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Abstract. In the present paper, we give conditions to have only
finitely many orbits for prehomogeneous vector spaces of D4-type.
This paper completes the classification of finite prehomogeneous
vector spaces of type (G X SL,,p ® A) with n>2. We consider
everything over the complex number field C.

Introduction

Let p: G — GL(V) be a rational representation of a connected linear al-
gebraic group G on a finite-dimensional vector space V. If V' has a Zariski-dense
G-orbit, the triplet (G, p, V) is called a prehomogeneous vector space (abbrev. PV).
When V' is decomposed into a finite union of G-orbits, it must be a PV. Such a
triplet is called a finite prehomogeneous vector space (abbrev. FP). When there is
no confusion, we sometimes denote it by (G,p) instead of (G,p, V).

When G is reductive, all FPs have been completely classified under the
condition that each irreducible component has an independent scalar multipli-
cation ([KKY]). However if we restrict scalar multiplications, the classification
becomes complicated and it has been done only some cases ([NN], [NOT],
[KKMOT)).

Let G; be a general linear algebraic group GL(m;) or a special linear al-
gebraic group SL(m;) (i=1,...,4). Then the group G = G| X Gy X G3 X G4
acts on V = M(ma,m;) @ M(ma,my) @ M(mg,m3) as p(g)v = (gavigy', gavag; ',
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g4v3g3‘]) for g = (g1,92,93,94) € G and v = (v, v2,v3) € V. We call it a triplet of
Dy-type under scalar restriction and denote it by

Gy

(o)
I

\GO3

In this paper, we determine the conditions for a triplet of D4-type under
scalar restriction to be an FP by decomposing into the orbits. This method is
different from that of [NOT]. This result is useful to study the classification of
the FPs of D,-type (r >5), Es, E7 or Eg-type under various scalar restrictions
since they contain the diagram of Dj-type as a subdiagram. Together with
[KKMOT], this paper completes the classification of FPs of type (G x SL(n),
p® A1) (n>2) where G is a reductive algebraic group.

1. Preliminaries and Notation

For positive integers m and n, we denote by M(m,n) the totality of
m x n matrices. We also use the notation M (m,n)' = {X € M(m,n)|rank X =
min{m,n}} and M(m,n)" = {X € M(m,n) |rank X < min{m,n}}. We denote by
I, the identity matrix of degree n. We write the standard representation of GL(n)
on C" by Aj.

In general, we denote by p* the dual representation of a rational repre-
sentation p. It is known that (H,o, V) is an FP if and only if (H,o*, V") is
an FP for any algebraic group H, not necessarily reductive (see [P]). Hence
(G,pg*) @u-(—Bp;*)) is an FP if and only if (G,p; ®---® p,;) is an FP where
p*) means p or its dual p*. Also if G; and G, are reductive, then we have
(Gy x Gy, ") @ p{)) = (G) x Ga,p, ® p,). Using these facts, we do not have to
consider the dual representation as far as we deal with Dy4-type FPs.

Any subgroup H; x H, of GL(m) x GL(n) acts on M(n,m) by A; ® A;.
In the following, to simplify the notation, we will express this representation
(Hy x Hy, A1 ® A1, M(m,n)) by the diagram

Since any parabolic subgroup P of GL(m) is conjugate to a standard
parabolic subgroup, we may assume that P is a standard parabolic subgroup
P(er,...,e:) (e1 +---+ e =m) defined as follows:
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Py Pp . Py
Pler,...,e) = 0 Px . - | e GL(m) !/E. .(ehej)
C (1<i,j<m)

0 0 . .

0 0 0 P,

To prove that a triplet is a non FP, the following lemma is fundamental.

Lemma 1.1 ([K, Proposition 2.4]). If there exists a non-constant absolute
invariant of a triplet (G,p, V), then it is a non PV. In particular, it is a non FP.
. SL(n)  SL(n)
ExamMpLE 1.2. Let F(X)=det X for X € M(n,n). The diagram o o
is a non PV since F(X) is a non-constant absolute invariant.

For the A,-type, the following result is known.

THEOREM 1.3 (NN, Theorem 4.2]). Let d = (di,...,d;) be an r-tuple of

positive integers. Then

G G, G_1 G
o

le) o) e le)

)

where Gy = GL(dy) or SL(d}), is a non FP if and only if there exist some numbers
Uy, .. u (up < -+ <uy) such that

dy, — du, +du3 — dy, +d145 _dué +- Tt (_l)lJrldu/ =0,
G, = SL(d,,) fori=1,....,1

and for j=2,...,1,
dy =y, + -+ (=1)/d, <min{d, 11,dy s2,...,dy}.

COROLLARY 1.4. All non FPs of As-type under various scalar restrictions are

given as follows:

with n = my,

with n > m; = m,

with n=my, n=my, n=m| +my or n>m; = my.
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REMARK 1.5. We can also obtain the orbital decomposition of an FP of

A,-type and their isotropy subgroups by [NN]. For our purpose, it is enough to
GL(m1) GL(n) GL(my)
see these results only for Aj-type o o o .
. . GL(n)  GL(m) . .-
First we consider o o . It is well-known that each orbit is represented

by

L, 0
s = o] e mnmy —cr o
with 0 < r; < min{n,m;}. Then the GL(n)-part of the isotropy subgroup at J(r|)
is given by

H, = { [Al i } € GL(n)|4 € GL(r), 4> € GL(n — rl)}.

0 4,
. H, GL(m3) . ..
Next we consider o o . In this case, each orbit is represented by

L, 0 0 O
0 0 0 O

J = M

(r2,13) 0 0 I, 0 € M(n,m,)

0 0 0 O

which is a block matrix of size (ry,r) —r2,r3,n—r —r3) X (ra,r1 — 12,13,
my —r; —r3) with 0 <r, <r; and 0 <r; +r; <min{n,my}. For each orbit, the
Hi-part of the isotropy subgroup is given as

B o x % B; € GL(ry),
0 B, O * B> e GL(}’] — I’z),
H, = GL
2 0 0 B =« |SCMg . GL(r3),
0 0 0 B4 B4 € GL(n —r — 73)

The following is a key lemma to classify the FPs under various scalar

restrictions.

LemMMA 1.6. Let 6: H — GL(m) be a representation of an algebraic group H.

1. If m<mn, then (Hx SL(n),c ® A\, M(m,n)) is an FP if and only if
(H x GL(n),0 ® A1, M(m,n)) is an FP. In this case they have the same
number of orbits.

2. If m > n and the number of orbits of H x SL(n) in M(m,n)" is finite, then
(H x SL(n),0 ® Ay, M(m,n)) is an FP if and only if (H x GL(n),0 ® Ay,
M (m,n)) is an FP. In this case they have the same number of orbits.

Proor. See [KKMOT, Proposition 1.2]. O
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2. The FPs of D4-Type Under Various Scalar Restrictions

In this section, we shall classify FPs of D4-type under various scalar
restrictions. Here we put my = n.

ProposiTiON 2.1.  The diagram

SL(m>)

(o]
SL(n G
é 1) L()(V
WLW;)

e}

is a non FP if and only if n > m; = mj.

SL(my) GL(n)  SL(my)
(] o o

Proor. If n>m; = m,, then is a non FP by 2 of
Corollary 1.4. Therefore our diagram is a non FP.

If my > n or my > n, our representation has the same number of orbits as
that of Dy4-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that n > mj,my and m; # my. It follows from 2 of Lemma 1.6 that
each orbit contained in M(n,m;)" of GLo<n> GLgnl) cannot be decomposed by the
scalar-restricted action of GL(n) x SL(m;). Therefore our representation has the

same number of orbits as that of D4-type with full scalar multiplications. Hence it

is enough to investigate only the orbits of our space related with M (n,m;)" of
GL(n)  SL(mp)
o o .

If n=my # my (resp. n = my # my), the GL(n)-part of the isotropy subgroup
GL(n)  SL(m) GL(n)  SL(m>) . . .
of o——o " (resp. o o ) at a generic point is SL(m;) (resp. SL(m,)).
Since SLgamZ) SLgﬂ') GLgn3> (resp. SLgm SLgm) GLgm)) is an FP by 1 of Corollary

1.4, our representation is an FP.
If n>my,my with m; # my, the GL(n)-part of the isotropy subgroup of

GL(n)  SL(m;) . . .. .
o o at a generic point 1S lSOInOI'pth to

m={[7 LJeoo| et )

GL(m3

SLim) Glb(n> GL{ms) o ) is also an FP. Each

. 3) . . H]
Since o o " is an FP, the diagram o

orbit of this space is similarly represented by J(rp,r3) as in Remark 1.5 ([NN]).
The H,-part of the isotropy subgroup at J(r,r3) contains

H = { ﬁ? ;)J e GL(n)

Bl GPl,BzePz}.

where P1 = P(rz,ml 77’2)“5[4(1/}’11) and P2 :P(r3,nfm1 7?’3).
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By Theorem 1.3,

GL(rz) SL(WI[) SL(I’VI2) GL(}’I*WI[) GL(I‘;)
@] o] @] [e]

is an FP for m; # my. In particular,

Py SL(m3) P
[e] (0] 0]
is an FP, and so that
H, SL(m3)
(] (@)
is an FP. Hence our diagram is an FP. O

ProPoSITION 2.2. The diagram

GL(m;)

SL(my) SL(V °
° “SgLom)
0]

is a non FP if and only if it satisfies at least one of the following conditions:

1. n=my,
2. n=2m; with m; <min{my, ms}.

ProOF. If n=my, it is a non FP by Example 1.2. When n = 2m; with
my < min{my, m3}, take

({I}gl}’ [8 IZID € M(n,m) @ M(n,m).

SL(m SL(n GL(m
The SL(n)-part of the isotropy subgroup of g L cg ) é ) at this point is

given by

Hy = { ﬁ)l /?J € SL(n)|4,, 4 € SL(ml)}.

X
Then H; x GL(m3) acts on [Y}EM(MW%) with X, Y e M(m;,m3) as

SL(my) GL(m3) SL(m)
o [e] @]

, which is a non FP by 2 of Corollary 1.4.
Suppose that the conditions 1 and 2 are not satisfied. If m; > n, our rep-
resentation has the same number of orbits as that of Dy4-type with full scalar



A characterization of FPs of Dy4-type under various scalar restrictions 63

multiplications by 1 of Lemma 1.6. Therefore we may assume, without loss of

generality, n > m; and m, > mjs. It follows from 2 of Lemma 1.6 that each orbit
. . GL(n GL(m

contained in M (n,m;)" of B GLm) cannot be decomposed by the scalar-

restricted action of SL(n) x SL(m;). Therefore our representation has the same

number of orbits as that of Dy-type with full scalar multiplicatsigns. IgLence it is
enough to consider only the orbits related with M(n,m;)" of 3 gm).
. SL(my) SL(n) GL(m3) .
The diagram o o o " is an FP by 1 of Corollary 1.4 and each

orbit in this case is represented by J = (J(my),J(r2,r3)) € M(n,m;) @ M(n,ms)

. . SL(m SL(n GL(mj
as in Remark 1.5. The SL(n)-part of the isotropy subgroup of g St g

H, = { [il ;)2] e SL(n)

at J contains

Bl GPl,BQEPQ}.

where Py = P(rp,my —r2) NSL(my) and Py = P(r3,n —my —r3) NSL(n — my).
By Theorem 1.3,

GL(r2) SL(my) GL(m3) SL(n—my) GL(r3)
o [¢] [¢] o [¢]

is an FP for m; #n—m; or my < my, i.e., 2my #n or my < my. In particular,

P GL(my) P,
[e] [e] (e]
is an FP, and so that
H, GL(m;)
O——oO
is an FP. Hence we obtain our result. |

PropoSITION 2.3. The diagram

SL(m;)
(o)

SL(m S.
E)n) %V
wl‘(l‘ﬂg)
o

is a non FP if and only if it satisfies at least one of the following conditions:

=my,
= nmy,

\

mp = my,

n
n
n=m+my,
n
n=2m; with m < min{my,ms},
n

AR o e

= 2my with my < min{m;,ms}.
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Proor. If n=m;, n=mpy, n=m+m or n>m =m then
SL(my)  SL(n)  SL(m) . . .
) o o is a non FP by 3 of Corollary 1.4. Therefore our diagram is a

non FP. If n =2m; with m; < min{my, m3} or n = 2my with my < min{m;,ms},
then it is a non FP by Proposition 2.2.

Suppose that the conditions 1 to 6 are not satisfied. If m; > n, our repre-
sentation has the same number of orbits as that of D4-type of Proposition 2.2 by
1 of Lemma 1.6. Hence we assume, without loss of generality, n > my > mj,. It
follows from 2 of Lemma 1.6 that each orbit contained in M(n,m;)" of

GL(n)  GL(my)

o o cannot be decomposed by the scalar-restricted action of

SL(n) x SL(my). Therefore our representation has the same number of orbits as
that of Dy4-type of Proposition 2.2. Hence it is enough to investigate the orbits
related with M (n,m;)" of S SEE Then each orbit of °on Y GLém3),
which is an FP if n#m; by 1 of Corollary 1.4, is represented by
J = (J(my),J(r2,13)) € M(n,m;) ® M(n,ms) as in Remark 1.5. The SL(n)-part

of the isotropy subgroup at J contains

H = { [fél /?2] e SL(n)

A1 €P1,A2€P2}.
where Py = P(ry,my —r) NSL(my) and Py = P(r3,n —my —r3) N SL(n — my).
By Theorem 1.3,

GL(rp) SL(my) SL(my) SL(n—my) GL(r3)
] [e] [e] [¢] [¢]

is an FP for n# my, n#my +my, m #mp and (n# 2m; or m; > my when
n=2my). In particular,

P, SL(m;) P>
[e] (@] (0]
1s an FP. Therefore
H SL(my)
(@) (@]
is an FP. Hence we obtain our result. O

For Propositions 2.5 and 2.6, we shall prove the next lemma.

LemMa 24. Let G, be a subgroup of ((GL(1)x SL(m;)) x (GL(1)x
SL(my))) x SL(n) defined by G,={(0,4,5,B,C)|a,pe GL(l),Ae SL(m),
Be SL(my), C e SL(n),a™ = "}, Then (G,(AIAR®I®I+1IRI®
A1 ® A1) ®Ay) is a non FP if and only if n > m = my.
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PrROOF. Assume that n = m; = m,. The SL(n)-part of the isotropy subgroup

of ((GL(1) x SL(my)) x SL(n),(A1 ® A1) ® A1) at I, is SL(m). Therefore our
SLgnl) SLgm which is a non FP by Example 1.2.

representation is reduced to
Assume that n > m; =m,. The SL(n)-part of the isotropy subgroup of

((GL(1) x SL(my)) x SL(n), (A1 ® A1) ® A;) at [1’”'} e M(n,m) is

0
1
HI:H“ G }eSL(n
0 VC2

X
Then (GL(1) x SL(m,)) x H; acts on [0 ] € M(n,my) with X € M(m;,my) as

SL(m SL(m . .
5)1) (01) which is a non FP by Example 1.2.

)

C1 € SL(ml), C2 € SL(H —ml),
a,y € GL(1), 07 - ym=m =] ’

If my > n or my > n, our representation has the same number of orbits as
that of an As-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that n > m, n > my and m; # mj,. It follows from 2 of Lemma 1.6
that each orbit contained in M (n,m;)" of G4n G cannot be decomposed by
the scalar-restricted action of (GL(1) x SL(m;)) x SL(n). Therefore our repre-

sentation has the same number of orbits as that of As;-type with full scalar

multiplications. Hence it is enough to investigate only the orbits related with
M(n,my)" of ((GL(1) x SL(m)) x SL(n), (A1 @ A1) ® Ay).
If n=m #my, the SL(n)-part of the isotropy subgroup of

((GL(1) x SL(m;)) x SL(n), (A1 ® A1) ® A;) at a generic point is SL(m,). Since
SL(mp) SL(my) . . .
) o 1s an FP, our representation is an FP.

We may assume that n > m; > my, without loss of generality. The SL(n)-part
of the isotropy subgroup of ((GL(1) x SL(m;)) x SL(n), (A1 ® A1) ® A;) at a
generic point is given by

-1
HZH“ G *}ESL(
0 ng

. w
By the action of (GL(1) x SL(m;)) x H,, each element { 7 ] € M(n,my)
with W e M(m\,my), Z€ M(n—mj,my) is transformed to

n)

C] € SL(W!]), Cz € SL(I’I — I’)’ll)
a,y€ GL(1),a7™ .y=m =1 |’

0o w
T:[Z’ O]EM(n,mz)

with W' e M(my,my —s), Z' € M(n—my,s) and 0 < s < min{n — my,m}.
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The isotropy subgroup of H, x SL(m,) at T contains

{ {“IOCI ygj e SL(n)

01 B 0
' H 0 5232} & SL{ms)

C1 eSL(ml),CzeSL(n—ml)
o,y € GL(1),07™ -y =]

B] € SL(S),Bz € SL(WIZ — S),
81,0, € GL(1),5] -8 = 1

Hence it is enough to show

0o w 5 «'C; 0 0 W'[é&B1 0
(g
zZ' 0 0 G ]LZ 0 0  6:By
is an FP with o = " o7 .p""™ =1 and 0} -0, " = 1. If s =0 or my, it is
clearly an FP. If 0 < s < my,
M(mi,my —5)3 W' = (a7 C1)W'(fi6,By)

is an FP since m; > my —s. Then we can put « = f =y =1, and J; runs over
GL(1). Therefore

M(n — ml,s) =) Z/ — (yCZ)Z/(ﬂélBl)
is an FP. Hence we have our results. O

ProposITION 2.5. The diagram
SL(my)

o
SL(m)  GL(n) -~
o ONL(?"})

o

is a non FP if and only if it satisfies at least one of the following conditions:

nz=m =my,

S
v
3
I
3

nz=mp=my+ms,

n=m;=ms+mp,

AR ol e

n=mi=m;+mp.

Proor. If n>my =my, n>my =ms or n > m3 = my, then it is a non FP
by Proposition 2.1. Assume n > m; = my + m3. The GL(n)-part of the isotropy
GL(n)  SL(my) |:Im1

o o~ at 0

subgroup of } € M(n,m;) contains
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SL(ml) *

. GL(n_ml)] (< GL(n)).

m m X Y
Then Stgr) B St acts on ({ 0 }, [ 0 ]) € M(n,my) @ M(n,m3) with
XEM(W!],WZz), YEM(W[],W!},) as

SL(m>) SL(my) SL(m3)
o o o

which is a non FP by 3 of Corollary 1.4. When n > my; =m3 +m; or n > m3 =
my + my, we can see similarly that our representation is a non FP.

Assume that the conditions 1 to 6 are not satisfied. If n < my, n <mp or
n < ms, our representation has the same number of orbits as that of Dys-type
of Proposition 2.1 by 1 of Lemma 1.6. Hence we may assume, without loss of
generality, n > m; > my > mj.

It follows from 2 of Lemma 1.6 that each orbit contained in M(n,m;)" of

GL(n)  GL(my) . .
o ) cannot be decomposed by the scalar-restricted action of

GL(n) x SL(m;). Therefore our representation has the same number of orbits as

that of Dy-type of Proposi(t;ion 2.S1L. Hence it is enough to study only the orbits
related with M (n,m;)" of a2 SO Then the orbit M(n,my)" is J(m;) as in

IG{Lemar1§L1.5 and we denote by H; the GL(n)-part of the isotropy subgroup of
S0 SEY at Tmy).

ItGE(()llc;ws from 2 of Lemma 1.6 that each orbit contained in M (n,m,)" of
H m . .
o o cannot be decomposed by the scalar-restricted action of H; x SL(m).

Therefore our representation has the same number of orbits as that of D4-type of
Proposition 2.1. Hence it is enough to see only each orbit related with M (n,m;)’

SL
of g gnZ), which are represented by J(rp,r3) with r, + r3 = my as in Remark
SL(m
1.5. The Hj-part of the isotropy subgroup of gl (o & at J(r,r3) is isomorphic
to
H3 *
Hy, = H
=10 6uo) =)

where we put t =n—m; —my +r, and

Al € SL(ml — rg),

O(]A] 0 0 A2 € SL(rz),A3 € SL(rg.),
H; = * A * EGL(I’Z—I) o, 0,03 € GL(l),
0 0 o3 A3 OC;”l_r2 . 0652 =1,

n 3o__
oy - oy’ =1
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First we assume that ¢ (=n—m; —my+r) #0. By the action of

w .
H, x SL(m3), any element [ 7 } € M(n,m3) with We M(n—t,ms), Ze M(t,m3)
is transformed to

0o w
le[z, O}GM(n,mg

with W'e M(n—t,m3 —ry), Z'€ M(t,r4) and 0 <rs <min{z,m3}. Then the
isotropy subgroup of H, x SL(m3) at T contains

|:H3 0 :| % {|:ﬁ131 0 :| B ESL(V4),32€SL(WI3 —}’4),}
0 GL(¢) 0 BBy ||B1.fre GL(L), Bt - p3 " =1
(C Hz X SL(WB))

Hence it is enough to show

o w h 07[0 W[pB O
—
zZ' 0 0 As]lz" o || 0 BB
is an FP with 44 € GL(t), h e Hy and f}*- 5" " =1, namely

1. M(t,r4) 32" — A4Z'(f,B)) is an FP, and
2. M(n—t,my —rq) > W' — hW'(S,B,) is, at the same time, an FP with
14 _ﬂ;nrm — 1

SL(I‘4)

o " is an FP. The diagram

. . GL(1)
1 is clearly an FP since o
SL(mz)

[e]
SL —
(C;nl) GL(nO V
WL(ma—m)

o

is an FP for m; # my by Proposition 2.1, in particular

H; GL(m3—r4)
o o

is an FP since f, runs over GL(1). Hence our representation is an FP.
Next we assume that ¢ (=n—m; —my +r) =0. If r, =my, then r; =0,
i.e., n =mj;. By Theorem 1.3,

SL(m;) SL(my) GL(n) SL(m3)
[¢] o o (¢]

is an FP for m, # my, my # m3, my # m3y and my + ms3 # my. Since H, is iso-
SL SL GL
morphic to the GL(n)-part of the isotropy subgroup of g g el at

In12 . .
0 A, | € M(my,my) @ M(n,m;), in particular
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H, SL(m3)
O——oO

is an FP.
If s =my, then 1, =0, i.e., n = m; +my. Then H, is

SL(WZ]) 0
0 SL(WIQ)

Since

SL(my) SL(m3) SL(m;)
o o o)

is an FP for my # m3, m; # my, mz # my and m; + my # ms,

is an FP.
If r, #0 and r; #0, then H, is isomorphic to

Dy € SL(m; +my — n),
D, e SL(n — my),

aD * * Dy e SL( )
€ n—m

Hy={| 0 pD, 0 eGL(n)Ofﬂ eGL(l)z’
O 0 yDS ) )y b

gmtm—n 'ﬂn_ml — 1’

amlﬁﬂﬂz*}’l . ynfﬂ’lz — 1
We consider the action Hy x SL(ms3) on

X
T2 = X2 € M(l’l,m;,)
X3

with X, € M(my +my —n,m3), Xo € M(n —my,ms3), X3 € M(n—my,m3).
SL .
If X, =X3 =0, then % gm) has the same number of orbits as that of
GL(mi+my—n) SL(m3) . .
o———o  which is an FP.
We may suppose that X, #0 or X3 # 0. By the action Hy x SL(m3), an

element 7, is transformed to the

0 X/
Ts5=|X; 0 |eM(nms)
X; 0
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with X{ e M(my+my —n,m3 —s), X;eM(n—my,s), X;eM(n—m,s) and
s = max{rank X,,rank X3}.
Then the isotropy subgroup of H, x SL(mj3) at T3 contains

D, e SL(m1 —+ my — }’l),

O(D] 0 0 DzGSL(I/l*Wl]),D3 ESL(anQ),
0 ﬁD2 0 EHZ O{,ﬁ,yeGL(l),
0 0 yD3 o mtm—n _ﬁ”*ml — 1’
O(n11+m2—n . yn—mz — 1

0lE, 0
X { [ 0 52E2] € SL(m3)

/

X. 8D, 0
W Y=|2leM2n—m — let Hs = h
e put [XJ € M(2n — m; — my,s), and let Hs {[ 0 VDJ} be the

lower reductive part of Hjy.

Ey € SL(s), E; € SL(m3 — ),
01,00 € GL(1),0{-0;" " =1 |’

Hence it is enough to show

0 Xll OCD] 0 0 XI, 51E1 0
—
Y 0 0 AllY O 0 0k
is an FP with heHs, oMtmn.pgn=m—1|  gmtm-n, yn=m — 1  and

0y -0y" " =1, namely

3. M(my +my —n,ms —s) 3 X{ — (aDy)X[62E, is an FP, and
4. M(2n—my —my,s)2 Y — hY0,E; is, at the same time, an FP with the
conditions oML BT — ] gmtmen L ynmm — 1 and 6y -9y7 0 = 1.

The space 3 is clearly an FP. Since n — m; # n — my, the space 4 is an FP by
Lemma 2.4. Hence our representation is an FP. O

Although M. Nagura, S. Otani and D. Takeda independently obtained the
same result as the following Proposition 2.6 ([NOT, Theorem 4.1]), we will give
our proof here.

ProOPOSITION 2.6. The diagram

SL(ms)
o

SL(m n
(m)  SL()~"
NL(’%)

e}
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is a non FP if and only if it satisfies at least one of the following conditions:

1. n=my,
2. n=my,
3. n=ms,
4. n>m = my,
5. n>m; = ms,
6. n > my = ms,
7. n=my + my,
8. n=my + ms,
9. n=my + mjs,
10. n > my; = my + ms,
11. n>nmy = m; + ms,
12. n > m3 = my + my,
13. n=2m; with m; < min{m,, ms},
14. n=2m, with my, < min{m;, ms},
15. n=2m3 with mzy < min{m;,m},
16. n+my = my + ms with my < min{m,,ms},
17. n+my = my + ms with my < min{m;,ms},
18. n+m3 =my +my with my < min{m;,m,},
19. n=my + my + ms,
20. 2n = my + my + ms with n > max{m;,my,ms}.

Proor. By Propositions 2.3 and 2.5, the conditions 1 to 15 are
sufficient. Assume that n + m3 = m; + my with m3 < min{m;,m,}. In particular,

Iﬂ’ll O
n > max{m,my} and n < m; +m,. Take Q1:<{ 0 },L })eM(n,mQ@
m

SL(m SL(n SL(mj
M (n,my). The SL(n)-part of the isotropy subgroup of g S g at

0, is isomorphic to

Apow Ay e SL(my + )
Hi={|0 4 0|esrm|’Hc2\mrm=i,
0 0 4 Ay e SL(n—my), Az € SL(n — my)
3

X
Then H; x SL(mj3) acts on sz[

0
SL(m3)  SL(m3
()

]eM(n,mg) with X € M(m3,m3) as
o ) which is a non FP by Example 1.2.

If n 4+ my = my + my with m; < min{my, ms3} or n+ my = ms + m; with m, <
min{ms,m;}, we can prove similarly that our representation is a non FP.
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If n=m +my+ms, the SL(n)-part of the isotropy subgroup of
SL(Oml) SLo(n) SL(omz)

at Q; is isomorphic to

B, 0 0
H, = x By 0 |eSL(n)|ByeSL(ms3),Bye SL(my),Bs e SL(m;)
* 0 B3

SL(m SL(m
Then H, x SL(mj3) acts on Q; as 5) ) E) ) which is a non FP by Example

1.2.

If 2n=m; +my+ms with n>max{m,my,ms}, the SL(n)-part of the
. SL(my)  SL(n)  SL(my) .. .
isotropy subgroup of o o o at Q) is isomorphic to H;. Then

H, x SL(m3) acts on

0
Y | € M(n,mg,)
g)

with Y1 € M(n —my,m3), Y€ M(n—my,ms3) as

SL(n—my) SL(m3) SL(n—m;)
[¢] [©] ]

which is a non FP for n —m; +n—m; =ms by 3 of Corollary 1.4.

Suppose that the conditions 1 to 20 are not satisfied. If n <my, n<m;
or n < mjs, our representation has the same number of orbits as that of D4-type
of Proposition 2.3. Hence we may assume, without loss of generality,
n>mp > np > m;.

It follows from 2 of Lemma 1.6 that each orbit contained in M(n,m;)" of

GL GL . .
o o cannot be decomposed by the scalar-restricted action of

SL(n) x SL(m). Therefore our representation has the same number of orbits as
that of Ds-type of Proposition 2.3. Hence it is enough to study only the orbits

related with M(n,m;)’ of S SLgn'). Then the orbit is represented by
J(my) e M(n,m;) as i?L(%emSaLr(llfml.S and we denote by H; the SL(n)-part of the
o "at J(my). It follows from 2 of Lemma 1.6 that
each orbit contained in M(n,m,)" of ‘o GE™) cannot be decomposed by

isotropy subgroup of o

the scalar-restricted action of Hz x SL(mj). Therefore our representation has

the same number of orbits as that of Dj-type of Proposition 2.3. Heglce it is
. . H .

enough to see only each orbit related with M (n,m;)" of o omz, which

are represented by J(rp,r3) with ry +r; =m; as in Remark 1.5.
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We put t=n—m; —my+ry. The Hi-part of the isotropy subgroup of
H; SL(m;)
(]

o at J(r,r3) is isomorphic to
C1 € SL(}’z),
C2 € SL(WI] — VQ),
c C3 € SL(W!Z — VQ),
* * *
“J o0 Cy e SL(1),
02 *
H, = SL .o, 03,04 € GL(1),
4 0 0wl . | (n) oc:ﬂv %) nffl3_,:€4 (1)
oy - oy =1,
0 0 0 OC4C4 uilz .“gnz_,,z _ 1)

my—rz [ g—
Oy oy =1,
ny—ry t
oy oy =1

First we assume that ¢ (=n—m; —my+ry)#0. By the action of

w
Hy x SL(m3), an element [ 7 } € M(n,m3) with We M(n—t,ms), Ze M(t,ms)
is transformed to
0o w
oy e moum)

with W' e M(n—t,ms —ry), Z' € M(t,r4) and 0 < ry < min{t,m3}. Let

C1 € SL(Vz),

Cz € SL(m1 — 7‘2),
C3 € SL(WIQ — rz),
o1, 0,03 € GL(1),
apl oy =1,

ry o M=y
oy’ - oty =1

o Cy * *
K, = 0 o0 Cy 0 (S GL(V! — l)
0 0 OC3C3

be the upper (n—t) x (n— t)-part of Hy. Then the isotropy subgroup of Hj at
T1 contains

hEKl,
r_ my—ry __
h 0 a0y = 1,
€ Hy|o? - 037 =1,
0 mery ot
Oty oy =1,
my—ry ot __
oy oy =1

and the isotropy subgroup of SL(mj3) at T) contains

L—{[ﬂlDl 0 }eSL(nu)

D1 € SL(V4), D2 € SL(WI3 — 7'4), }

Pi,Bye GL(1), By - 3" = 1
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Hence it is enough to show

0o w h 0 0 W'D 0
2 o]l wellz W )

3 : n my—ry __ r my—ry __ my—r; r __ ny—ry t __
is an FP with o - o5 =1, o o3 =1, o coy =1, oy -0y =1 and

4= pyeT =1, namely
1. M(t,r4)3>Z' — (uCs)Z'(f,D1) is an FP, and
2. M(n—t,my —rg) > W' — hW'(p,D,) is, at the same time, an FP with
my—ry my—r nmy—ry

the conditions of o - o) =1, o o =1, o
my—r; r__ ry4 my—rs __
ol coy =1 and B* - f; =1.

| —
coy =1,

If r4 =0, the space 2 has the same number of orbits as that of

SL(m;)

(o]
SL GL(n—
(omo L( - )
N SLms)

[¢]

which is an FP by Proposition 2.5.
If 0 <rgy <min{¢,ms}, the space Z' is transformed to the form

{164] e M(t,ry).

Then a4 and f; independently run over GL(1), and 2 has the same number of
orbits as that of

which is an FP by Proposition 2.1.
If r4 =m3 <t its orbit is represented by

0 ( )
€ M(n,ms).
L, s

Suppose that r4 =t < mj. The space 1 is clearly an FP. Then 8, = o',

By the conditions of L we have Y°7'=ua}. Therefore o) " g~ =1,

ny—ry my—t __ r __ phmz—t
oy B3 =1 and o> = 7", Let

Ly ={[$,Ds) € GL(1) x SL(m3 — 1)}
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be the lower reductive part of L. We consider the action K; x L; on

X
W' = X> EM(I’!—[,WI3—Z)
X3
with X € M(l’z,m3 — l), X, e M(m1 — ro,m3 — l‘), X; e M(m2 — ry,m3 — [).
If X, =X3;=0, then 2 is an FP. We may suppose that X, # 0 or X3 # 0.
The action K; x L; transforms W' to the form

0 X
w'=1X; 0 |eM@m—tm—1)
X{ 0

with X{ e M(r,,m3 —t—s), XjeM(m —rys), X{eM(my—rys) and s=
max{rank X>,rank X3}. The isotropy subgroup of K; x L; at W" contains

C1 € SL(}’z), Cz € SL(m1 — 7’2),

O(]Cl 0 0 C3 GSL(mZ—rz),Oﬁl,OQ,OC3 EGL(l),
Kz = 0 OC2C2 0 € K] OClrz = £n37Z,
0 0 O(3C3 063117)‘2 -ﬁg137t = 1,

chnz—rz .ﬂgn—t — 17
and
E|e SL(S),EZ € SL(Wl3 —1— S)
€ Ll ﬁ27 Y1:02 € GL(I)a

s m3—t—s __ 1

L — [
Y172

By Er 0 ]
0 By nkr

/!
We put Y = {;\;j € M(my +my —2ry,s), and let
C2 € SL(I’m — 7‘2),
C3 € SL(m2 — F‘z),
€ GL(my + my — 2ry)| a2, 03 € GL(1)
O(g’ll*i‘z 'ﬁ?}_[ — 1,
O(;nzfrz 'ﬁ3137t -1

C 0
Ky — [062 P }

0 o3 C3

be the middle reductive part of K,. Hence it is enough to show

0 Xll 4] Cl 0 0 Xll ﬂz . y1E1 0
—
Yy 0 0 M|lY O 0 By y2En

is an FP with A’ e K3, o> =37, " . Bl =1, of* - B" "=1 and

5 yy T =1, namely
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3. M(rp,m3 —t—1s)2X{ — (1C1)X{(f, - p,E>) is an FP, and
4. M(my +my —2ry,8) 2 Y — 'Y (f, -y, E)) is, at the same time, an FP with
the conditions o> =", BT =1, of?7? . BYPTT =1 and
nopt T =1
The space 3 is clearly an FP. Then the space 4 is an FP by Lemma 2.4 since
my — r, # my — ry. Hence our representation is an FP.
Next we assume that ¢ (=n —m; —my + ;) = 0. The isotropy subgroup Hy
is isomorphic to

¢/ 0 0 C{ e SL(n —my),
H,={| % C} =« |eSL(n)|C}eSL(m +my—n),
0 0 C; Cj e SL(n—my),

Then H, contains

SL(n—my) O ,
0 KJ (= H4)

where

C) o«
K4_{[ 0 CJGSL(mZ)

C) e SL(my + my — n),
CjeSL(n—m) '

By Theorem 1.3, we can see the conditions to be an FP of

SL(n—my) SL(m3) SL(my) SL(my+my—n)
o o) o) o .
In particular
SL(n—m;) SL(m3) Ky
o o) [¢)
is an FP. Therefore
Hs SL(m3)
O——0

is an FP, except n —my = m) +my —n, i.e., 2n = m; + 2my.
On the other hand, the isotropy subgroup H, contains

Ks 0

He = [ 0 SL(n—m)

| e

where

C{ e SL(n —my), }

K 0 SLm)
= €
: e " et e SLimy + my — n)
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We can show similarly this case to be an FP, except the case of 2n = 2m; + m,.

Therefore it remains the case of 2n =my + 2my = 2my + my, ie.,

m; = mj.

However m; = m, contradicts the assumption of m; # m,. Hence we obtain our

results.

O

By Propositions 2.1 to 2.3, 2.5 and 2.6, we have the following theorem.

THEOREM 2.7. The diagram

gl Gy /
\G3

where G; = GL(m;) or SL(m;) for i = 1,2,3,4, is a non FP if and only if it satisfies
at least one of the following conditions:

A SN ol

— e = e e e
N

17.

18.

19.
20.

mg =my with Gy = SL(my) and G4 = SL(my),
my = my with Gy = SL(my) and G4 = SL(my),
my = m3 with Gy = SL(m3) and Gy = SL(my),
my > my = my with G; = SL(m;) ﬁ)r i=1,2,
my > my = mz with G; = SL(WZ,)

my > my = ms with G; = SL(m;) for i = 2 3,
my =my +my with G; = SL(m;) for i =1,2 and Gy = SL(my),
mg = my +msz with G; = SL(m;) for i =1,3 and G4 = SL(my),
my = my + msy with G; = SL(m;) for i =2,3 and Gy = SL(my),
my > my =my +ms with G; = SL(m;) for i =1,2,3,

. mg =my =my +ms with G; = SL(m;) for i =1,2,3,

my > m3 =my +my with G; = SL(m;) for i =1,2,3,
my = 2my with my < min{my,m3}, Gy = SL(m;) and G4 =
my = 2my with my < min{m;,ms}, Gy = SL(my) and G4 = SL

WM)
Wl4)

SL(
(

. mg = 2m3 with my < min{m,my}, Gz = SL(m3) and Gy = SL(my),
. mg+m =my+msy with m <min{my,ms} and G; = SL(m;) for

1,2,3,4,

ma 4+ my = my +ms with my < min{my,ms3} and G; = SL(m;) for
1,2,3,4,

my +my =my +my with my <min{m;,m} and G; = SL(m;) for
1,2,3,4,

my = my +my +ms with G; = SL(m;) for i =1,2,3,4,

2mg = my +my +ms with mg > max{m,my,m3} and G; = SL(m;) for

i=1,2,3,4.
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