pseudo-Hilbert space) at any point consists of
infinitely many complex hyperplanes in the complexified normal space at the
point and that the complex reflections of order two with respect to the complex
hyperplanes generates a Coxeter group (see [18], [20]). From this fact, it follows
that the same fact holds for a proper complex equifocal submanifold.

Now we shall define the notion of a Hermann type action on a semi-simple
pseudo-Riemannin symmetric space G/H and that of a reflective submanifold in
G/H.

DerFINITION 2.4. If H' is a symmetric subgroup of G (ie., (Fix¢'), c H' <
Fix ¢’ for some involution ¢’ of G), then the H'-action on G/H is called a
Hermann type action.

DEerFINITION 2.5. Let M be a pseudo-Riemannian submanifold in a pseudo-
Riemannian manifold N. If there exists an involutive isometry of a neighborhood
of M having M as the fixed point set, then we call M a reflective submanifold.

REMARK 2.3. As in the case of a Reimannian submanifold, we should not
define the reflectivity of a pseudo-Riemannian submanifold by the existence of a
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(global) involutive isometry of the ambient space having the submanifold as a
component of the fixed point set (see Fig. 1).

As in the case of a Riemannian submanifold, we can show the following
fact.

PrOPOSITION 2.3.  The following statements (i) and (ii) are equivalent:

(i) M is reflective.

(i) The set exp*(T+M) is totally geodesic for each x of M, where exp™ is the
normal exponential map of M.

Next we shall recall the notions of a complex Jacobi field and the parallel
translation along a holomorphic curve, which are introduced in [23], and we state
some facts related to these notions. These notions and facts will be used in the
next section. Let (M,J,g) be an anti-Kaehlerian manifold, V (resp. R) be the
Levi-Civita connection (resp. the curvature tensor) of g and V¢ (resp. R®) be
the complexification of V (resp. R). Let (TM)"? be the holomorphic vector
bundle consisting of complex vectors of M of type (1,0). Note that the restriction
of V¢ to TM1:9 is a holomorphic connection of 7M1 (see Theorem 2.2 of
[6]). For simplicity, assume that (M,J,g) is complete even if the discussion of
this section is valid without the assumption of the completeness of (M,J,g).
Let y: C— M be a complex geodesic, that is, y(z) = exp,)((Re 2)7,((%),) +
(Im 2)J,0)7.((%),)), where (z) is the complex coordinate of C and s := Re z. Let
Y:C— (TM)(I"0> be a holomorphic vector field along p. That is, Y assigns
Yze(Ty<z)M)(1’0> to each ze C and, for each holomorphic local coordinate
(U, (z1,-..,24)) of M with UNy(C) # &, Y;:y Y (U) — C (i=1,...,n) defined

by Y. = ; Yi(z) (%)%Z) are holomorphic.

DeFINITION 2.6, If Y satisfies V5 ;0 V5 /4 Y + RE(Y,7.(5)) 7. (&) =0,
then we call Y a complex Jacobi field along 7.

Let 6:C x D(¢) — M be a holomorphic two-parameter map, where D(e)
is the e-disk centered at 0 in C. Denote by z (resp. u) the first (resp. second)
parameter of ¢.

DEerINITION 2.7, 1f (-, up) : C — M is a complex geodesic for each uy € D(¢),
then we call 6 a complex geodesic variation.
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It is shown that, for a complex geodesic variation J, the complex variational

vector field ¥ :=4.(%| _,) is a complex Jacobi field along y :=4(:,0). A vector
field X on M is said to be real holomorphic if the Lie derivation LyJ of J with
respect to X vanishes. It is known that X is a real holomorphic vector field if and
only if the complex vector field X — v/—1JX is holomorphic. Let y: C — M be a
complex geodesic and Y be a holomorphic vector field along y. Denote by Yg the

real part of Y. Then the following fact holds.

ProOPOSITION 2.4 ([23]). Y is a complex Jacobi field along y if and only if, for
any zo € C, s+ (YR),, is a Jacobi field along the geodesic yzo(ﬁ V20 (8) == 7(s20)).

Next we shall recall the notion of the parallel translation along a holo-
morphic curve. Let «: D — (M,J,g) be a holomorphic curve, where D is an
open set of C. Let Y be a holomorphic vector field along o. If VI ;)Y =0,
M) (L9 there uniquely
exists a parallel holomorphic vector field Y along o with Y. =v.

then we say that Y is parallel. For zo € D and v e (T

20

DEFINITION 2.8.  For each z; € D, we define a C-linear isomorphism (P;)_ _ (v)
of (Tyzy M) onto (T, M) by (P,)., ., (1) = Yz, (v (TouyM)"?), where

Y is the parallel holomorphic vector field along o with Y., = v. We call (P,)

20

20521

the parallel translation along o from zy to zj.

We consider the case where (M,J,g) is an anti-Kaehlerian symmetric space
G°/H®. For ve (T,u(G°/H®)), we define C-linear transformations D and
Dy of (Tyue(G*/H)® by D :=g§, o cos(v—T adgc((g5.)"'v) o (g5,) " and
DSi — o sin(v/—1 ad;c((gg*)flv)) )

v = Jos \/jadgc((g&)’lv)
ification of the adjoint representation adge of g°. Let Y be a holomorphic vector
field along y¢. Define ¥ : D — (Tyk<(G/K) " by Y. := (P,). o(Y) (z € D),

z, =

°© (93*)_1, respectively, where ad;c is the complex-

where D is the domain of y;. Then we have

PRroPOSITION 2.5 ([23]). The following relation holds:

)

3. The Isotropy Action of a Pseudo-Riemannian Symmetric Space

A Co A si df,
(22) Y. = (P”/f)O,z <Dzv(]_0)(Y0) +ZD;"L"(1‘0) <E

In this section, we investigate the complexified shape operators of the
orbits of the isotropy action of a semi-simple pseudo-Riemannian symmetric
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space by investigating the complexified action. Let G/H be a (semi-simple)
pseudo-Riemannian symmetric space (equipped with the metric ¢, ) induced from
the Killing form B of g) and ¢ be an involution of G with (Fix ¢), ¢ H < Fix 0.
Denote by the same symbol o the differential of ¢ at e. Let [):= Lie H and
q := Ker(g + id), which is identified with T,5(G/H). Let 0 be a Cartan invo-
lution of G with foo =000, f:= Ker(0 —id) and p := Ker(0 +id). Let g, b°,
a¢, 1% p© and ¢, > be the complexifications of g, b, q, f, p and {, D, respectively.
The complexification g is identified with T,y<(G/H€). Under this identifica-
tion, v —1X € q° corresponds to J.geX € Tee(G¢/H®), where J is the complex
structure of G¢/H®. Give G°/H® the metric (which also is denoted by {,))
induced from the Killing form B, of g® regarded as a real Lie algebra. Note that
B, coincides with 2 Re B¢ and (/, <, ») is an anti-Kaehlerian structure of G¢/H¢,
where B¢ is the complexification of B. Let a be a Cartan subspace of q (that is, a
is a maximal abelian subspace of q and each element of a is semi-simple). The
dimension of a is called the rank of G/H. Without loss of generality, we may
assume that a = aNf+aNyp. Let qf := {X € q°| ad(a)’X = a(a)’X for all a € a®}
and ¢ := {X € b°|ad(a)’X = a(a)’X for all a € a®} for each o e (a®)* ((a®)" : the
(C-)dual space of a¢) and A :={o e (a®)"\{0}|q¢ # {0}}. Then we have

(3.1) q¢*=a"+ Z q;, and b= 3(a®) + Z b,

ey aeN;

where A, (< A) is the positive root system under some lexicographical order-
ing and 3;c(a®) is the centralizer of a in h°. Let a be a Cartan subalgebra
of g containing a and gf:={X € g°|ad(a)X = a(a)X for all aea} for each

ge(@)* and A:={ae(a%)"\{0} g # {0}}. Then we have g=a‘+ > g
- - Geh
and dim g{ =1 for each ae A. Also, we have A = {a|.|ae A}\{0}, qf =

( > q;> Nq¢ (xe A) and by = ( > qof) NbH° (xe A). The fol-
GeA st Ge=ta GeA st G e=ta
lowing fact is well-known.

Lemma 3.1. For each o e A, a(aNp) = R and a(aNf) = v—1R.

REMARK 3.1. Each element of aNyp (resp. aNf) is called a hyperbolic (resp.
elliptic) element.

For each o € A, define a, € a® by a(a) = B¢(a,,a) (a € a®). Take E5(# 0) € gf
for each & e A and set Zj; := ci(Ez + 0Ez) and Y := c;(E; — oE;), where ¢ is
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one of two solutions of the complex equation

22— a(ax)
BC(E& — GE&,E& — O'E&) '

Then we have ad(a)Z; = a(a)Y; and ad(a)Y; = d@(a)Z; for any a € a®. Hence
we have Z; el)glﬂc and Y;e qg‘&. Furthermore, for o € af, it i§ shown that b
(resp. qf) is spanned by {Z; |a € A s.t. a|,c = a} (resp. {Yz|ae A s.t. &, =a}).
Then [Z3, Y;] = a(ay)ay is shown. L. Verhoczki [38] investigated the shape operators
of orbits of the isotropy action of a Riemannian symmetric space of compact

type. By applying his method of investigation to the isotropy action of the anti-
Kaehlerian symmetric space G¢/H®, we prove the following fact for orbits of the
isotropy action of G/H.

PROPOSITION 3.2.  Let M be an orbit of the isotropy action (i.e., the H-action)
on G/H through x :=expg(w)H (weq s.t. ad(w): semi-simple) and A be the
shape tensor of M. For simplicity, set g := expg(w). Let a be a Cartan subspace

of q containing w and q°=a°+ > qf be the root space decomposition with
ey

respect to a. Then the following statements (i) and (i) hold.
(i) We have

g;I(TxM)c: Z ay

aeN;

s.t. a(w)¢vV—1nZ

and

g (TiM) =a+ > qf
aey

s.t. a(w)evV—1nZ

hold. In particular, if M is a principal orbit, then we have g (T M) = Y qt

and g (TEM)® = a®. et
(i) Let H, be the isotropy group of H at x and set H.(g.a) := {h.xg.a|

aeahe Hy}y. Then H(g.a) is open in T+M and, for any v:= h,.g.a € Hy(g.a)

V=lu(a) .
- TEOd (we A st a(w) ¢ VTRZ),

where A€ is the complexification of A.

(aea,heH), we have A, , .=

Proor. First we shall show the statement (i) by imitating the proof of
Proposition 3 in [38]. Let M be the extrinsic complexification of M, that
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is, M®:= H® x(c G°/H®), where G/H is identified with G(eH®). We shall
investigate 7 (M ¢) instead of (7, M) because (T, M)® is identified with T (M®).
Let a, (e A), A, Z; and Y; (@€ A) be the above quantities defined for a
and a Cartan subalgebra d@ of g containing a. Let &€ A and o := o|,c. Since

[Zz,w] = —a(w) Y5 and [Zg, Y3] = a(a,)a,, we have
d
—1|  Adge(exp tZz)w = —a(w) Yy,
dt|,_,

where Adg. is the adjoint representation of G¢. Hence we have
T, Adge(H®)w = Z ay-
oy s.t.oo(w)#0

Denote by Exp the exponential map of the anti-Kaehlerian symmetric space
(G¢/H*,J,<,>). Assume that o(w) # 0. Define a complex geodesic variation
d:C* — G*/H® of the complex geodesic y(z) = Exp(zw) by

e )

((z,u) € C?). Set W := o» Which is a complex Jacobi field along 7. Hence
it follows from (2.2) that

sin(v/—la(w)) [ <w,w) ~
Wi = V—Ta(w) Yz, Yoc> g ¥

where W) := W|._,. On the other hand, we have W, = (d Exp)w< <<; ‘)‘,>>Y)

Hence we have

sin(v/—1a(w))
V—Ta(w)

Since M*¢ = Exp(Adg:(H®)w), we have T\ (M) = (d Exp), (T\w(Adg:(H)w)).
Hence the relations in the statement (i) follow from (3.1).

Next we shall show the statement (ii). The H,-action on T\(G/H) preserves
TM and T} M invariantly, respectively. The H.-action on T M is so-called slice

(3.1) (d Exp),,(Ys) = 9+ Y.

representation and it is equivalent to an s-representation (the isotropy repre-
sentation of a pseudo-Riemannian symmetric space) (see Page 359-360 of [39]).
Therefore H(g.a) is open in Ty M (see [12]). In the sequel, we shall show the
remaining part of the statement (ii) by imitating the proof of Theorem 1 in
[38] for the isotropy action of a Riemannian symmetric space of compact type.
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Denote by A the shape tensor of M¢. Under the identification of (T M)
with Ty (M), the complexified shape operator A¢ is identified with Aw. Hence
we suffice to investigate A, instead of Af. Let o be an element of A, with
a(w) ¢ V—1nZ. Take & € A with &, = a. Also, in case of 20 € A, & € A with
Golqe = 200 Set Bf := 3yc(a®) + bS + b5, (b5, = {0} in case of 20 ¢ A) and Hf :=

expge(h;). Easily we can show

Adge(exp zZ;, )a, = cos(k*za(ay))a, — 1 sin(k2za(a,)) Yy

* Tk K

(k=1,2).

From this relation, it follows that Ad(H<)(a,) is a complex hypersurface in
qy := Ca, + qf +q5, (a5, = {0} in case of 20¢ A). On the other hand, it is
clear that Ad(HY)(a,) is contained in the complex hypersphere (B qexqe)(2,2) =

B(ay,a,) of §¢. Hence Ad(HF)(a,) coincides with this complex hypersphere. The
a(w)
a(ay)

(
a(w)
o(ay)
(k=1,2). From this relation, it follows that éd(ﬂ:)(w) coincides with the
complex hypersphere (B¢|ge,qe)(z — b,z —b) = yj(';j) of b+ Gs. Set QF := Exp(§’)
and Qf(b) :=Exp(b+q;). It is easy to show that Qf is a totally geodesic
complex rank one anti-Kaehlerian symmetric space in G¢/H¢. Furthermore, by
imitating the proof of Proposition 4 in [38], it is shown that Q;(b) is a totally
geodesic complex rank one anti-Kaehlerian symmetric space and it is isometric to
Q¢. In fact, a map ¢ : QF — QS(b) defined by ¢(Exp z) = Exp(z+ b) (z € §) is
an isometry. Since Ad(ﬂ )(w) is equal to the complex hypersphere of complex

a(w)?
o(ay)

radius /a(w) in QS(b). Set Q¢ := Exp(a® + q¢ + q5,), which is isometric to the
anti-Kaehlerian product Q¢(b) x C"~! (r := rank(G/H)).
We have HS - x = M N Qh) = M N QF. Also, since T (M®) =

g*( 2 as | and 70 = g.(a° + a5 +a5,), we have T(M¢NQY)
ae, s.t. oc(w)gé\/:TnZ ., R R
=qs +q5, and hence dim T (M°N Q) =dim(H; - x). Therefore H{ -x is a

component of M¢N Q; Denote by A the shape tensor of H Sex— Q; Since
Q¢ is totally geodesic in G¢/H® and T-(M*) contains the normal space of H¢ - x
in Q;', it follows from pseudo-Riemannian version of Lemma 6 of [38] that

vector w is expressed as w = a, +b for some b ea~'(0). Then we have

Adge(exp zZgz )w = b + (cos(kzzoc(ay))ad - % sin(k*za(a,)) Y&,>

radius of b+4q;, ﬁ; -x 18 a complex geodesic hypersphere of complex

AMx preserves Tx(ﬁ ¢.x) invariantly and that AAg*(,x = A4, on Tx(ﬂ ¢.x). Let
¢ be the above isometry of QF onto Qf(h). Set ro := ") and denote by A’ the

o(ay)

shape tensor of H¢ - (roa,) — QF. Clearly we have ¢p(H¢ - (roa,)) = HS - x and
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¢.((expge(roay)),(ax)) = g.a,. Hence we have Ay, = ¢, o ’i(lexpac(roux))*(az) ° ¢*_1
For simplicity, set g :=expg.(roa,). Now we shall investigate /I‘L’j*a“. Define a

complex geodesic variation 6 : C> — G¢/H*® by

oz, u) ::Exp(z(rocosu-aﬁ—w% sin u - Yal>> ((z,u) € C?).

Set W .= % w0 Since W is a complex Jacobi field along y; , , it follows from
(2.2) that

_sin(\/—_lzoc(roax)) 70<aa;a1>
(3.2) We=—"= o) \/ Y Ya1>\Py'°“y)°’ (Ys).

We have

. 00 = 00
V((M/‘Q“)‘ —=1,u=0 62 V (06/02)|.—1, 40 E = Wll

1§<ay, az) :
= COS(\/ —loc(roax)) ﬁ Y&l € TEXp(I’(Jau>H; : (roa“)
A} roany Wi = —cos(V—la(roa,)) M_ «Ya,
i Fody <Yo‘17Yo‘1>

which together with (3.2) and «(b) =0 deduces
vV~ O‘(aa)

and hence

AL G, Y = 7. Yz
gt o = (Y —Ta(w))
Therefore we have
N vV — o‘(‘la)
Aga, 9+ Yy = ————F——"79. Y3
tan(\/ Lo(w))
Similarly we have
. 2\/_ la(a
Ag*aig* Ytiz = 0‘) — W, Y= Y"
tan(2\/ Lo(w))

Take b € 2~ (0). Since QS(b) is totally geodesic and TQS(b)|ze N T+M| e is
parallel along HS - x with respect to the normal connection of Q;’(b) — G°/H¢,
we have

AAy*Eg* Y; = AAg*[;g* Ys = 0.
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2(a)

o )aa—i—b for some b e o~ 1(0).

Take an arbitrary a € a. We can express as a =
Thus, for each a € a, we have
; _ V-1B(a)
¢ = id e Ay st. B(w) ¢V —1nZ).
g«a gsQ tan(\/_ﬁ(w)) (IB + ﬂ( )¢ )
Take an arbitrary h..g.a € Hy(g.a) (a€a, he H,). Since h is an isometry of
G¢/H®, we have AA;LXg*a = h*onAg*a oh*‘xl. Hence we have

i _ V=1pa) —
A, g.a . id e Ay s.t. B(w —1rnZ).
hix g h,‘,\»g*q/j tdn( /—ﬂ( )) (ﬁ + ﬂ( ) ¢ )
Therefore, we obtain the relation in the statement (ii). g.e.d.

4. Shape Operators of Partial Tubes

In this section, we investigate the shape operators of partial tubes over a
pseudo-Riemannian submanifold with section in a (semi-simple) pseudo-Rie-
mannian symmetric space G/H equipped with the metric induced from the
Killing form of g:= Lie G. Let M be a pseudo-Riemannian submanifold with
section in G/H, that is, for each x = gH of M, g_'T:-M is a Lie triple system.
Let #(M) be a connected submanifold in the normal bundle 7+ M of M such that,
for any curve c:[0,1] — M, P;(t(M)N T, M) =t(M)NT;;,M holds, where
P! is the parallel transport along ¢ with respect to the normal connection. Denote
by F the set of all critical points of the normal exponential map exp' of M.
Assume that 1(M)NF = . Then the restriction exp™| iy Of expt to #(M) is an
immersion of #(M) into G/H. Assume that expL\t<M) : (M) — G/H is a pseudo-
Riemannian submanifold. Then we call #(M) a partial tube over M. Define a
distribution DV on ¢(M) by D, = T,(«(M)N T, M) (ve t(M)), where 7 is the
bundle projection of T+M. We call this distribution a vertical distribution on
t(M). Let X € Ty,yM. Take a curve ¢ in M with ¢(0) = X. Let o be a parallel
normal vector field along ¢ with #(0) = v. Denote by X, the velocity vector #(0)
of the curve # in T+M at 0. We call X, the horizontal lift of X to v. Define
a distribution D on #(M) by DI = {X,| X € Ty, M} (vet(M)). We call this
distribution a horizontal distribution on t(M). From (2.1), we have

(4.1) expt(X,) = P, (DXX — D (4,X)).

Assume that #(M) is contained in the e-tube #,(M) := {ve M ‘ < ”> }

(¢ # 0). Define a subbundle D* of the normal bundle 7+#(M) of {(M ) =
THi(M)N Ty (t,(M)) (vet(M)). Clearly we have T,t((M)= D! @® D) (orthog-
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onal direct sum) and T;}#(M)= D} @ Span{y,(1)} (orthogonal direct sum),
where 7, is defined by 7,(¢) := tv. Denote by 4 (resp. A') the shape tensor of M
(resp. #(M)). Also, denote by A4~ that of a submanifold (M)NT M in
expt(T-M) immersed by eXpL‘I(M)ﬂTxi y- In the sequel, we omit expl. For
a real analytic function F and ve T,4(G/H), we denote the operator g, o
F(ad(g;'v)) o g, ! by F(ad(v)) for simplicity. Then, by imitating the proof of
Proposition 3.1 in [19], we can show the the following relations.

PROPOSITION 4.1. Let vet(M) and we Dy. Also, let n(v)=giH, ¢»:=
expg(grtv) and g := g1gagy!, where expg is the exponential map of the Lie group
G.

(i) For Y eD/, we have

oy — 40 Ly — 4r(0)
(4.2) ALY =AT0Y, ALY =470y,

(i) Assume that Span{gylv, (glgz)*_lw} is abelian. Then, for X € Ty, M, we
have

(43)  A'X, = V—1ad(g 'w) sin(v—1 ad(v))(X)

V-1 sina(g(; ad(v)) (4, 10X)
n cos(v/—1 ad(v)) —id N V—1sin(v/—1 ad(v)) + ad(v)
ad(v) ad(v)*

x ad(g; 'w)(4,X).
ReMARK 4.1. The parallel translation P, along y, is equal to g..

5. Proper Complex Equifocality

In this section, we investigate the proper complex equifocality of a complex
equifocal submanifold in a pseudo-Riemannian symmetric space. Let G/H be a
(semi-simple) pseudo-Riemannian symmetric space and R be the curvature tensor
of G/H. First we prepare the following lemma for a curvature-adapted sub-
manifold with flat section such that the normal holonomy group is trivial.

LemMa 5.1. Let M be a curvature-adapted submanifold in G/H with flat
section such that the normal holonomy group is trivial. Assume that, for any normal
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vector v of M, A, and ad(g 'v) are semi-simple, where A is the shape tensor of
M and g is an element of G such that gH is the base point of v. Then, for any
xeM, {A,|ve TEM}U{R(:,0)v|s \ |ve TEM} is a commuting family of linear
transformations of TxM.

PrOOF. Let v;e Ty M (i =1,2). Since M has flat section, R(-,v1)vi|,,, and
R(-,v2)v2]7, ), commute with each other. Since M has flat section and the normal
holonomy group is trivial, 4, and 4,, commute with each other. In the sequel,
we shall show that R(-,v1)vi| ,, and 4,, commute with each other. Let x = gH.
Since g !'T-M is abelian and, for any ve T M, ad(g;'v) is semi-simple, there
exists a Cartan subspace a of q(= T.y(G/H)) containing b:= g ! (T:M). Let
A be the root system with respect to a® and set A = {a|c | e A s.t. ol #0}.
For each e A, we set ap={Xe q¢|ad(h)*(X) = (b)*X (Vb eb®)}. Then we
have q =3.(b%) + > 5 7 aj, where Ay is the positive root system under some
lexicographical ordering and 3,.(b®) is the centralizer of b in q¢. Consider

D:={ve(T:M)|p(g; v)’s (BeA,) are mutually distinct}.

It is clear that D is open and dense in (7-M)°. Take ve D. Since B(g;'v)’s
(e Ay) are mutually distinct, the decomposition (T.M)® = g.(3,(b%) ©b) +
> g:q5 is the eigenspace decomposition of RC(',U)U|(TYM)c, where we note
ﬁ€A+ '

that R¢(-,v)v = —g, oad(g-'v)? o g7!. Since M is curvature-adapted and hence

[Rc(',l))1)|(TXM)c7A§] = 0, we have

(5.1) (TM) = Y (9:(34:(b%) © ) NKer(45 — Zid))

AeSpec AL

+ > > (g.q5NKer(4f — Zid)).

LeSpec Af pe A,

Suppose that (5.1) does not hold for some vy e (Ty M)“\D. Then it is easy to
show that there exists a neighborhood U of vy in (T M) such that (5.1) does
not hold for any v e U. Clearly we have UND = F. This contradicts the fact
that D is dense in (7-M)€. Hence (5.1) holds for any v e (T-M)\D. Therefore,
(5.1) holds for any ve (T-M)°. In particular, (5.1) holds for v;. On the other

hand, the decomposition (7:M)® = g.(3,(b) ©b°) + >° g.qf is the common
ﬁEAJr

eigenspace decomposition of R(-, v)v|iz ye’s (vE (TEM)€). From these facts, it

follows that R(-,v1)vi|(z, e and Ay, commute with each other. This completes

the proof. q.e.d.
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By this lemma, Lemma 5.3, Propositions 5.6 and 5.7 of [17] (these lemmas
are valid even if the ambient space is a pseudo-Riemannian symmetric space), we
can show the following fact.

ProposITION 5.2. Let M be a curvature-adapted complex equifocal sub-
manifold in G/H. Assume that, for any normal vector v of M, A, and ad(g_'v) are
semi-simple and that +f(g 'v) ¢ Spec Af,|gxq; (BeAy), where g is an element of
G such that gH is the base point of v. Then M is proper complex equifocal.

PROOF. Let M := (mo¢) (M) and denote by A the shape tensor of M. Fix

ue M and i € T M. For simplicity, set x(= gH) = (n 0 ¢)(u) and v := (n 0 ¢), (D).
According to Lemma 5.1, it follows from the assumptions that 45 commutes with
RE(,w)w|apye’s (we (TEM)). Also, it follows from the assumptions that A¢
and RE(-,w)w|y /s (we (TyM)®) are diagonalizable. Hence they are simulta-
neously diagonalizable, that is, we have the relation (5.1). On the other hand, by
the assumption, we have +f(g.'v) ¢ Spec(4¢| g*q];‘) for each e A,. Therefore, it
follows from Lemma 5.3, Propositions 5.6 and 5.7 of [17] that there exists a
pseudo-orthonormal base of (7, M) consisting of eigenvectors of Af. Therefore
M is proper complex isoparametric, that is, M is proper complex equifocal.
q.e.d.

6. Proof of Theorems A, C and E

In this section, we shall prove Theorems A, C and E. First we prove
Theorem A in terms of Propositions 3.2, 4.1 and 5.2.

PrOOF OF THEOREM A. Since T.z(H'(eH))=qNbh' and qNb’ is a non-
degenerate subsapce of g, we see that H'(eH) is a pseudo-Riemannian sub-
manifold. Since goo’ =¢' o, we can show that H'(eH) is a reflective sub-
manifold by imitating the first-half part of the proof of Lemma 4.2 in [19]. Thus
the first-half part of the statement (i) is shown. Furthermore, by imitating the
second-half part of the proof of Lemma 4.2 in [19], we can show the second-half
part of the statement (i). In the sequel, we shall show the statement (ii). Let M be
a principal orbit of the H’-action as in the statement (ii). For simplicity, set
x:=expg(w)H and g := expg(w), where w is as in the statement (ii). By imitating
the second-half part of the proof of Lemma 4.2 in [17], it is shown that M is
a partial tube over H'(eH) and M NZX,y is an orbit of the isotropy action of
the symmetric space X.y(=~ L/HNH'). Since M is a principal orbit, M NX,.q
is a principal orbit of the isotropy action. Hence, since ad(w)|, is semi-simple,
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b:=g !'T:M is a Cartan subspace of qNgq’ by (i) of Proposition 3.2. Take
a Cartan subspace a of q containing b. Let q“=a"+ ) A, Gy be the root
space decomposition with respect to a. Set Ape := {ofc|oae A s.t. afye # 0}
and qf = 3", cn 51 oep Ty (B € Dpe). Then we have q° = 30¢(b) + 35 1,0, 9>
where (Age), is the positive root system under some lexicographical ordering.
Also, since q¢NDH’® and q*Ng’¢ are ad(h)*-invariant for any beb®, we have
aNB =3.(b)ND" + 35 (10, (@5ND) and q° NG =b"+ D5\ ) (45N ")
Hence we have

(TeM)® = gSGee ()N )+ > (gS(asNH) +¢S(af N a’)),
ﬂE(A[,c)Jr

(Ten(H'(eH)))" = 3:(0) N+ >~ (afNDH")
ﬂE(Abc>+

and

(Te(M NZepr))* = Z g:(QE nq’).
ﬂE(Abc)+
Also we have T:M = g.b. Take ve T-M = g.b. It is clear that R(-,v)v is semi-

simple. Since H'(eH) is totally geodesic, it follows from (ii) of Proposition 4.1
and (4.1) that ASX, =0 (X €3,(b)NDH") and

(6.1) 47X, = V=15(g;"0) tan(V=1() X, (X € q5NH" (B e (Lpe).))-

Also, since M NZX,.y is a principal orbit of the isotropy action of Xy (=~ L/H N
K), it follows from Proposition 3.2 and (i) of Proposition 4.1 that

(6.2) A?Y:—MY (Y eg.(a;Nq"))

L tan(vV=Tf(w)) ¢

up to constant-multiple, where we note that the induced metric on X.y(= L/H
N K) is homothetic to the metric induced from the Killing form of I. Thus A is
diagonalizable, that is, A, is semi-simple. Also we have [AL?,RC(-,U)U|<TV M):] =0
and hence [4,, R(-,v)v|7 5] = 0. Therefore M is curvature-adapted. Next we shall
show that M is proper complex equifocal. Since g 'T-M is a Cartan subspace
of gN g’ for each x(= gH) € M, M has flat section. Since M is a principal orbit
of the H’-action, each normal vector of M extend to an H’-equivariant nor-
mal vector field, which is parallel with respect to the normal connection of M
because M has flat section. From this fact, it follows that the normal holonomy
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group of M is trivial. Furthermore, it follows from the homogeneity of M that
M is complex equifocal, where we use Fact 3 stated in Introduction. From (6.1)

¢ V=1B(g:! Vas) _M}
and (6.2), we have Spec(Av|g§qﬁc) c { 1p(g; 'v) tan(vV/—18(w)), ot/ =1500)
(B e (Lye),), that is, +B(g.'v) ¢ Spec A§|gfq§. Therefore, it follows from Prop-
osition 5.2 that M is proper complex equifocal. Furthermore it follows from the
result of [23] stated in Introduction that M is an isoparametric submanifold with

flat section. This completes the proof. q.e.d.
Next we prove Theorem C.

PrOOF OF THEOREM C. According to Theorem A, we have only to show that
K(eH) has no focal point and that, for any normal vector v of M;, R(-,v)v|r ).
and A4, are diagonalizable. Let g =f+p be the Cartan decomposition of g
associated with 6. Take an arbitrary normal vector v of K(eH) at eH. Take a
maximal abelian subspace b of qNp containing v and a Cartan subspace a of q
containing b. Let q°=a®+3_,_, q, be the root space decomposition of q¢ with
respect to a®. Let Ay :={aly [ e A st aly, # 0} and qp := (3 ,cn g1 5,5 95) N a
(p e Ap). Since b < p, we have f(b) =R (e Ap) (see Lemma 3.1) and hence
q=3,(b) + Zﬁe(Am qg. Furthermore, since ad(h)*(qNf) = qNf for any beb,
we have qN§=3,(b)NT+3 5, (apNT). Let X €asNi (Be(Lp),), Y be the
strongly K(eH)-Jacobi field along y, with Y(0) = X. Since K(eH) is totally

geodesic, we have Y(s) :cosh(sﬁ(v))Py,,‘[o (X). Since f(v) is a real number,

Y has no zero point. Also any strongly “}((eH)-Jacobi field Y along y, with
Y(0) €3,(b) N is expressed as Y (s) :P?x:l[o.x](?(o)) and hence it has no zero
point. On the other hand, since K(eH) is reflective and hence it has section,
any non-strongly K(eH)-Jacobi field along 7y, has no zero point. After all
there exists no focal point of K(eH) along y,. From the arbitrariness of v, it
follows that K(eH) has no focal point. For convenience, set H, := K, H, := L,
by =7, =1 g :=pand q, :=fNg+pNbh. Let M; (resp. M>) be a principal
orbit of the Hj-action (resp. the H-action) through x; = expg(wi)H € Hy(eH)
(w1 € qNqy) (resp. x2 = expg(w2)H € Hi(eH)\F (w2 € qNqy)). Set g; := expg(w;)
(i=1,2). Since by :=g,(TyM;) and by := g, (T M) are maximal abelian
subspaces of qNp and qN{, respectively, they are maximal split abelian subspaces
of q. Hence we have the root space decomposition q = 3,(b;) + >, 1 9p of q with
respect to b; (i =1,2), where q5:={X €q| ad(b)*(X) = (=1)“B(b)*X (Vbeb;)}
(feb;) (&1 =0 and & =1 by Lemma 3.1) and A is the positive root system
of A":= {Beb;|qs #{0}} with respect to a lexicographical ordering of b;.
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Also, it is easy to show that qNb, =3,(b;) Nb; + ZﬁeAi (qpNb;) and qNg; =
b; + ZﬁeA;(Qﬁﬂ%)a where i =1,2. Hence we have

T M; = gi*(3q(bi) nb,) + Z (gi*(CI/; nb,) + gi*(C(/; Na,)),
ﬂeAi

Teri(Hi(eH)) = 3,(b;) ND; + Z (agNb;)
ﬂeAi

and

Ty (MiNZy) = Z gix(ag N ay),
PeAl
where ZéH is the section of H;(eH) through eH. Take v; € TfM, = g;b;. It is
clear that R(-,v;)v; is diagonalizable. Denote by A’ the shape tensor of M;. By
using Propositions 3.2, 4.1 and (4.1), we can show AL’ZI_X’W, =0 (X €3,(b;)NDy),

A} Xy = VTRl 0) tan(v=1 pw)) X, (X €quNb; (BeAl))
and

; V=T Blg;'v) |
Ay = Y7UBG) oy o
! tan(v/—1 B(w;)) (Y egi(agNa;) (Behl))

Thus Aéi is diagonalizable. This completes the proof. q.e.d.

Next we shall prove Theorem E. By imitating the proof of Lemma 2.1 of
[21], we can show the following fact.

LemmA 6.1. Let G(= (G x G)/AG) be a semi-simple Lie group equipped with
the bi-invariant pseudo-Riemannian metric induced from the Killing form of g+ g,
H' be a closed subgroup of G x G and a be an abelian subspace of the normal
space T+(H'-e) of H' -e. Set X :=expg(a). Then all H'-orbits through ¥ meet *
orthogonally.

By using this lemma and imitating the proof of Lemma 2.2 of [21], we can
show tyhe following fact.

LemmA 6.2. Let G/H be a semi-simple pseudo-Riemannian symmetric space,
H' be a closed subgroup of G and a be an abelian subspace of the normal space
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T3 H(eH) of H'(eH). Set X :=Exp(a). Then all H'-orbits through ¥ meet X
orthogonally.

By using this lemma, we prove Theorem E.

Proor oF THEOREM E. Let M, F and G/H be as in the statement of
Theorem E. Without loss of generality, we may assume that G is simply con-
nected. Since M is homogeneous, there exists a closed subgroup H; of G having
M as an orbit. Without loss of generality, we may assume that H,(eH) = M.
Set X := Exp(T;;M). Since M has flat section, that is, 7;;M is abelian, it
follows from Lemma 6.2 that all H;-orbits through ¥ meet ¥ orthogonally. Hence
their dimensions are lower than dim M + 1. This fact implies that all H;-orbits
through W are of the same dimension as dim M for some neighborhood W of
eH in X. Hence they are principal orbits or exceptional orbits of the Hj-action.
By imitating the proof of the fact that a hyperpolar action has no excep-
tional orbit (see [28]), we can show that there exists no exceptonal orbit among
the Hj-orbits through W. Hence the Hj-orbits through W are principal. Set
U := H, - W, which is an open set of G/H. Fix goH € F. Set H, := gy ' H,go,
t:=T.ygy'F and t-:= T)g;'F. Furthermore set b/ :=mny(t)+t and o' =
(h © my(t)) + t*. Since my(t) is a non-degenerate subspace of h by the assump-
tion, we have g = b’ @ q’ (orthogonal direct sum). Since F is a reflective by the
assumption, t and t* are Lie triple systems. By using this fact, we can show
b5 <=b’, [b',q'] =q’ and [q',q’] = b’'. Thus the connected subgroup H' of G
having b’ as its Lie algebra is symmetric, where we use the simply connectedness
of G. That is, the H'-action on G/H is a Hermann type action. Easily we can
show T,((Hyx H)-e) =pr,(h,) +b and T,((H' x H)-e) =pr,(h') +bh=1t+Db,
where pr, is the orthogonal projection of g onto q and b, := Lie H,. Since
n ' (Hy(eH)) = (Hy x H)-e, we have T.n(Hy(eH))=pr (T,((Hy x H)-e)) =
pr,(bh,), that is, pry(bh,) = t. Hence we have T.((H' x H) -e) = T.((Hy x H) - ¢)),
which implies (H' x H) - e = (H, x H) - e. Therefore we have H'(eH) = Hy(eH).
Set X' := Exp(T;alH(gglM)), which passes through eH. Set a’ := T,5X’, which is
abelian. Since T3} (H'(eH)) = T} (H2(eH)) includes o', it follows from Lemma
6.2 that all H'-orbits and all Hj-orbits through X’ meet X’ orthogonally. Since
all H,-orbits through g, ! W (<= X') are principal and hence T,y (Hx(gH)) = TynX'
for all gH € g;' W, we have T,y(H'(gH)) = Tyu(Ha(gH)) for all gH € g W.
On the other hand, we have [pry(b,),t] = pry([h,1]) = pry(Te((H2 x H) - ¢)) =
Ter((Ha(eH)) =1, that is, pry(b,) = ny(t), where pry is the orthogonal projection
of g onto h. Hence we have b, = pry(h,) + pr,(h,) = b’, that is, H, < H'.
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Therefore we see that H'(gH) = Hy(gH) for all gH € gy'W. In particular,
g0 "M is a principal orbit of the H’-action. Hence M is a principal orbit of the
Hermann type action goH'gy!'. This completes the proof. g.e.d.

7. Cohomogeneities of Special Hermann Type Actions

In this section, we shall list up the cohomogeneities of the K-action and
the L-action as in Theorem C on irreducible (semi-simple) pseudo-Riemannian
symmetric spaces G/H in terms of the fact that the cohomogeneity of the K-
action (resp. L-action) is equal to the rank of L/HNK (resp. K/HNK). In
Tables 1~5, 4 - B denotes 4 x B/T1, where II is the discrete center of 4 x B. The

symbol SOy(1,8) in Table 6 denotes the universal covering of SOy(1,8) and the
symbol « in Table 6 denotes an outer automorphism of Gj.

Table 1.
G/H K L
cohomg cohom;
SL(n,R)/SOo(p,n—p) (p < %) 50(n) (SL(p,R) x SL(n — p,R))
‘R,
n—1 P
SL(n,R)/(SL(p,R) x SL(n— p,R)) - R, SO(n) SOy(p,n— p)
(r=3)
P p
SL(2n,R)/Sp(n,R) SO(2n) SL(n,C)- U(1)
i 4
SL(2n,R)/SL(n,C) - U(1) SO(2n) Sp(n,R)
" 3
SU*(2n)/SO*(2n) Sp(n) SL(n,C) - U(1)
n—1 n
SU*(2n)/SL(n,C) - U(1) Sp(n) SO*(2n)
3] n
SU*(2n)/Sp(p,n—p) (p<3) Sp(n) SU*(2p) x SU*(2n — 2p)
x U(1)
n—1 P
SU*(2m)/(SU*(2p) x SU*(2n— 2p) x U(1) Sp(n) Sp(p.n— p)
(r=<?%) ) )
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Table 1 (continued)

G/H K L
cohomg cohom;,
SU(p,q)/S0u(pq) (p < 4q) S(U(p) x U(g)) S00(p:q)
p n—1
SU(p,p)/SO*(2p) S(U(p) x U(p)) Sp(p,R)
p r—1
SU(p,p)/Sp(p,R) S(U(p) x U(p)) 50*(2p)
(4] p—1

SU(p,p)/SL(p,C)- U(1)

p r—1
SU(2p,2q)/Sp(p:q) (p < q) S(U(2p) x U(29)) Sp(p.q)
p n—1
SU(p,q)/S(U, j) x U(p —i,q— j)) S(U(p) x Ulg)) | S(U(p—i,j)x Uli,q— j))
min{p — i, j} min{i,p — i}
+ min{i, ¢ — j} + min{j,q — j}
Table 2.
G/H K L
cohomyg cohom;
SL(n,C)/SO(n,C) SU(n) SL(n,R)
n—1 n—1
SL(n,C)/SL(n,R) SU(n) 50(n, C)
4 ne
SL(n,C)/(SL(p,C) x SL(n — p,C) x U(1)) SU(n) SU(p,n— p)
(r=3%
P p
SL(n,C)/SU(p,n—p) (p<4) SU(n) SL(p,C) x SL(n - p,C)
x U(1)
n—2 )
SL(2n,C)/Sp(n,C) SU(2n) SU*(2n)
n—1 n—1
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Table 2 (continued)

G/H K L
cohomy cohom;
SL(2n,C)/SU*(2n) SU(2n) Sp(n,C)
n n—1
SO0o(p,q)/SO0(i, j) x SOy(p —i,q = J) SO(p) x SO(q) | SOu(p—1i,J) x SOo(i,q — j)
min{p —i,j} | min{i,p—i} + min{;,q — j}
+ minf{i,q — j}
S0o(p,p)/SO(p,C) SO(p) x SO(p) SL(p,R)- U(1)
P 4]
SO0o(p;p)/SL(p,;R) - U(1) S0(p) x SO(p) S0(p,C)
3] 5]
S00(2p,29)/SU(p,q) - U(1) (p < q) S0(2p) x S0(2q) SU(p,q)- U(1)
P [5] + 3]
S0*(2n)/SO*(2p) x SO*(2n —2p) (p < %) U(n) SU(p,n—p)-U(1)
P P
SO*(2n)/SU(p,n—p)-UQ1) (p< Y U(n) SO*(2p) x SO*(2n — 2p)
5]+ 5 p
50" (2n)/SO(n, C) U(n) 50(n, C)
4 "
SO*(4n)/SU*(2n) - U(1) U(2n) SU*(2n) - U(1)
n—1 n—1
S0(n,C)/SO(p.C) x SO(n— p,C) (p < %) SO(n) SOy(p,n— p)
P P
SO(n,C)/SO¢(p,n—p) (p < %) SO(n) SO(p,C) x SO(n — p,C)
5] + 57 p
50(2n,C)/SL(n,C) - SO(2,C) S0(2n) S0*(2n)
3] 5]
50(2n,C)/SO*(2n) S0(2n) SL(n,C)-SO(2,C)
n 5]
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Table 3.

G/H K L

cohomy cohomy

Sp(n,R)/SU(p,n—p)-U(1) (p< %) Un) Sp(p,R) x Sp(n — p,R)
n p
Sp(n,R)/Sp(p,R) x Sp(n — p,R) (p < 3) U(n) SU(p,n—p)-U(1)
P P
Sp(n,R)/SL(n,R) - U(1) U(n) SL(n,R) - U(1)
n—1 n—1
Sp(2n,R)/Sp(n, C) U(2n) Sp(n,C)

Sp(p,q)/SU(p,q) - U(1)

Sp(p) x Sp(q)

P P+q
Sp(p,p)/SU*(2p) - U(1) Sp(p) x Sp(p) Sp(p,C)
p p

Sp(p.p)/Sp(p,C)

Sp(p) x Sp(p)

SU*(2p) - U(1)

p—1

P

Sp(p,q)/Sp(i, j) x Sp(p —i,q — j)

Sp(p) x Sp(q)

Sp(p —i, j) x Sp(i,q — J)

min{p — i, j} | min{i,p — i} + min{j,q — j}
+min{i,q — j}

Sp(n,C)/SL(n,C) - SO(2,C) Sp(n) Sp(n,R)

n n

Sp(n,C)/Sp(n,R) Sp(n) SL(n,C) - SO(2,C)
Sp(n,C)/Sp(p,C) x Sp(n — p,C) (p <) Sp(n) Sp(p,n—p)

p p

Sp(n,C)/Sp(p.n—p) (p < %) Sp(n) Sp(p.C) x Sp(n - p,C)

P
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Table 4.

G/H K L cohomg | cohom;
ES/Sp(4,R) Sp(4)/{£1} | SL(6,R) x SL(2,R) 6 4
E$/SL(6,R) x SL(2,R) Sp(4)/{+1} Sp(4,R) 4 4
ES/Sp(2,2) Sp(4)/{+1} S0y(5,5) R 6 2
E§/S0y(5,5) R Sp(4)/{+1} Sp(2,2) 2 2
ES/SU*(6) - SU(2) Sp(4)/{+1} F} 4 1
EQ/F} Sp(4)/{£1} SU*(6)-SU(2) 2 1
E2/Sp(1,3) SU(6) - SU(2) F} 4 2
E2/F} SU(6) - SU(2) Sp(1,3) 1 2
E?}/Sp(4,R) SU(6) - SU(2) Sp(4,R) 4 2
E2/SU(2,4)-SU(2) SU(6) - SU(2) S0y(4,6) - U(1) 4 2
EZ?/S0y(4,6) - U(1) SU®6)-SUQ2) | SU(2,4)-SU(Q2) 2 2
E2/SU(3,3)-SL(2,R) | SU(6)-SU(2) | SU(3,3)-SL(2,R) 4 4
E2/SO*(10) - U(1) SU(6) - SU(2) SO*(10) - U(1) 2 2
Eg"/Sp(2,2) Spin(10) - U(1) Sp(2,2) 2 6
EgY%/SU(2,4)-SU(2) | Spin(10)- U(1) SU(2,4)-SU(2) 2 4
Eg'%/SU(1,5) - SL(2,R) | Spin(10)- U(1) S0*(10) - U(1) 2 2
EZ'4/S0*(10) - U(1) Spin(10) - U(1) | SU(1,5) - SL(2,R) 2 2
Eg14/S00(2,8)- U(1) Spin(10) - U(1) S0y(2,8) - U(1) 2 2
Eg'4/F20 Spin(10) - U(1) F2 1 2
Eg>/Sp(1,3) Fy SU*(6) - SU(2) 2 4
EZ2/SU*(6) - SU(2) Fy Sp(1,3) 1 4
EZ%/S0(1,9) - U(1) Fy F;2 1 1
Eg®/F% Fy S0(1,9) - U(1) 2 1
E¢/ES Eg Sp(4,C) 4 6
E¢/Sp(4,C) Es E§ 6 6
E¢/E? Eq SL(6,C) - SL(2,C) 6 4
E¢/SL(6,C) - SL(2,C) Es E} 4 4

167
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Table 4 (continued)

G/H K L cohomg | cohom,
E¢JESM Es 50(10,C) - Sp(1) 6 2
E¢/S0(10,C) - Sp(1) Eg Eg' 2 2
E¢/F{ Eo B¢ 2 2
EY /£, £ F$ s | 2
Table 5.

G/H K L cohomy | cohom,,
E]/SL(8,R) SU8)/{+1} SL(8,R) 7 7
E]/SU*(8) SU(8)/{+1} ES-U(1) 7 3

E]JES-U(1) SU(8)/{%1} SU*(8) 3 3
E]/SU(4,4) SU(8)/{£1} S0y(6,6) - SL(2,R) 7 4
E]/S0y(6,6) - SL(2,R) SU8)/{+1} SU(4,4) 4 4
E]/SO*(12) - SU(2) SU(8)/{+1} E}-U(1) 4 2
E]/EZ-U(1) SU8)/{+1} S0*(12) - SU(2) 3 2
E;5/SU(4,4) S0'(12) - SU(2) SU(4,4) 4 7
E;°/SU(2,6) SO'(12) - SU(2) E}-U(1) 4 3
E;3/EZ-U(1) S0'(12) - SU(2) SU(2,6) 2 3
E;73/S0*(12) - SL(2,R) | SO'(12)-SU(2) | SO*(12)- SL(2,R) 4 4
E;3/S0y(4,8)-SU(2) | SO'(12)-SU(2) | SOy(4,8) - SU(2) 4 4
E7JESM . U(1) SO'(12) - SU(2) EJ'%.U(1) 2 3
E75/SU*(8) Es-U(1) SU*(8) 3 7
E;5/SU(2,6) Es-U(1) S0*(12) - SU(2) 3 5
E;3/80%(12) - SU(2) Es-U(1) SU(2,6) 2 5
E;%/S04(2,10) - SL(2,R) Es-U(1) EZ'%.U(1) 2 2
E;B/ESM - U(1) Es-U(1) S0y(2,10) - SL(2,R) 3 2
E;¥/ES® - U(1) Es-U(1) EZ*-U(1) 2 3
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Table 5 (continued)

169

G/H K L cohomyg | cohomp
ES/E] E; SL(8,C) 7 7
ES$/SL(8,C) E; E] 7 7
ES/ETS E; S0(12,C) - SL(2,C) 7 4
E$/S0O(12,C) - SL(2,C) E; E;3 4 4
ES/E;® E; E¢-C* 7 3
ESJE¢-C* E; E;% 3 3
E$/SO*(16) SO'(16) E]-SL(2,R) 4 4
E$/E] - SL(2,R) SO'(16) S0*(16) 4 4
E$/S0,(8,8) SO'(16) S0y(8,8) 8 8
E§/E7S - Sp(1) S0'(16) E75-Sp(1) 4 4
EZ%/S0*(16) E; - Sp(1) 50*(16) 4 8
E;?*/500(4,12) E; - Sp(1) E53 - Sp(1) 4 4
Eg*/E73 - Sp(1) E; - Sp(1) S0y(4,12) 4 4
Eg?/E7% . SL(2,R) E7 - Sp(1) E7% . SL(2,R) 4 4
ES/E§ Eg S0(16,C) 8 8
E$/S0(16,C) Eg E} 8 8
ES/ESH Eg E$ x SL(2,C) 8 4
E§/ES x SL(2,C) Eg Eg* 4 4
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Table 6.

G/H K L cohomg | cohomp
F/Sp(1,2) - Sp(1) Sp(3) - Sp(1) S0o(4,5) 4 1
F/S0(4,5) Sp(3) - Sp(1) Sp(1,2) - Sp(1) 1 1
F}/Sp(3,R) - SL(2,R) | Sp(3)-Sp(1) | Sp(3,R)-SL(2,R) 4 4
Fy2/Sp(1,2) - Sp(1) Spin(9) S0o(1,8) 1 1
F;20/S00(1,8) Spin(9) Sp(1,2) - Sp(1) 1 1
FE/F} Fy Sp(3,C) - SL(2,C) 4 4
F£/Sp(3,C) - SL(2,C) Fy F} 4 4
FE/F7® Fy S0(9,C) 4 1
F£/50(9,C) Fy F2 1 1
G3}/SL(2,R) x SL(2,R) SO(4) a(SO(4)) 2 2
G3/a(SO(4)) SO(4) SL(2,R) x SL(2,R) 2 2
GS/G3 G SL(2,C) x SL(2,C) 2 2
GS/SL(2,C) x SL(2,C) G, G3 2 2
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