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THE BEST CONSTANT OF SOBOLEV INEQUALITY
CORRESPONDING TO A BENDING PROBLEM
OF A BEAM ON AN INTERVAL

By

Kazuo TAKEMURA, Hiroyuki YAMAGIsHI, Yoshinori KAMETAKA,
Kohtaro WATANABE and Atsushi NAGAI

Abstract. Green function of 2-point simple-type self-adjoint
boundary value problem for 4-th order linear ordinary differential
equation, which represents bending of a beam with the boundary
condition as clamped, Dirichlet, Neumann and free. The construction
of Green function needs the symmetric orthogonalization method
in some cases. Green function is the reproducing kernel for suitable
set of Hilbert space and inner product. As an application, the best
constants of the corresponding Sobolev inequalities are expressed as
the maximum of the diagonal values of Green function.

1. Preparation

A beam is supported by uniformly distributed springs with spring constant
g >0 on a fixed floor and is exerted a tension p > 0 on both sides. Under a
density of a load f(x), a bending of a beam u(x) [11] satisfies the following
4-th order linear ordinary differential equation [2]: u™® — pu” + qu = f(x)
(=1 < x < 1). In this paper, we consider the boundary value problem for bending
of a beam on an interval in the degenerate case p = ¢ = 0:

BVP(2, )
{u(4> =f(x) (-l<x<1) (1.1)
(1) =uP)(1) =0 (i=0,1) (1.2)
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where o = (09,01) and f = (f,,f,) take 6 different values (0,1), (0,2), (0,3),
(1,2), (1,3), (2,3). Among them, we here treat only self-adjoint cases «,f =
(0,1),(0,2),(1,3),(2,3), which also have engineering importance and correspond
to clamped, Dirichlet (simply-supported), Neumann (sliding) and free edge, re-
spectively [8, Chap. 2]. Therefore, the following 16 kinds of (a,f)

(a0, ) = (0,1,0,1), (0,1,0,2), (0,1,1,3), (0,1,2,3),
(0,2,0,1), (0,2,0,2), (0,2,1,3), (0,2,2,3),
(1,3,0,1), (1,3,0,2), (1,3,1,3), (1,3,2,3),
(2,3,0,1), (2,3,0,2), (2,3,1,3), (2,3,2,3)

can be considered. However, throughout this paper, we focus our attention only
on 10 (o, ) among them,

(o, ) = (0,1,0,1), (0,1,0,2), (0,1,1,3), (0,1,2,3),
(0,2,0,2), (0,2,1,3), (0,2,2,3),

(1,3,1,3), (1,3,2,3),

(2,3,2,3)

taking account of the symmetry. The eigen value problem:

EVP(x, )
{u(4):/1u (-1<x<1) (1.3)
u (1) =uP)(1) =0 (i=0,1) (1.4)

has eigen function corresponding to A =0 in some cases. In these cases, the
additional conditions are required for the uniqueness and existence of the solution
to BVP(a,p). If (o,f8)=(0,1,0,1),(0,1,0,2),(0,1,1,3),(0,1,2,3),(0,2,0,2),
(0,2,1,3), then A =0 is not an eigenvalue. If (o, f) = (0,2,2,3),(1,3,1,3),
(1,3,2,3), then 2 =0 is an eigenvalue and the corresponding eigenspace is one-
dimensional. If (o, f) = (2,3,2,3), then =0 is an eigenvalue and the corre-
sponding eigenspace is two-dimensional. The normalized eigenfunction ¢(x) =
oo, f;x) (=1 <x< 1) is given by

3 1
0727273; :\/: 1+ ; 1737173; = 1’3’2’3; _ 15
o( X) 8( x), o x) = ¢ x) v (1.5)

and ¢,(x) =¢;(2,3,2,3;x) (i=0,1,—1 <x < 1) are given by

o) =, o) =3 (1.6
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We prepare the solvability condition

none (a’ﬂ):(O’1)031)’(0)1)0)2))(0)1)1)3))
(0,1,2,3),(0,2,0,2),(0,2,1,3)

1

(S) : J‘,lf(y)(p(y) dy =0 (O!,ﬁ) = (0’2’2’3)’ (1’3’ L, )’ (153’2’3)

1

71f(y>¢i(y> dy=0 (l:()?l) (avﬁ):(2737273)

(1.7)

and the orthogonality condition

none (aﬂﬁ):(0717071)7(0)17072))(0’1’1)3)’
(0,1,2,3),(0,2,0,2),(0,2,1,3)

(0): u(x)p(x) dx =0 (o, ) = (0,2,2,3),(1,3,1,3),(1,3,2,3)

u(x)p;(x)dx=0 (i=0,1) (o) =(2,3,2,3).

(1.8)

Concerning the uniqueness and existence of the solution to BVP(«, ), we have
obtained the following theorem:

THEOREM 1.1. (1) For any bounded continuous function f(x) on an interval
—1 < x < 1 satisfying (S), BVP(a, ) with (O) has a unique classical solution u(x)
expressed as

1
u(x) = j Glx, () dy (~1<x<1) (19)

where G(x,y) = G(o,fB;x,y) is Green function.
(2) Green functions G(x,y) = G(o,f;x,y) (=1 <x,y <1) are given as fol-
lows:

1 1
G(O,l,O,l;x,y) :ELX_y‘3+ﬁ[_‘x3y3+3('x3y+x}}3)

—3x%? = 3(x* + ) 4+ 3xy + 1] (1.10)
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G(0,1,0,2;x, y) =
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1 1
- |x — y|3 +% [—x3y3 + 3(x3y2 + x2y3) + 9(x3y + xy3)

—9x%p? = 3(x* 4+ y¥) = 3(x%y + xp?) — 15(x* 4 »?)

+ 15xy +3(x+ y) + 7] (1.11)
1 1
G(0,1,1,3;x,y) = 5 1x = y* + 57 [-3x%7 = 2(x + %) = 3(x? + »?)
+ 12xy + 6(x + y) + 3] (1.12)
1
G(Oa 1,2,3;)(, y) :EHX* y|3 - (X3 + y3) +3(x2y+xy2)
+ 12xy + 6(x + y) + 4] (1.13)
1
G(0,2,0,2:x,y) = g5 [lx — Py +xpd = 3% + 1) + 2xp + 2] (1.14)
1
G(0.2,1,3:x,y) = 15 [lx = o’ = (¢ + %) = 3(x% + %) = 6(x + »?)
+ 12xy + 12(x + p) + 16] (1.15)
. _ 1 3 1 5 5 5 5
G(0,2,2,3;x, y) = 5 |x = I + a5 22107y + x7) = 21(x7 + )
—105(x*y + xp*) — 105(x* + y*) +630(x"y + x3?)
+70(x 4+ ¥) + 630(x%y + xy?) — 1050(x? + ?)
+ 1278xy — 318(x + y) + 326] (1.16)
1 I 2.2
G(17371737xay)zﬁ‘x_y| _Ig[x +y +6Xy
1
+4(x* + %) —24xy]+% (1.17)
1
G(1737273;x7y) :E‘ - |3 +478[7(X4+y4)+ 12(x2y+xy2)
1
—6(x2+y2)+48xy—4(x+y)]+% (1.18)
1 3 1 5 5 4 4
G(2,3,2,3;%,9) = ;7 1% = Y" = 1ep [PLOFy +2007) 4 35(x7 + »7)

1680

1
—210(x%y 4+ xp°) +210(x* + »?) — 198xy] + 5 (1.19)
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This theorem is shown in section 4. The above bending problem of a beam
is important in the field of classical mechanics of materials. The purpose of this
paper is to give a mathematical foundation of this problem.

2. Conclusion
Let us introduce Sobolev space

x) | u(x),u”(x) e L*(—=1,1), A(a, B)} (2.1)

(
A(0,1,0,1) s u(—=1) = u'(=1) = u(1) = u'(1) = 0
A(0,1,0,2) : u(~1) = u' (1) = u(1) = 0
A(0,1,1,3) : u( (—1)=u'(1)=0
A(0,1,2,3) s u(—1) = u'(=1) = 0
( )« u
( )« u

1
A(1,3,1,3) : v/ (=1) =u'(1) =0, J_l u(x)p(x) dx =0
1
A(1,3,2,3) :u'(—=1) =0, J_l u(x)p(x) dx =0
4(2,3,2,3) Jl u(x)p,(x) dx =0 (i=0,1),
-1
and Sobolev inner product
1 1
oy = | W@ dx = Gy = [ WP (22

Here ' is a derivative in a distributional sense. So, any element u € H belongs to
C'[-1,1] from Sobolev embedding theorem; see [I, Chap. VIIL 2]. (-,-), is
proved to be an inner product of H afterwards. H is Hilbert space with an inner
product (-,-),. We here present main conclusion in this paper.
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THEOREM 2.1. (1) For any function u(x)e H(o,p), there exists a positive
constant C which is independent of u(x) such that Sobolev inequality

<sup |u<y>|> < CL ()2 dx (23)

[y<1

holds. Among such C the best constant C(o,f)) is

C(a,p) = max G(fx B; ¥, y) = G(o, B; yo, yo) (2.4)

where yo satisfies |yo| < 1. If we replace C by C(o,f) in (2.3), equality holds for
u(x) = cG(o, f;x, y0) (=1 < x < 1) for every complex number c.
(2) Concrete forms of C(o,f) are given as follows:

1
C(0,1,0,1) = max G(0,1,0,1; y, y) = G(0,1,0,1;0,0) =
[yl<1 24

C(0,1,0,2) = max G(0,1,0,2; 3, y) = G(0,1,0,2;3 — 22,3 — 21/2)
=<

:2(17— 12V?2)

C(0.1,1,3) = max G(0,1,1,3y,3) = G(0,1,1,3:1,1) =3
y<

OO

C(0,1,2,3) = max G(0,1,2,3;y, ) = G(0,1,2,3;:1,1) =

[y<1

W |

€(0,2,0,2) = max G(0,2,0,2;y, y) = G(0,2,0,2;0,0) =

<1

C(0,2,1,3) = max G(0,2,1,3;y, ) = G(0,2,1,3;1,1) =

lyl<1

wW| o AN —

C(0,2,2,3) =max G(0,2,2,3;y,y) = G(0,2,2,3;1,1) = 16
ly[<1 105

C(1,3,1,3) =max G(1,3,1,3;y,y) = G(1,3,1,3; -1, 1)

[y[<1
8
=G(1,3,1,3;1,1) =

1
C(1,3,2,3) = max G(1,3,2,3; y, ) = G(1,3,2,3;1,1) = 19
‘ylgl 15
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C(2,3,2,3) = max G(2,3,2,3;y,5) = G(2,3,2,3;—1,-1)
=

:G(2,3,2,3;171):%.

The engineering meaning of Sobolev inequality is that the square of the
maximum bending of a beam u(y) is estimated from above by the constant
multiple of the potential energy ||u||,;. Among these constants, the best constant is
the maximum of the diagonal value of the impulse response G(x, y). If boundary
condition becomes looser as (0,1) — (0,2) — (1,3) — (2, 3), the impulse response
G(x, y) gets larger especially on the boundary. Therefore, the diagonal value of
Green function attains its maximum at the boundary (y = —1 or 1) in the case of
(¢, ) = (0,1,1,3),(0,1,2,3),(0,2,1,3),(0,2,2,3),(1,3,1,3),(1,3,2,3),(2,3,2,3).
On the other hand, if (o, f) = (0,1,0,1),(0,1,0,2),(0,2,0,2), the case of strong
restriction, the maximums are attained at or near the center point (y =0).

We have already obtained the best constant of Sobolev inequality for (d /dx)4
in the case of (o, f)=(0,2,0,2) [5, 6, 13], (o, ) =(0,2,1,3) [13], (o, p) =
(1,3,1,3) [5, 13] and (o,f) = (2,3,2,3) [10].

This paper is composed of seven sections. In section 3, we state boundary
value problem for bending of a beam. In section 4, Theorem 1.1 is proved. In
particular, we construct Green function by the method of symmetric ortho-
gonalization in some special cases. In section 5, we show Green function is
the reproducing kernel for H and (-,-),. Finally in section 6 and 7, we prove
Theorem 2.1(1) and (2), respectively.

3. Boundary Value Problems

We introduce functions Kj;(x) defined by
x_./+3

which satisfy recurrence relation K/(x) = Kj;1(x). We adopt the abbreviation
K; = K;(2) and note that K;(0) =0 (j#3), 1 (j=23).

In order to explain the meaning of the solvability condition (1.7) and the
orthogonality condition (1.8), we show the following theorem.

THEOREM 3.1.
CASE I (O(,ﬁ) = (0717071)7 (0717072)7 (0717173)7 (0717273)7 (Oa2a072)a
(0,2,1,3)
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For any bounded continuous function f(x) on an interval —1 < x <1,
BVP(a, ) has a classical solution u(x) expressed as

1
ux) = | Glpix ) ) dy (<1 <x<). (32

Green functions G(a,f;x,y) are given by

G(a, f;x, y)
1 KloJr[)’o Ka1+ﬁo Kﬁo(l - y)
:E K0(|x_ y‘) +K71 K1<)+/>’1 KO‘I+/31 Kﬁl(l _)/)
Ky(1+x) K,(1+x)| 0
Kerﬂo K11+ﬁo Kﬁo(l - x)
+ K950+/f| K“l+/}l Kﬁl(l - x) (71 <x,y< 1) (33)
Ko(l+3) K,(1+y)| 0
K, K,
where 1= | | <,
Ka0+ﬁ1 KO(1+/31

Case I (a,) =(0,2,2,3),(1,3,1,3),(1,3,2,3)
Under the solvability condition

1
|| oty av=o, (34
u(x) is given as
1
) = | Golu v VD) dy+eplafin) ((l<x<l)  (33)

where ¢ is an arbitrary constant and Go(o, f;x,y) are given by

Kiep, | Kp(1-)
K,(1+x)| 0

1
G()(Of,ﬂ; X, y) = E [Ko(|x - y|) + Kﬁfoiﬁo{’

4 ‘ Ka0+ﬁ0 ’ K/"o(l - x)
Ko+ | 0

H (-l<x,y<] (3.6)

1 !
Go(0,2,2,3;x,y) = 51 = 37+ g ¥y + 07 = (77 4+ %) + 3%y 4+ xp?)

—3(x%+ ) + 6xy — 2(x + ») — 2] (3.7)
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1 1
G0(1737 173;x7y) = E|x_ y|3 _g[x2y2 +X2 + y2 _4Xy+ 1] (38)

1 1
G0(1731273;x7y) :E|x_y|3+1[x2y+xy2_(x2+y2)

+4xy — (x+y) — 2] (3.9)

which are called the proto Green functions.
Case OI (o, ) = (2,3,2,3)
Under the solvability condition

1
|| ronoras=o0 =0 (3.10)

u(x) is given as
1
u(x) = J_l Go(2,3,2,3:x, 1)/ () dy + copo(x) + e (x) (—1 <x<1) (3.11)

where ¢y and ¢y are arbitrary constants. The proto Green function Gy(2,3,2,3;x,y)
is given by

1 1
Go(2.3,.2,3:x,p) =5 Ko(lx = y) = 5 lx =o' (-1<xy<l). (312

Proor oF THEOREM 3.1. Let us define

) u 0 01 00
u u' 0 0 01 0
= = = N =
1w T R N 00 0 I
3 u” 1 0 0 0O
then BVP(a, f8) is rewritten as

u' = Nu+ ef (x) (-l<x<1) (3.13)
U, (—1) =up (1) =0 (i=0,1). (3.14)

Let E(x) be expressed as E(x) = exp(Nx) = K(x)K(0)~' where

Ky Ki K, Kj 0 0 0 1
K K K Ky L loo 1o

O Il (S A SR I B (O
K; Ky Ks Kg 1 0 00
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which is a fundamental solution to the initial value problem E’' = NE, E(0) = 1.
I is a unit matrix. Solving (3.13), we have

) = ECxct Dal=1) + | B ef(3) dy

1
u(x) = E(x — Du(1) - j E(x— yef(y) dy,

X

and equivalently,

Uo Ky Ki Ky K; us Ky
u K1 K2 K3 K4 [Z5) JX K]

X) = x+1 -1)+ X — d
I 1R e 1 Sno] I (G I Il (E SOV COR
us K3 K4 Ks K6 Uuop K3
Uy KO K] K2 K3 us KO
u K1 K2 K3 K4 [Z5) Jl K]

= -1 1) — — dy.

I 1 R e 1] I OBl sl [C SV
us K3 K4 K5 K6 0] K3

Comparing 0-th row, we have

() = (K o 1) (2077 ) 1)+ (Ko K)o+ 0 (1) 1)

U3_o Uy,

+ Jxl Ko(x—y)f(y) dy

uo(x) = (Kﬁo,K[;l)(x — 1)<u3ﬁ0 ) (1) + (K37/30;K37ﬂ1)(x— 1) (”/30>(1)

u3—p, Up,

1
- J Ko(x — )/ () dy.

X

Employing the boundary conditions (3.14), we have

U3_g,

() = (Ko K )r ()04 [ Kalx =) f 01y G15)

u3—c<1

1
uo(x) = (K, K ) (x = 1) (””°)<1> - J Ko(x=y)f(n)dy.  (3.16)

Us—p, x

Noting Ky(x — y) = —Ko(y — x) and taking an average of (3.15) and (3.16), we
have
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up(x) = %(Kao,Kal)(H D <Zj_:°)(—l) JF%(K/}O,K/;l)(X— 1) (Zz?)(l)

1
] 5Kl 3DsO) (3.17)
-1

Taking f;-th derivative for (3.15) and o;-th derivative for (3.16), we obtain

u3—oc0

() = Koo K)o+ 1) (07 )0+ || Knlx= sy v G1s)

U3z_y,

Us_ 1
() = Ko Ko )= D () 0= [ Kale= s G19)

Putting x=1 in (3.18) and x = —1 in (3.19) and considering the boundary
condition (3.14) again, we obtain

(for Kwﬂo)(z)(m-%)(—n=—j1 (Zf)(l—y)f(y)dy (3.20)

K10+ﬂl qu“’ﬂl u3—3€1 -1
Kd()+ﬂ0 Ko(UJrﬁl) <u3ﬁ > JI <Ko¢ )

Ny, )= ") 1= Sy, (321
(Kll% Kuop )Ty )V =) k) ) () (3.21)

Case I Since two matrices on the left hand side of (3.20) and (3.21) are
confirmed to be invertible, we have

1 -1
U3—o _ J (K“OﬂL/fo Koc1+ﬂo ) (Kﬁo >
—1)=—- 2 1 - d
()= (g™ ) @ )a-noe
1 -1
u3ﬁo> 1) = J <Ka0+/}0 KarHr//’l ) b (Kzo ) 1
= - —1=2)/f(y) dy.
(=] (e ™) a5 )e1-nrw)
Noting u = 1y and substituting above two equalities into (3.17), we have

1
ux) = | Glenfay (1<x<)

where

_1 Ko+py Koy - Ky,
G(x,y>—2[1<o<|x—y|>—<l<ao, S P I G O

Kuify Kuip >‘1 (K>
F Ky Ky ) (x — 1) 2ot o= 2o Y —1—- | (322
el G I 1 (e [CT o] R CE ™
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Since K;(—x) = (—1)""'K;(x), we have

_1\fotl
(Kﬂo’Kﬁl)(x_ 1) = (Kﬂo’Kﬁl)(l o x)<( 1()) (_1())/31+1>’

(K950+/)’o Ko, )(_2) - _ (_1)u0+1 0 (Kﬁfo-‘rﬂo Koy ip, )(2)
K%1+/30 K+, 0 (—l)alJrl K3<1+/)’0 K1,

(&Ym= ) (& )awn

(3.22) is rewritten as

1 Ka +5 Koc +p, - Kﬁ
Gx’ R (K, .K, 1+x( 0+Po 1+ho 0 1 —
( y) 2 [ 0(| y|) ( ! 1)( ) K10+ﬂ1 K“lJrﬂl Kﬂl ( y)

Kuipy Kuip,\ ™ (K,
— (Ky, K ) (1 + y ( 0P 0 "1 —-x)|,
( oo C"])( ) K10+/)’1 K11+/)’1 K/)’l ( )

where K; = K;(2). The equivalence between the above expression and (3.3) is
shown from the following well-known fact, that is, for any N x N regular matrix
A and N x 1 matrices @ and b, the equality

1

Al b
‘al 0

holds. Inserting (3.1) into (3.3), we have (1.10)~(1.15) in Theorem 1.1(2).
Casg II  (a,p)=1(0,2,2,3) (3.20) and (3.21) are rewritten as

(2 g)(z)(Z?)<‘l) - —Jil (112)(1 =) (y)dy (3.23)

(132 133 ) (‘2)(:)(1) = Ji] (§Z)<—1 = nf(y) dy. (3.24)

From the 1st row of (3.24), we have the solvability condition (3.4) and

‘ad™'h = —

bl t
(=) == | SRl =f0) dy == [ =Kol =) d,

1
w(h) =)+ | K1+ )10) dy
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Substituting these equations into (3.17), we have (3.5) where
1 1
Go(x, ) =5 {Ko(lﬁC =) = g o1+ 0 K(1 = ) + Kol = )Ko(1 + )},

from which we obtain (3.6), or equivalently (3.7).
Case II (o,p) =(1,3,1,3) (3.20) and (3.21) are rewritten as

(") en=- (K (1= »)f(y)dy
(5 o)ola)n=--[(x)
(% Oea()o=] ()cr-mwe.

From above, we have (3.4) and

1 1
(1) == [ EK=010) d ()=~ | E K+ S 0) .

Substituting these equations into (3.17), we have (3.5) where

G, ) = 3 [ Kol = 1) = g (K1 1+ 9K (1= )+ K1 = 30K (14 )},

from which we obtain (3.6), or equivalently (3.8).
Case I (o,p) =(1,3,2,3) (3.20) and (3.21) are rewritten as

S 0a(Yen=-[ (2a-nrma
(5 o)l (%
(5 Oea(o=] (§)cr-mwe.

From above, we have (3.4) and

bl |
(=) == [ K =010)d w)= [ K1+ 010 dy

Substituting these equations into (3.17), we have (3.5) where
1 1
Go(x,y) =3 |Kollx = ) = - AKi (1 + 9)Ko(1 = 3) + Ko (1 = )Ki(1 + )}

from which we obtain (3.6), or equivalently (3.9).
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Case I From (3.20) and (3.21), we have

1 1
Jlf(y):O, lef(y)zo
or equivalently (3.10). From (3.17), we have (3.11) and (3.12). [

4. Green Function

In this section, we give a proof of Theorem 1.1 and investigate the properties
of Green function. The important aim of this section is to construct unique Green
functions in cases II and III.

The advantage of the method of symmetric orthogonalization is as follows.
The orthogonality (Theorem 4.1 (5)) and the symmetry (G(x, y) = G(y,x)) assure
the uniqueness of the solution. Moreover, thus obtained Green function is a
reproducing kernel as shown in section 5.

Starting from the proto Green function Gy(x, y), we can construct Green
function G(x,y) which has both symmetric and orthogonal properties, as is
shown later in Lemma 4.2 and Lemma 4.3. We call this procedure generating
G(x,y) from Gy(x,y) “the method of symmetric orthogonalization™.

We start with the following lemma, which plays an important role in
performing the symmetric orthogonalization method.

LEmMA 4.1.

J] Ko(x —y) dy = K_1(1+x)+ K_1(1 — x) = 11—2[x4 + 6x% 4 1] (4.1)
-1

1
L Ko(lx — y)(1 + 7) dy = K_o(1 +x) — K_o(1 — x) + 2K (1 — x)

= % [x° + 5x* — 10x? 4 30x% — 15x + 5] (4.2)

1
J71K0(|x— ydy=K(1+x)—K,(1-x)—K_(I1+x)+K(1-x)

1
= @[x5 — 10x* — 15x] (4.3)

1

1
| msna=| Ko-ya-Kk. G4 44
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1
| KO+ d =2k -k (29 @)
-1

1
| K-narya-ga G#49 4.

Since the above lemma is shown through direct calculations, we omit its
proof.

LemmA 4.2 (Case II). For any bounded continuous function f(x)
(=1 < x < 1) satisfying

1
|| rty as o,

the boundary value problem

u® = f(x) (-l<x<1)

has a unique classical solution u(x) expressed as

ww=j46uvaww (-1<x<1) (@7)

where G(x,y) = G(o,p;x,y) are Green functions which are constructed by the
following formula:

G(x, ) = Go(x, ) =¥ (x)p(y) — ¥ (»)o(x) +gp(x)p(y) (-1 <x,y<1) (4.8)

where

wmzj Golx, p(y) dy (1 <x<1) (49)
1 1 1
gzj j ﬂﬂ%@JW@ﬁMh=J P(X)W(x) dx
~1

1
=j V(o) dy. (4.10)
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o(x) = (o, f;x) is the normalized eigenfunction of EVP(o,f) in (1.5) corre-
sponding to the eigen value A = 0. The concrete formulae of G(x,y) are given by
(1.16)~(1.18).

PRrOOF OF LEMMA 4.2. Tt is easy to show jll @(x)G(x, y) dx = 0 for any fixed

y (-1 <y <1). Hence, jll ¢(x)u(x) dx = 0 holds. From Theorem 3.1, (4.7) is a
unique solution to BVP(«, f). [

Let us calculate the concrete forms of Green function.

ProOOF OF THEOREM 1.1(2) (1.16)~(1.18). It is enough to find concrete forms
of Y(x) and ¢, which are obtained by substituting (3.6) into (4.9) and (4.10).
(o, ) =(0,2,2,3) Using (4.2), (4.5) and (4.6), we have

1
Y(x) = J,l Go(x, y)p(y) dy = %\/%[Kz(l +x) = Ko(1 —x) +2K (1 — x)

| ]

3 134 4+ 155 — 50x + 30x2 — 9 — 101],
K | K

360 §[
2K —K,| 0

K, ‘Ko
K(1+x)| 0

K ‘ K> (1 —x)

+
2K —K,| 0

! 3 » 22
g= 711p(x)¢(x) dx:g 2K 3 — K 4+ K, = 105"

(o, ) =(1,3,1,3) Using (4.1) and (4.4), we have

1
b0 = | Gox. o) dy

+K21{

: 1
o= W a =3

:2\1/5 [K_l(l +x)+ K1 (1 —x)

K2 ‘ K1(1 —x)
K| 0

Ko| O

(o, ) = (1,3,2,3) Using (4.1) and (4.4), we have
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1
Y(x) = L Go(x, y)p(y) dy = —= [Kl(l +x) + K1 (1 — x)

K K Ky | K(1—x
K(l+x| o] |kl o
1 4 2

=——[x" — 6x~ — 8x — 27],
24\/5[ ]

! 1 LK | K 6

9= | V@) d=3|K2+K; =-3

-1 K() 0 5

In the above three cases, inserting the above y(x) and ¢ into (4.8), we obtain
(1.16)~(1.18). [ |

LemmA 4.3 (Case III). For any bounded continuous function f(x)
(—1 < x < 1) satisfying

1
| s a=o =0,
the boundary value problem

u® = £(x) (-1<x<1)
(=) =ulf)(1)=0 (i=0,1)

1
J71 u(x)p,(x) dx =0 (i=0,1)

has a unique classical solution u(x) expressed as

1
u(x) = Ll Gx,»)f(»)dy (—l<x<1) (4.11)

where G(x,y) = G(a,f;x,y) is Green function which can be constructed by the
following formula:

1
G(x,y) = Go(x, ) Z ¥i(»)ei(x)]

i=0

+ > 9 (e (y) (—1<x,y<1) (4.12)
i,j=0
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where

1
0 = | Gl e v (=01 -1 <x <) (@.13)

1

1 1
gi,:j j 21()Go(x, 7)0y(») dydxzj ()W (x) dx
—1J-1 1

1
= | e dr =0, (4.14)

p;(x) is the normalized eigenfunction of EVP(a,f) in (1.6) corresponding to the
eigen value 2 =0. The concrete formula of G(x,y) is given by (1.19).

ProOF OF LEMMA 4.3. It is easy to show ﬁl 9;(x)G(x, y) dx =0 for any
fixed y (=1 <y <1). Hence, jil ¢;(x)u(x) dx =0 holds. From Theorem 3.1,
(4.11) is a unique solution to BVP(2,3,2,3). [

Let us calculate concrete forms of Green function.

PrROOF OF THEOREM 1.1(2) (1.19). Substituting (3.12) into (4.13) and (4.14),
we have

1 4 2 1 \/g 5 3
= 1 =— /2 —10x7 — 1
lﬁO(X) 24\/§[X + 6x” + ]a lﬁl(X) 120 Z[X Ox SX],
2 =0 6
900—157 gor =g =Y, gn= 35"
Inserting the above y,(x) and g; into (4.12), we obtain (1.19). [

THEOREM 4.1. Green functions G(x,y) = G(a,f;x,y) satisfy the following
properties:
(1) 0¢G(x, y)

0 (2, )

o,f) =(0,1,0,1),(0,1,0,2),(0,1,1,3),
(0,1,2,3),(0,2,0,2),(0,2,1,3)
—p(o, B x) (o0, B ») (o, 8) =(0,2,2,3),(1,3,1,3),(1,3,2,3)
—po(X)po(¥) — o1 (X)p1(y) (o, 8) =1(2,3,2,3)
(—l<x,y<l, x#y)
() 0Gx, M)y = PG Moy =0 (=0,1, -1 < y<1)

x=
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B) 216 yercg = 0G0 = §
@) 260Dy = LGy 0 = { e
:(0727273 7( 737173)7(1,3,2,3)

1
O | plnpinGn ) dx =0 (np

0

1
0
1

1

| peenas=0 (=01, @p=@323) (1<y<i),
-1

We give concrete forms of i-th derivative (i =0, 1,

PrOOF OF THEOREM 4.1.
2,3,4) of Green functions in Appendix, from which (1), (2), (3) are derived.
(4) follows from (3). (5) is given by (4.8) and (4.12). Thus we have Theorem
|

4.1.

ProoF oF THEOREM 1.1(1)
Theorem 3.1, Lemma 4.2 and Lemma 4.3. Differentiating u(x)(—1 < x < 1) in
|

The uniqueness of the solution was shown by
(1.9) i (0 <i<4) times and using Theorem 4.1 (1), (2), (3) and (5), we can show

that the existence of the solution.

5. Reproducing Kernel
In this section, it is shown that Green function G(x,y) is a reproducing
kernel for a set of Hilbert space H and its inner product (-,-);, which is
introduced in section 2.
THEOREM 5.1. (1) For any u(x) € H, we have the reproducing relation
: 2
u(y) = (u(x), G(x,¥) —J lu"(X)ﬁxG(?@ yydx (-1<y<1). (51)
This means that Green function G(x,y) is a reproducing kernel for {H,(-,-)y}
. 2
@ 6y = | 6P (-1<y<1) (52)
For functions u = u(x) € H and v = v(x) = G(x, y)

PrOOF OF THEOREM 5.1.
with y arbitrarily fixed in —1 < y <1, integrating the identity
o uv”’]' + uv(4)

u//v// — [T/l v



272 Kazuo TAKEMURA, et al.

with respect to x on intervals —1 < x < y and y < x <1, we have

Jl u”(x)v" (x) dx
-1

x=y—0 x=1

= [t/ (x)0"(x) — u(X)U”’(X)]{ +

1
} + J u(x)v® (x) dx
-1

x=-—1 x=y+0

=u'(1)o"(1) = u(1)p" (1) — ' (=1)o" (=1) + u(=1)o"(~1)
+u' (D" (y = 0) =" (y + 0)] —u(y)["(y = 0) = 0" (y + 0)]

I
+ J u(x)o (x) dx = u(y).
-1

In the last equality, we have employed Theorem 4.1. This proves (1). (2) fol-
lows from (1) by putting u(x) = G(x,y) in (5.1). We have proved Theorem
5.1 |

6. Sobolev Inequality

In this section, we give a proof of Theorem 2.1(1).

Proor oF THEOREM 2.1(1). Applying Schwarz inequality to (5.1) and using
(5.2), we have
1 1 1
WP < [ 1860 x| @ dx= Gl | (ol ax
~1 -1 -1

Noting that C(a,f) = lmla)i G(y,y) = G(»9, y0), we have Sobolev inequality
<

2 1
(sup |u<y>|> < )| (ol ax (61)
[y=<1 -1
This inequality shows that (-,-), is positive definite. It should be noted that it
requires Schwarz inequality but does not require “positive definiteness” of the
inner product to prove (6.1).

In the second place, we apply this inequality to u(x) = G(x, yy) € H and
have

1

2
(sup GO, y0)|> < Cp) | 18260s o) dx = (Clx ).

[y[<1
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Combining this and trivial inequality

2
(C(o, ) = (G(y0, ))* < (shp] |G(y, yo)l) :
we have

2 1
(C(2,8))* < (Sup 1G(y, yo)> < C(2,p) L 103G (x, yo)|* dx = (C(a, §)*.

[yl<1

Hence we obtain

2
1

(mllpl G(y, yo)l) = C(O@b’)J 102G po)* dx (6.2)
IE -

which completes the proof of Theorem 2.1(1). |

7. The Best Constant of Sobolev Inequality

In this section, we calculate the best constant C(x,f) in Theorem 2.1(2),
which is given by

C(a, f) = max |G(a, B; y, )| = max G(a,f; y, y).
[yl<1 lyl<1

It should be noted that from (5.2) diagonal values G(«,f; y,y) (-1 <y <1) are
non-negative.

PrROOF OF THEOREM 2.1(2).

. 1
(1) (daﬁ) = (Oa 1a0a 1) Since G(yv y) = ﬁ(l - y2)3> we have C(07 1707 1) =
1

2) (a,8) =1(0,1,0,2): Since

1
G(y,y) = %[—y(’ +6y° +9p* — 129° — 15y% 4+ 6y + 7]

1

= %(7 — (1= )1+’

J 1 >0 (1< y<y)
5 00n ) =-na +9)207 =6+ D=0 (y= )
<0 (yo<y<l),
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where yo =3 —2v/2, we have

C(0,1,0,2) = G(yo, yo) == (17 = 12V/2).

W | oo

(3) (& p) =1(0,1,1,3): Since G(y,y) =
have

24[ 3yt — 4y 4 6p2 + 12y 4+ 5], we

>0 (-l<y<l)

and therefore C(0,1,1,3) =G(1,1) =
(4) (o, 8) = (0,1,2,3): Since G( ):%( 1+y)°, we have C(0,1,2,3)=

G(1,1) =8,

(5) (2,f) = (0,2,0,2): Since G(y,y) =i(1—p?)? we have C(0,2,0,2) =
G(0,0) = 1.

(6) (a,8) =(0,2,1,3): Since G(y,y) =%[—y*+3y+2], we have

W\l\)

G, =Gy, y)=(1-»’Q+» =20 (-1<y<]l)

and therefore C€(0,2,1,3) = G(1,1) =%.
(7) (o, 8) =1(0,2,2,3): Since G(y,y) =
—411y% — 318y + 163] we have

i 21y° — 126y° + 525y + 700°

G(11) = Gy, y) = 3355 (1= »)[= 21y° — 147y* + 378y + 1078y% + 667y + 349]

_ 1 5 4 2
= 3360(1 ») [21(1 y)+147(1 — y*) + 378y (1 + y)
667\’ 61911
16
and therefore C(0,2,2,3) = G(1,1) = 105"

&) (o, ) = (1,3,1,3): Since G(y,y) :91—0[16 —15(1 — y*)?], we have

8

C(1,3,1,3) = G(-1,-1) = G(1,1) =15



The best constant of the corresponding Sobolev inequality 275

. 1
(9) () =(1,3,2,3): Since G(y,y) = 15[~ + 60" +90p* = 20y + 3],
we have

29 159

1 2
G(L1) =Gy y) =5;(1-») lyz(l -+ 10()/—5—%) + 20

and therefore C(1,3,2,3) = G(1,1) :%.
(10) (o, ) =(2,3,2,3): Since G(y,y) = m[—21);6 +175y* — 1112 +21],

we have

1
(1 —yH)[d3+133y° +21y*(1 —yH)] =0 (-1<y<1)

G(lal) - G(J}’y) :m

8

and therefore C(2,3,2,3) = G(—1,—1) = G(1,1) = —. This completes the proof
105

of Theorem 2.1(2). n
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Appendix

We have list G(x, y) and its i-th derivatives (1 < i < 4), which are used in the
proof of Theorem 4.1. We remark —1 < x,y <1 and x # y.
(1) G(x,y) =G(0,1,0,1;x, p)
1 1
G(x,y) =5 b= o' + g (=207 4306y + %) = 3x%)? = 3% 4 57)
+ 3xy + 1]

1 1
0xG(x,y) = 7 sen(x = y)lx = y* + g [=x%p? 4+ 32y 4 p7 = 207 = 2x 4 5]

| |
03G(x,y) =5 |x =yl + g [0 + 3y — 2 — 1]

1 1
03G(x,y) =5 sgn(x = y) + 5[ + 3]

4G(x,y) = 0.
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(2) G(x,y) = G(0,1,0,2; x, )
G(x,y) = 11—2 o=’ + % (=% + 3(x%p? + 22p%) + 9(x%y + xp?) — 9x%y?
=303+ %) =32y + xp?) = 15(x% + p?) + 15xy + 3(x + ») + 7]
0:G(x, ) = 5 senlx = ¥ — 3 35 [ + 3670+ 27 4 9xy
+3p3 — 6xp? — 3x% — 2xy — > — 10x 4 5y + 1]
2G(x, y) :%|x— V| —F1i6[—xy3 +3xp2 4+ 33+ 9xp —3p? —3x — y — 5]

036(x, ) = 5 senlx — ) + 1[0 + 37 + 9y~ 3]
4G(x,y) = 0.
(3) G(x,») = G(0,1,1,3;x, y)
G(x,y) = %|x —yP +% [=3x%p? = 2(x + %) = 3(x? + »?) + 12xp
+6(x+ )+ 5]

1 1
0.Glx, y) =5 senlx = p)lx = 3P+ g [-002 = — x4 2y 4 1]

1 1
03G(x,y) =5l =yl = g P + 20+ 1]
1
226(x.) = 5 lsen(x— y) - 1

éiG(x, y)=0.
4) G(x,y) =G(0,1,2,3;x, »)
1
G(x,y) = o [x =y = (3 4+ »3) + 3%y + xp?) + 12xp + 6(x + y) + 4]
0xG(x, y) = £ [sgn(x — p)x — y|* = x> + 2xp + y? + 4y + 2]

0;G(x, y) == []x — y| —x+ )]

— N = -

03G(x, y) = 5lsen(x = y) — 1]

G(x,y) = 0.
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(5) G(x,y) =G(0,2,0,2;x, p)

1
G(x,y) = E[|x— y|3 +x3y+x° — 3(x2 + yz) +2xy + 2]

1

7 [3sgn(x— y)|x— y|2 +3x%y 4 y* — 6x + 2]

0<G(x,y) =

—_—

0;G(x, ) == [lx— y|+xy— 1]

|

) 1
0:G(x, y) = 5 [sgn(x = ») + ]
GiG(x, »)=0.
(6) G(x,y) =G(0,2,1,3;x, )
1
G(x,y) = 75 [0 =37 = (o +5%) = 3(%p + %) = 6(x% + %) + 123
F12(x + y) + 16]

0xG(x, y) =~ [sgn(x — y)|x — y> = x* = 2xy — p* —dx + 4y + 4]

G(x,y) =[x — y| —x—y 2]

N Y [ Ny

03G(x,y) = 5 lsen(x = y) — 1]
6;‘;G(x, y) =0.

(7) G(x,y) = G(0,2,2,3;x, y)

1 1
G(x,y) = E|x - y|3 +—[—21(x5y+xy5) — 21()65 + ys) — 105(x4y+xy4)

6720

—105(x* + p*) 4+ 630(x*y + x®) + 70(x> + »3) + 630(x*y + x3?)

—1050(x? + y?) 4 1278xy — 318(x + y) + 326]

1 1
0:G(x,y) =~ sgn(x — y)|x — y|* + 2240 [—35x%y — 7p° — 35x* — 140x3y

4
— 35p* — 140x° + 630x%y + 210y° + 70x% 4 420xy + 210y>

— 700x + 426y — 106]

277
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1 1

2G(x,y) = §|x—y|+16[ ¥y —x¥ = 3x%y — 3% + 9xy + x + 3y — 5]
1 1

3G(x,y) = Egn(x—y) 16[ 3x%y — 3x% — 6xy — 6x+ 9y + 1]

0G5, 1) = —2 (e D+ 1) = ~p(x)p().
8) Glx.») = G(1.3,1,3:x.y)
3

1 1 1
G(x,y):ﬁ|x—y —@[x +y 4—6)(}/24—4(362 ) 24xy}+%

1 1
0:G(x, y) =7 sgn(x — y)lx — y* = T 4307+ 2x - 6]

4
2G(x, y) = |x— V| ——[3x +3y2 +2]
236(x, ) = 5 lsen(x— ) ~ ]
21G(x, ) = 3 = ~p(x)p()

48xy — 4 -
+ 48xy (x+y)]+40

1 1
0:G(x,y) =~ sgn(x — y)|x — y|? +1 X3 4+ 6xy 437 = 3x + 12y — 1]

4 in

1 1
0:G(x,y) =§|X— by +Z[—X2 +2y —1]

0,G(x,y) = % [sgn(x — y) — x]

(10) G(x,y) = G(2,3,2,3;x,y)

1 1
G(x,y) = E|x — y|3 —@[21()6 V4 Xy ) + 35(x4 + y4) — 210(x3y+xy3)

1
+210(x* + y?) — 198xy] +20
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1 1
0xG(x,y) = 1 sgn(x — y)|x — y|2 — ——[105x*y 4 21y° + 140x* — 630x%y

1680
— 210p* + 420x — 198y]

1 1
3G(x,y) =5l = ¥ = g Wy + 2 = By + 1]

2

1 1
03G(x,y) =5 sgn(x — y) — 7 [3x%y + 2x — 3y]

2 4

266, 3) = — 3~ 357 = (D)) — 01 (1 (7).

(3]

[4]

[5]

[6]

[7]

(10]

(1]
(12]

(13]

< =

> =
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