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Abstract. In the present paper, we give conditions to have only

finitely many orbits for prehomogeneous vector spaces of D4-type.

This paper completes the classification of finite prehomogeneous

vector spaces of type ðG � SLn; rnL1Þ with nb 2. We consider

everything over the complex number field C.

Introduction

Let r : G ! GLðVÞ be a rational representation of a connected linear al-

gebraic group G on a finite-dimensional vector space V . If V has a Zariski-dense

G-orbit, the triplet ðG; r;VÞ is called a prehomogeneous vector space (abbrev. PV).

When V is decomposed into a finite union of G-orbits, it must be a PV. Such a

triplet is called a finite prehomogeneous vector space (abbrev. FP). When there is

no confusion, we sometimes denote it by ðG; rÞ instead of ðG; r;VÞ.
When G is reductive, all FPs have been completely classified under the

condition that each irreducible component has an independent scalar multipli-

cation ([KKY]). However if we restrict scalar multiplications, the classification

becomes complicated and it has been done only some cases ([NN], [NOT],

[KKMOT]).

Let Gi be a general linear algebraic group GLðmiÞ or a special linear al-

gebraic group SLðmiÞ ði ¼ 1; . . . ; 4Þ. Then the group G ¼ G1 � G2 � G3 � G4

acts on V ¼ Mðm4;m1ÞlMðm4;m2ÞlMðm4;m3Þ as rðgÞv ¼ ðg4v1g�1
1 ; g4v2g

�1
2 ;
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g4v3g
�1
3 Þ for g ¼ ðg1; g2; g3; g4Þ A G and v ¼ ðv1; v2; v3Þ A V . We call it a triplet of

D4-type under scalar restriction and denote it by

� �
�

�

G1 G4

G2

G3

In this paper, we determine the conditions for a triplet of D4-type under

scalar restriction to be an FP by decomposing into the orbits. This method is

di¤erent from that of [NOT]. This result is useful to study the classification of

the FPs of Dr-type ðrb 5Þ, E6, E7 or E8-type under various scalar restrictions

since they contain the diagram of D4-type as a subdiagram. Together with

[KKMOT], this paper completes the classification of FPs of type ðG � SLðnÞ;
rnL1Þ ðnb 2Þ where G is a reductive algebraic group.

1. Preliminaries and Notation

For positive integers m and n, we denote by Mðm; nÞ the totality of

m� n matrices. We also use the notation Mðm; nÞ0 ¼ fX A Mðm; nÞ j rank X ¼
minfm; ngg and Mðm; nÞ00 ¼ fX A Mðm; nÞ j rank X < minfm; ngg. We denote by

In the identity matrix of degree n. We write the standard representation of GLðnÞ
on Cn by L1.

In general, we denote by r� the dual representation of a rational repre-

sentation r. It is known that ðH; s;VÞ is an FP if and only if ðH; s�;V �Þ is

an FP for any algebraic group H, not necessarily reductive (see [P]). Hence

ðG; r
ð�Þ
1 l � � �l r

ð�Þ
l Þ is an FP if and only if ðG; r1 l � � �l rlÞ is an FP where

rð�Þ means r or its dual r�. Also if G1 and G2 are reductive, then we have

ðG1 � G2; r
ð�Þ
1 n r

ð�Þ
2 ÞG ðG1 � G2; r1 n r2Þ. Using these facts, we do not have to

consider the dual representation as far as we deal with D4-type FPs.

Any subgroup H1 �H2 of GLðmÞ � GLðnÞ acts on Mðn;mÞ by L1 nL1.

In the following, to simplify the notation, we will express this representation

ðH1 �H2;L1 nL1;Mðm; nÞÞ by the diagram

�H1 �H2

Since any parabolic subgroup P of GLðmÞ is conjugate to a standard

parabolic subgroup, we may assume that P is a standard parabolic subgroup

Pðe1; . . . ; erÞ ðe1 þ � � � þ er ¼ mÞ defined as follows:
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Pðe1; . . . ; erÞ ¼

P11 P12
. .
.

P1r

0 P22
. .
. . .

.

0 0 . .
. . .

.

0 0 0 Prr

2
6666664

3
7777775
A GLðmÞ

������������
Pij A Mðei; ejÞ
ð1a i; jamÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

To prove that a triplet is a non FP, the following lemma is fundamental.

Lemma 1.1 ([K, Proposition 2.4]). If there exists a non-constant absolute

invariant of a triplet ðG; r;VÞ, then it is a non PV. In particular, it is a non FP.

Example 1.2. Let FðXÞ ¼ det X for X A Mðn; nÞ. The diagram �
SLðnÞ

�
SLðnÞ

is a non PV since F ðXÞ is a non-constant absolute invariant.

For the Ar-type, the following result is known.

Theorem 1.3 ([NN, Theorem 4.2]). Let d ¼ ðd1; . . . ; drÞ be an r-tuple of

positive integers. Then

�G1 �G2 � � � �Gr�1 �Gr
;

where Gk ¼ GLðdkÞ or SLðdkÞ, is a non FP if and only if there exist some numbers

u1; u2; . . . ; ul ðu1 < � � � < ulÞ such that

du1 � du2 þ du3 � du4 þ du5 � du6 þ � � � þ ð�1Þ lþ1
dul ¼ 0;

Gui ¼ SLðduiÞ for i ¼ 1; . . . ; l;

and for j ¼ 2; . . . ; l,

duj�1
� duj�2

þ � � � þ ð�1Þ jdul aminfduj�1þ1; duj�1þ2; . . . ; dujg:

Corollary 1.4. All non FPs of A3-type under various scalar restrictions are

given as follows:

1. �
SLðm1Þ �

SLðnÞ
�

GLðm2Þ
with n ¼ m1,

2. �
SLðm1Þ �

GLðnÞ
�

SLðm2Þ
with nbm1 ¼ m2,

3. �
SLðm1Þ �

SLðnÞ
�

SLðm2Þ
with n ¼ m1, n ¼ m2, n ¼ m1 þm2 or n > m1 ¼ m2.
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Remark 1.5. We can also obtain the orbital decomposition of an FP of

Ar-type and their isotropy subgroups by [NN]. For our purpose, it is enough to

see these results only for A3-type �
GLðm1Þ �

GLðnÞ
�

GLðm2Þ
.

First we consider �
GLðnÞ

�
GLðm1Þ

. It is well-known that each orbit is represented

by

Jðr1Þ ¼
Ir1 0

0 0

� �
A Mðn;m1Þ ¼ Cn nCm1

with 0a r1 aminfn;m1g. Then the GLðnÞ-part of the isotropy subgroup at Jðr1Þ
is given by

H1 ¼
A1 �
0 A2

�
A GLðnÞ

� ����A1 A GLðr1Þ;A2 A GLðn� r1Þ
� �

:

Next we consider �H1 �
GLðm2Þ

. In this case, each orbit is represented by

Jðr2; r3Þ ¼

Ir2 0 0 0

0 0 0 0

0 0 Ir3 0

0 0 0 0

2
6664

3
7775A Mðn;m2Þ

which is a block matrix of size ðr2; r1 � r2; r3; n� r1 � r3Þ � ðr2; r1 � r2; r3;

m2 � r1 � r3Þ with 0a r2 a r1 and 0a r1 þ r3 aminfn;m2g. For each orbit, the

H1-part of the isotropy subgroup is given as

H2 ¼

B1 � � �
0 B2 0 �
0 0 B3 �
0 0 0 B4

2
6664

3
7775 A GLðnÞ

���������

B1 A GLðr2Þ;
B2 A GLðr1 � r2Þ;
B3 A GLðr3Þ;
B4 A GLðn� r1 � r3Þ

8>>><
>>>:

9>>>=
>>>;
:

The following is a key lemma to classify the FPs under various scalar

restrictions.

Lemma 1.6. Let s : H ! GLðmÞ be a representation of an algebraic group H.

1. If m < n, then ðH � SLðnÞ; snL1;Mðm; nÞÞ is an FP if and only if

ðH � GLðnÞ; snL1;Mðm; nÞÞ is an FP. In this case they have the same

number of orbits.

2. If mb n and the number of orbits of H � SLðnÞ in Mðm; nÞ0 is finite, then

ðH � SLðnÞ; snL1;Mðm; nÞÞ is an FP if and only if ðH � GLðnÞ; snL1;

Mðm; nÞÞ is an FP. In this case they have the same number of orbits.

Proof. See [KKMOT, Proposition 1.2]. r
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2. The FPs of D4-Type Under Various Scalar Restrictions

In this section, we shall classify FPs of D4-type under various scalar

restrictions. Here we put m4 ¼ n.

Proposition 2.1. The diagram

�
SLðm1Þ

�
GLðnÞ

�

�

SLðm2Þ

GLðm3Þ

is a non FP if and only if nbm1 ¼ m2.

Proof. If nbm1 ¼ m2, then �
SLðm1Þ �

GLðnÞ
�

SLðm2Þ
is a non FP by 2 of

Corollary 1.4. Therefore our diagram is a non FP.

If m1 > n or m2 > n, our representation has the same number of orbits as

that of D4-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that nbm1;m2 and m1 0m2. It follows from 2 of Lemma 1.6 that

each orbit contained in Mðn;m1Þ00 of �
GLðnÞ

�
GLðm1Þ

cannot be decomposed by the

scalar-restricted action of GLðnÞ � SLðm1Þ. Therefore our representation has the

same number of orbits as that of D4-type with full scalar multiplications. Hence it

is enough to investigate only the orbits of our space related with Mðn;m1Þ0 of

�
GLðnÞ

�
SLðm1Þ

.

If n ¼ m1 0m2 (resp. n ¼ m2 0m1), the GLðnÞ-part of the isotropy subgroup

of �
GLðnÞ

�
SLðm1Þ

(resp. �
GLðnÞ

�
SLðm2Þ

) at a generic point is SLðm1Þ (resp. SLðm2Þ).
Since �

SLðm2Þ �
SLðm1Þ �

GLðm3Þ
(resp. �

SLðm1Þ �
SLðm2Þ �

GLðm3Þ
) is an FP by 1 of Corollary

1.4, our representation is an FP.

If n > m1;m2 with m1 0m2, the GLðnÞ-part of the isotropy subgroup of

�
GLðnÞ

�
SLðm1Þ

at a generic point is isomorphic to

H1 ¼
A1 �
0 A2

�
A GLðnÞ

� ����A1 A SLðm1Þ;
A2 A GLðn�m1Þ

� �
:

Since �
SLðm1Þ �

GLðnÞ
�

GLðm3Þ
is an FP, the diagram �H1 �

GLðm3Þ
is also an FP. Each

orbit of this space is similarly represented by Jðr2; r3Þ as in Remark 1.5 ([NN]).

The H1-part of the isotropy subgroup at Jðr2; r3Þ contains

H2 ¼
B1 0

0 B2

�
A GLðnÞ

� ����B1 A P1;B2 A P2

� �
:

where P1 ¼ Pðr2;m1 � r2ÞVSLðm1Þ and P2 ¼ Pðr3; n�m1 � r3Þ.
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By Theorem 1.3,

�
GLðr2Þ �

SLðm1Þ �
SLðm2Þ �

GLðn�m1Þ �
GLðr3Þ

is an FP for m1 0m2. In particular,

�P1 �
SLðm2Þ �P2

is an FP, and so that

�H2 �
SLðm2Þ

is an FP. Hence our diagram is an FP. r

Proposition 2.2. The diagram

�
SLðm1Þ

�
SLðnÞ

�

�

GLðm2Þ

GLðm3Þ

is a non FP if and only if it satisfies at least one of the following conditions:

1. n ¼ m1,

2. n ¼ 2m1 with m1 aminfm2;m3g.

Proof. If n ¼ m1, it is a non FP by Example 1.2. When n ¼ 2m1 with

m1 aminfm2;m3g, take

Im1

0

� �
;

0 0

0 Im1

� �� �
A Mðn;m1ÞlMðn;m2Þ:

The SLðnÞ-part of the isotropy subgroup of �
SLðm1Þ �

SLðnÞ
�

GLðm2Þ
at this point is

given by

H1 ¼
A1 0

0 A2

�
A SLðnÞ

� ����A1;A2 A SLðm1Þ
� �

:

Then H1 � GLðm3Þ acts on
X

Y

� �
A Mðn;m3Þ with X ;Y A Mðm1;m3Þ as

�
SLðm1Þ �

GLðm3Þ �
SLðm1Þ

, which is a non FP by 2 of Corollary 1.4.

Suppose that the conditions 1 and 2 are not satisfied. If m1 > n, our rep-

resentation has the same number of orbits as that of D4-type with full scalar
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multiplications by 1 of Lemma 1.6. Therefore we may assume, without loss of

generality, n > m1 and m2 bm3. It follows from 2 of Lemma 1.6 that each orbit

contained in Mðn;m1Þ00 of �
GLðnÞ

�
GLðm1Þ

cannot be decomposed by the scalar-

restricted action of SLðnÞ � SLðm1Þ. Therefore our representation has the same

number of orbits as that of D4-type with full scalar multiplications. Hence it is

enough to consider only the orbits related with Mðn;m1Þ0 of �
SLðnÞ

�
SLðm1Þ

.

The diagram �
SLðm1Þ �

SLðnÞ
�

GLðm3Þ
is an FP by 1 of Corollary 1.4 and each

orbit in this case is represented by J ¼ ðJðm1Þ; Jðr2; r3ÞÞ A Mðn;m1ÞlMðn;m3Þ
as in Remark 1.5. The SLðnÞ-part of the isotropy subgroup of �

SLðm1Þ �
SLðnÞ

�
GLðm3Þ

at J contains

H2 ¼
B1 0

0 B2

�
A SLðnÞ

� ����B1 A P1;B2 A P2

� �
:

where P1 ¼ Pðr2;m1 � r2ÞVSLðm1Þ and P2 ¼ Pðr3; n�m1 � r3ÞVSLðn�m1Þ.
By Theorem 1.3,

�
GLðr2Þ �

SLðm1Þ �
GLðm2Þ �

SLðn�m1Þ �
GLðr3Þ

is an FP for m1 0 n�m1 or m2 < m1, i.e., 2m1 0 n or m2 < m1. In particular,

�P1 �
GLðm2Þ �P2

is an FP, and so that

�H2 �
GLðm2Þ

is an FP. Hence we obtain our result. r

Proposition 2.3. The diagram

�
SLðm1Þ

�
SLðnÞ

�

�

SLðm2Þ

GLðm3Þ

is a non FP if and only if it satisfies at least one of the following conditions:

1. n ¼ m1,

2. n ¼ m2,

3. n ¼ m1 þm2,

4. n > m1 ¼ m2,

5. n ¼ 2m1 with m1 aminfm2;m3g,
6. n ¼ 2m2 with m2 aminfm1;m3g.
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Proof. If n ¼ m1, n ¼ m2, n ¼ m1 þm2 or n > m1 ¼ m2, then

�
SLðm1Þ �

SLðnÞ
�

SLðm2Þ
is a non FP by 3 of Corollary 1.4. Therefore our diagram is a

non FP. If n ¼ 2m1 with m1 aminfm2;m3g or n ¼ 2m2 with m2 aminfm1;m3g,
then it is a non FP by Proposition 2.2.

Suppose that the conditions 1 to 6 are not satisfied. If m1 > n, our repre-

sentation has the same number of orbits as that of D4-type of Proposition 2.2 by

1 of Lemma 1.6. Hence we assume, without loss of generality, n > m1 > m2. It

follows from 2 of Lemma 1.6 that each orbit contained in Mðn;m1Þ00 of

�
GLðnÞ

�
GLðm1Þ

cannot be decomposed by the scalar-restricted action of

SLðnÞ � SLðm1Þ. Therefore our representation has the same number of orbits as

that of D4-type of Proposition 2.2. Hence it is enough to investigate the orbits

related with Mðn;m1Þ0 of �
SLðnÞ

�
SLðm1Þ

. Then each orbit of �
SLðm1Þ �

SLðnÞ
�

GLðm3Þ
,

which is an FP if n0m1 by 1 of Corollary 1.4, is represented by

J ¼ ðJðm1Þ; Jðr2; r3ÞÞ A Mðn;m1ÞlMðn;m3Þ as in Remark 1.5. The SLðnÞ-part
of the isotropy subgroup at J contains

H ¼ A1 0

0 A2

�
A SLðnÞ

� ����A1 A P1;A2 A P2

� �
:

where P1 ¼ Pðr2;m1 � r2ÞVSLðm1Þ and P2 ¼ Pðr3; n�m1 � r3ÞVSLðn�m1Þ.
By Theorem 1.3,

�
GLðr2Þ �

SLðm1Þ �
SLðm2Þ �

SLðn�m1Þ �
GLðr3Þ

is an FP for n0m2, n0m1 þm2, m1 0m2 and (n0 2m1 or m1 > m2 when

n ¼ 2m1). In particular,

�P1 �
SLðm2Þ �P2

is an FP. Therefore

�H �
SLðm2Þ

is an FP. Hence we obtain our result. r

For Propositions 2.5 and 2.6, we shall prove the next lemma.

Lemma 2.4. Let Gr be a subgroup of ððGLð1Þ � SLðm1ÞÞ � ðGLð1Þ�
SLðm2ÞÞÞ � SLðnÞ defined by Gr ¼ fða;A; b;B;CÞ j a; b A GLð1Þ;A A SLðm1Þ;
B A SLðm2Þ;C A SLðnÞ; am1 ¼ bm2g. Then ðGr; ðL1 nL1 n 1n 1þ 1n 1n

L1 nL1ÞnL1Þ is a non FP if and only if nbm1 ¼ m2.
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Proof. Assume that n ¼ m1 ¼ m2. The SLðnÞ-part of the isotropy subgroup

of ððGLð1Þ � SLðm1ÞÞ � SLðnÞ; ðL1 nL1ÞnL1Þ at Im1
is SLðm1Þ. Therefore our

representation is reduced to �
SLðm1Þ �

SLðm2Þ
which is a non FP by Example 1.2.

Assume that n > m1 ¼ m2. The SLðnÞ-part of the isotropy subgroup of

ððGLð1Þ � SLðm1ÞÞ � SLðnÞ; ðL1 nL1ÞnL1Þ at
Im1

0

� �
A Mðn;m1Þ is

H1 ¼
a�1C1 �

0 gC2

�
A SLðnÞ

� ����C1 A SLðm1Þ;C2 A SLðn�m1Þ;
a; g A GLð1Þ; a�m1 � gn�m1 ¼ 1

� �
:

Then ðGLð1Þ � SLðm2ÞÞ �H1 acts on
X

0

� �
A Mðn;m2Þ with X A Mðm1;m2Þ as

�
SLðm1Þ �

SLðm1Þ
which is a non FP by Example 1.2.

If m1 > n or m2 > n, our representation has the same number of orbits as

that of an A3-type with full scalar multiplications by 1 of Lemma 1.6.

Suppose that nbm1, nbm2 and m1 0m2. It follows from 2 of Lemma 1.6

that each orbit contained in Mðn;m1Þ00 of �
GLðnÞ

�
GLðm1Þ

cannot be decomposed by

the scalar-restricted action of ðGLð1Þ � SLðm1ÞÞ � SLðnÞ. Therefore our repre-

sentation has the same number of orbits as that of A3-type with full scalar

multiplications. Hence it is enough to investigate only the orbits related with

Mðn;m1Þ0 of ððGLð1Þ � SLðm1ÞÞ � SLðnÞ; ðL1 nL1ÞnL1Þ.
If n ¼ m1 0m2, the SLðnÞ-part of the isotropy subgroup of

ððGLð1Þ � SLðm1ÞÞ � SLðnÞ; ðL1 nL1ÞnL1Þ at a generic point is SLðm1Þ. Since
�

SLðm2Þ �
SLðm1Þ

is an FP, our representation is an FP.

We may assume that n > m1 > m2 without loss of generality. The SLðnÞ-part
of the isotropy subgroup of ððGLð1Þ � SLðm1ÞÞ � SLðnÞ; ðL1 nL1ÞnL1Þ at a

generic point is given by

H2 ¼
a�1C1 �

0 gC2

�
A SLðnÞ

� ����C1 A SLðm1Þ;C2 A SLðn�m1Þ
a; g A GLð1Þ; a�m1 � gn�m1 ¼ 1

� �
:

By the action of ðGLð1Þ � SLðm2ÞÞ �H2, each element
W

Z

� �
A Mðn;m2Þ

with W A Mðm1;m2Þ, Z A Mðn�m1;m2Þ is transformed to

T ¼ 0 W 0

Z 0 0

� �
A Mðn;m2Þ

with W 0 A Mðm1;m2 � sÞ, Z 0 A Mðn�m1; sÞ and 0a saminfn�m1;m2g.
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The isotropy subgroup of H2 � SLðm2Þ at T contains

a�1C1 0

0 gC2

�
A SLðnÞ

� ����C1 A SLðm1Þ;C2 A SLðn�m1Þ
a; g A GLð1Þ; a�m1 � gn�m1 ¼ 1

� �

� d1B1 0

0 d2B2

�
A SLðm2Þ

� ����B1 A SLðsÞ;B2 A SLðm2 � sÞ;
d1; d2 A GLð1Þ; ds1 � d

m2�s
2 ¼ 1

� �

Hence it is enough to show

0 W 0

Z 0 0

� �
7! b

a�1C1 0

0 gC2

� �
0 W 0

Z 0 0

� �
d1B1 0

0 d2B2

� �

is an FP with am1 ¼ bm2 , a�m1 � gn�m1 ¼ 1 and ds1 � d
m2�s
2 ¼ 1. If s ¼ 0 or m2, it is

clearly an FP. If 0 < s < m2,

Mðm1;m2 � sÞ C W 0 7! ða�1C1ÞW 0ðbd2B2Þ

is an FP since m1 > m2 � s. Then we can put a ¼ b ¼ g ¼ 1, and d1 runs over

GLð1Þ. Therefore

Mðn�m1; sÞ C Z 0 7! ðgC2ÞZ 0ðbd1B1Þ

is an FP. Hence we have our results. r

Proposition 2.5. The diagram

�
SLðm1Þ

�
GLðnÞ

�

�

SLðm2Þ

SLðm3Þ

is a non FP if and only if it satisfies at least one of the following conditions:

1. nbm1 ¼ m2,

2. nbm2 ¼ m3,

3. nbm3 ¼ m1,

4. nbm1 ¼ m2 þm3,

5. nbm2 ¼ m3 þm1,

6. nbm3 ¼ m1 þm2.

Proof. If nbm1 ¼ m2, nbm2 ¼ m3 or nbm3 ¼ m1, then it is a non FP

by Proposition 2.1. Assume nbm1 ¼ m2 þm3. The GLðnÞ-part of the isotropy

subgroup of �
GLðnÞ

�
SLðm1Þ

at
Im1

0

� �
A Mðn;m1Þ contains
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H ¼ SLðm1Þ �
0 GLðn�m1Þ

� �
ðHGLðnÞÞ:

Then �
SLðm2Þ �H �

SLðm3Þ
acts on

X

0

� �
;

Y

0

� �� �
A Mðn;m2ÞlMðn;m3Þ with

X A Mðm1;m2Þ, Y A Mðm1;m3Þ as

�
SLðm2Þ �

SLðm1Þ �
SLðm3Þ

which is a non FP by 3 of Corollary 1.4. When nbm2 ¼ m3 þm1 or nbm3 ¼
m1 þm2, we can see similarly that our representation is a non FP.

Assume that the conditions 1 to 6 are not satisfied. If n < m1, n < m2 or

n < m3, our representation has the same number of orbits as that of D4-type

of Proposition 2.1 by 1 of Lemma 1.6. Hence we may assume, without loss of

generality, nbm1 > m2 > m3.

It follows from 2 of Lemma 1.6 that each orbit contained in Mðn;m1Þ00 of
�

GLðnÞ
�

GLðm1Þ
cannot be decomposed by the scalar-restricted action of

GLðnÞ � SLðm1Þ. Therefore our representation has the same number of orbits as

that of D4-type of Proposition 2.1. Hence it is enough to study only the orbits

related with Mðn;m1Þ0 of �
GLðnÞ

�
SLðm1Þ

. Then the orbit Mðn;m1Þ0 is Jðm1Þ as in

Remark 1.5 and we denote by H1 the GLðnÞ-part of the isotropy subgroup of

�
GLðnÞ

�
SLðm1Þ

at Jðm1Þ.
It follows from 2 of Lemma 1.6 that each orbit contained in Mðn;m2Þ00 of

�H1 �
GLðm1Þ

cannot be decomposed by the scalar-restricted action of H1 � SLðm2Þ.
Therefore our representation has the same number of orbits as that of D4-type of

Proposition 2.1. Hence it is enough to see only each orbit related with Mðn;m2Þ0

of �H1 �
SLðm2Þ

, which are represented by Jðr2; r3Þ with r2 þ r3 ¼ m2 as in Remark

1.5. The H1-part of the isotropy subgroup of �H1 �
SLðm2Þ

at Jðr2; r3Þ is isomorphic

to

H2 ¼
H3 �
0 GLðtÞ

� �
ðHH1Þ

where we put t ¼ n�m1 �m2 þ r2 and

H3 ¼
a1A1 0 0

� a2A2 �
0 0 a3A3

2
64

3
75 A GLðn� tÞ

A1 A SLðm1 � r2Þ;
A2 A SLðr2Þ;A3 A SLðr3Þ;
a1; a2; a3 A GLð1Þ;
am1�r2
1 � ar2

2 ¼ 1;

a r2
2 � ar3

3 ¼ 1

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:
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First we assume that t ð¼ n�m1 �m2 þ r2Þ0 0. By the action of

H2 � SLðm3Þ, any element
W

Z

� �
A Mðn;m3Þ with W A Mðn� t;m3Þ, Z A Mðt;m3Þ

is transformed to

T1 ¼
0 W 0

Z 0 0

� �
A Mðn;m3Þ

with W 0 A Mðn� t;m3 � r4Þ, Z 0 A Mðt; r4Þ and 0a r4 aminft;m3g. Then the

isotropy subgroup of H2 � SLðm3Þ at T1 contains

H3 0

0 GLðtÞ

� �
� b1B1 0

0 b2B2

�� ����B1 A SLðr4Þ;B2 A SLðm3 � r4Þ;
b1; b2 A GLð1Þ; b r4

1 � bm3�r4
2 ¼ 1

� �

ðHH2 � SLðm3ÞÞ:

Hence it is enough to show

0 W 0

Z 0 0

� �
7! h 0

0 A4

� �
0 W 0

Z 0 0

� �
b1B1 0

0 b2B2

� �

is an FP with A4 A GLðtÞ, h A H3 and b r4
1 � bm3�r4

2 ¼ 1, namely

1. Mðt; r4Þ C Z 0 7! A4Z
0ðb1B1Þ is an FP, and

2. Mðn� t;m3 � r4Þ C W 0 7! hW 0ðb2B2Þ is, at the same time, an FP with

b r4
1 � bm3�r4

2 ¼ 1.

1 is clearly an FP since �
GLðtÞ

�
SLðr4Þ

is an FP. The diagram

�
SLðm1Þ

�
GLðn�tÞ

�

�

SLðm2Þ

GLðm3�r4Þ

is an FP for m1 0m2 by Proposition 2.1, in particular

�H3 �
GLðm3�r4Þ

is an FP since b2 runs over GLð1Þ. Hence our representation is an FP.

Next we assume that t ð¼ n�m1 �m2 þ r2Þ ¼ 0. If r2 ¼ m2, then r3 ¼ 0,

i.e., n ¼ m1. By Theorem 1.3,

�
SLðm2Þ �

SLðm1Þ �
GLðnÞ

�
SLðm3Þ

is an FP for m2 0m1, m2 0m3, m1 0m3 and m2 þm3 0m1. Since H2 is iso-

morphic to the GLðnÞ-part of the isotropy subgroup of �
SLðm2Þ �

SLðm1Þ �
GLðnÞ

at

Im2

0

� �
; Im1

� �
A Mðm1;m2ÞlMðn;m1Þ, in particular
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�H2 �
SLðm3Þ

is an FP.

If r3 ¼ m2, then r2 ¼ 0, i.e., n ¼ m1 þm2. Then H2 is

SLðm1Þ 0

0 SLðm2Þ

� �

Since

�
SLðm1Þ �

SLðm3Þ �
SLðm2Þ

is an FP for m1 0m3, m1 0m2, m3 0m2 and m1 þm2 0m3,

�H2 �
SLðm3Þ

is an FP.

If r2 0 0 and r3 0 0, then H2 is isomorphic to

H4 ¼
aD1 � �
0 bD2 0

0 0 gD3

2
64

3
75 A GLðnÞ

D1 A SLðm1 þm2 � nÞ;
D2 A SLðn�m1Þ;
D3 A SLðn�m2Þ;
a; b; g A GLð1Þ;
am1þm2�n � bn�m1 ¼ 1;

am1þm2�n � gn�m2 ¼ 1

�������������

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

We consider the action H4 � SLðm3Þ on

T2 ¼
X1

X2

X3

2
64

3
75 A Mðn;m3Þ

with X1 A Mðm1 þm2 � n;m3Þ, X2 A Mðn�m1;m3Þ, X3 A Mðn�m2;m3Þ.
If X2 ¼ X3 ¼ 0, then �H4 �

SLðm3Þ
has the same number of orbits as that of

�
GLðm1þm2�nÞ

�
SLðm3Þ

which is an FP.

We may suppose that X2 0 0 or X3 0 0. By the action H4 � SLðm3Þ, an

element T2 is transformed to the

T3 ¼
0 X 0

1

X 0
2 0

X 0
3 0

2
64

3
75 A Mðn;m3Þ
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with X 0
1 A Mðm1 þm2 � n;m3 � sÞ, X 0

2 A Mðn�m1; sÞ, X 0
3 A Mðn�m2; sÞ and

s ¼ maxfrank X2; rank X3g.
Then the isotropy subgroup of H2 � SLðm3Þ at T3 contains

aD1 0 0

0 bD2 0

0 0 gD3

2
64

3
75 A H2

D1 A SLðm1 þm2 � nÞ;
D2 A SLðn�m1Þ;D3 A SLðn�m2Þ;
a; b; g A GLð1Þ;
am1þm2�n � bn�m1 ¼ 1;

am1þm2�n � gn�m2 ¼ 1

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� d1E1 0

0 d2E2

�
A SLðm3Þ

� ����E1 A SLðsÞ;E2 A SLðm3 � sÞ;
d1; d2 A GLð1Þ; ds1 � d

m3�s
2 ¼ 1

� �
:

We put Y ¼
X 0

2

X 0
3

� �
A Mð2n�m1 �m2; sÞ, and let H5 ¼

bD2 0

0 gD3

� �� �
be the

lower reductive part of H4.

Hence it is enough to show

0 X 0
1

Y 0

� �
7! aD1 0

0 h

� �
0 X 0

1

Y 0

� �
d1E1 0

0 d2E2

� �

is an FP with h A H5, am1þm2�n � bn�m1 ¼ 1, am1þm2�n � gn�m2 ¼ 1 and

ds1 � d
m3�s
2 ¼ 1, namely

3. Mðm1 þm2 � n;m3 � sÞ C X 0
1 7! ðaD1ÞX 0

1d2E2 is an FP, and

4. Mð2n�m1 �m2; sÞ C Y 7! hYd1E1 is, at the same time, an FP with the

conditions am1þm2�n � b n�m1 ¼ 1, am1þm2�n � gn�m2 ¼ 1 and ds1 � d
m3�s
2 ¼ 1.

The space 3 is clearly an FP. Since n�m1 0 n�m2, the space 4 is an FP by

Lemma 2.4. Hence our representation is an FP. r

Although M. Nagura, S. Otani and D. Takeda independently obtained the

same result as the following Proposition 2.6 ([NOT, Theorem 4.1]), we will give

our proof here.

Proposition 2.6. The diagram

�
SLðm1Þ

�
SLðnÞ

�

�

SLðm2Þ

SLðm3Þ
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is a non FP if and only if it satisfies at least one of the following conditions:

1. n ¼ m1,

2. n ¼ m2,

3. n ¼ m3,

4. n > m1 ¼ m2,

5. n > m1 ¼ m3,

6. n > m2 ¼ m3,

7. n ¼ m1 þm2,

8. n ¼ m1 þm3,

9. n ¼ m2 þm3,

10. n > m1 ¼ m2 þm3,

11. n > m2 ¼ m1 þm3,

12. n > m3 ¼ m1 þm2,

13. n ¼ 2m1 with m1 aminfm2;m3g,
14. n ¼ 2m2 with m2 aminfm1;m3g,
15. n ¼ 2m3 with m3 aminfm1;m2g,
16. nþm1 ¼ m2 þm3 with m1 < minfm2;m3g,
17. nþm2 ¼ m1 þm3 with m2 < minfm1;m3g,
18. nþm3 ¼ m1 þm2 with m3 < minfm1;m2g,
19. n ¼ m1 þm2 þm3,

20. 2n ¼ m1 þm2 þm3 with n > maxfm1;m2;m3g.

Proof. By Propositions 2.3 and 2.5, the conditions 1 to 15 are

su‰cient. Assume that nþm3 ¼ m1 þm2 with m3 < minfm1;m2g. In particular,

n > maxfm1;m2g and n < m1 þm2. Take Q1 ¼
Im1

0

� �
;

0

Im2

� �� �
A Mðn;m1Þl

Mðn;m2Þ. The SLðnÞ-part of the isotropy subgroup of �
SLðm1Þ �

SLðnÞ
�

SLðm2Þ
at

Q1 is isomorphic to

H1 ¼
A1 � �
0 A2 0

0 0 A3

3
75 A SLðnÞ

2
64

�������
A1 A SLðm1 þm2 � nÞ;
A2 A SLðn�m1Þ;A3 A SLðn�m2Þ

8><
>:

9>=
>;:

Then H1 � SLðm3Þ acts on Q2 ¼
X

0

� �
A Mðn;m3Þ with X A Mðm3;m3Þ as

�
SLðm3Þ �

SLðm3Þ
which is a non FP by Example 1.2.

If nþm1 ¼ m2 þm3 with m1 < minfm2;m3g or nþm2 ¼ m3 þm1 with m2 <

minfm3;m1g, we can prove similarly that our representation is a non FP.
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If n ¼ m1 þm2 þm3, the SLðnÞ-part of the isotropy subgroup of

�
SLðm1Þ �

SLðnÞ
�

SLðm2Þ
at Q1 is isomorphic to

H2 ¼
B1 0 0

� B2 0

� 0 B3

3
75 A SLðnÞ

2
64

�������B1 A SLðm3Þ;B2 A SLðm1Þ;B3 A SLðm2Þ

8><
>:

9>=
>;:

Then H2 � SLðm3Þ acts on Q2 as �
SLðm3Þ �

SLðm3Þ
which is a non FP by Example

1.2.

If 2n ¼ m1 þm2 þm3 with n > maxfm1;m2;m3g, the SLðnÞ-part of the

isotropy subgroup of �
SLðm1Þ �

SLðnÞ
�

SLðm2Þ
at Q1 is isomorphic to H1. Then

H1 � SLðm3Þ acts on

0

Y1

Y2

2
64

3
75 A Mðn;m3Þ

with Y1 A Mðn�m1;m3Þ, Y2 A Mðn�m2;m3Þ as

�
SLðn�m1Þ �

SLðm3Þ �
SLðn�m2Þ

which is a non FP for n�m1 þ n�m2 ¼ m3 by 3 of Corollary 1.4.

Suppose that the conditions 1 to 20 are not satisfied. If n < m1, n < m2

or n < m3, our representation has the same number of orbits as that of D4-type

of Proposition 2.3. Hence we may assume, without loss of generality,

n > m1 > m2 > m3.

It follows from 2 of Lemma 1.6 that each orbit contained in Mðn;m1Þ00 of
�

GLðnÞ
�

GLðm1Þ
cannot be decomposed by the scalar-restricted action of

SLðnÞ � SLðm1Þ. Therefore our representation has the same number of orbits as

that of D4-type of Proposition 2.3. Hence it is enough to study only the orbits

related with Mðn;m1Þ0 of �
SLðnÞ

�
SLðm1Þ

. Then the orbit is represented by

Jðm1Þ A Mðn;m1Þ as in Remark 1.5 and we denote by H3 the SLðnÞ-part of the

isotropy subgroup of �
SLðnÞ

�
SLðm1Þ

at Jðm1Þ. It follows from 2 of Lemma 1.6 that

each orbit contained in Mðn;m2Þ00 of �H3 �
GLðm2Þ

cannot be decomposed by

the scalar-restricted action of H3 � SLðm2Þ. Therefore our representation has

the same number of orbits as that of D4-type of Proposition 2.3. Hence it is

enough to see only each orbit related with Mðn;m2Þ0 of �H3 �
SLðm2Þ

, which

are represented by Jðr2; r3Þ with r2 þ r3 ¼ m2 as in Remark 1.5.
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We put t ¼ n�m1 �m2 þ r2. The H3-part of the isotropy subgroup of

�H3 �
SLðm2Þ

at Jðr2; r3Þ is isomorphic to

H4 ¼

a1C1 � � �
0 a2C2 0 �
0 0 a3C3 �
0 0 0 a4C4

2
6664

3
7775 A SLðnÞ

C1 A SLðr2Þ;
C2 A SLðm1 � r2Þ;
C3 A SLðm2 � r2Þ;
C4 A SLðtÞ;
a1; a2; a3; a4 A GLð1Þ;
ar2
1 � am1�r2

2 ¼ 1;

ar2
1 � am2�r2

3 ¼ 1;

am1�r2
2 � a t

4 ¼ 1;

am2�r2
3 � a t

4 ¼ 1

���������������������

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

First we assume that t ð¼ n�m1 �m2 þ r2Þ0 0. By the action of

H4 � SLðm3Þ, an element
W

Z

� �
A Mðn;m3Þ with W A Mðn� t;m3Þ, Z A Mðt;m3Þ

is transformed to

T1 ¼
0 W 0

Z 0 0

� �
A Mðn;m3Þ

with W 0 A Mðn� t;m3 � r4Þ, Z 0 A Mðt; r4Þ and 0a r4 aminft;m3g. Let

K1 ¼
a1C1 � �
0 a2C2 0

0 0 a3C3

2
64

3
75 A GLðn� tÞ

C1 A SLðr2Þ;
C2 A SLðm1 � r2Þ;
C3 A SLðm2 � r2Þ;
a1; a2; a3 A GLð1Þ;
ar2
1 � am1�r2

2 ¼ 1;

ar2
1 � am2�r2

3 ¼ 1

��������������

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

be the upper ðn� tÞ � ðn� tÞ-part of H4. Then the isotropy subgroup of H4 at

T1 contains

h 0

0 a4C4

" #
A H4

h A K1;

a r2
1 � am1�r2

2 ¼ 1;

a r2
1 � am2�r2

3 ¼ 1;

am1�r2
2 � a t

4 ¼ 1;

am2�r2
3 � a t

4 ¼ 1

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

and the isotropy subgroup of SLðm3Þ at T1 contains

L ¼ b1D1 0

0 b2D2

�
A SLðm3Þ

� ����D1 A SLðr4Þ;D2 A SLðm3 � r4Þ;
b1; b2 A GLð1Þ; b r4

1 � bm3�r4
2 ¼ 1

� �
:
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Hence it is enough to show

0 W 0

Z 0 0

� �
7! h 0

0 a4C4

� �
0 W 0

Z 0 0

� �
b1D1 0

0 b2D2

� �

is an FP with ar2
1 � am1�r2

2 ¼ 1, ar2
1 � am2�r2

3 ¼ 1, am1�r2
2 � a t

4 ¼ 1, am2�r2
3 � a t

4 ¼ 1 and

b r4
1 � bm3�r4

2 ¼ 1, namely

1. Mðt; r4Þ C Z 0 7! ða4C4ÞZ 0ðb1D1Þ is an FP, and

2. Mðn� t;m3 � r4Þ C W 0 7! hW 0ðb2D2Þ is, at the same time, an FP with

the conditions of ar2
1 � am1�r2

2 ¼ 1, ar2
1 � am2�r2

3 ¼ 1, am1�r2
2 � a t

4 ¼ 1,

am2�r2
3 � a t

4 ¼ 1 and b r4
1 � bm3�r4

2 ¼ 1.

If r4 ¼ 0, the space 2 has the same number of orbits as that of

�
SLðm1Þ

�
GLðn�tÞ

�

�

SLðm2Þ

SLðm3Þ

which is an FP by Proposition 2.5.

If 0 < r4 < minft;m3g, the space Z 0 is transformed to the form

Ir4
0

� �
A Mðt; r4Þ:

Then a4 and b1 independently run over GLð1Þ, and 2 has the same number of

orbits as that of

�
SLðm1Þ

�
GLðn�tÞ

�

�

SLðm2Þ

GLðm3�r4Þ

which is an FP by Proposition 2.1.

If r4 ¼ m3 a t, its orbit is represented by

0

Im3

� �
A Mðn;m3Þ:

Suppose that r4 ¼ t < m3. The space 1 is clearly an FP. Then b1 ¼ a�1
4 .

By the conditions of L we have bm3�t
2 ¼ a t

4. Therefore am1�r2
2 � bm3�t

2 ¼ 1,

am2�r2
3 � bm3�t

2 ¼ 1 and ar2
1 ¼ bm3�t

2 . Let

L1 ¼ b2D2½ � A GLð1Þ � SLðm3 � tÞf g
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be the lower reductive part of L. We consider the action K1 � L1 on

W 0 ¼
X1

X2

X3

2
64

3
75 A Mðn� t;m3 � tÞ

with X1 A Mðr2;m3 � tÞ, X2 A Mðm1 � r2;m3 � tÞ, X3 A Mðm2 � r2;m3 � tÞ.
If X2 ¼ X3 ¼ 0, then 2 is an FP. We may suppose that X2 0 0 or X3 0 0.

The action K1 � L1 transforms W 0 to the form

W 00 ¼
0 X 0

1

X 0
2 0

X 0
3 0

2
64

3
75 A Mðn� t;m3 � tÞ

with X 0
1 A Mðr2;m3 � t� sÞ, X 0

2 A Mðm1 � r2; sÞ, X 0
3 A Mðm2 � r2; sÞ and s ¼

maxfrank X2; rank X3g. The isotropy subgroup of K1 � L1 at W 00 contains

K2 ¼
a1C1 0 0

0 a2C2 0

0 0 a3C3

2
64

3
75 A K1

C1 A SLðr2Þ;C2 A SLðm1 � r2Þ;
C3 A SLðm2 � r2Þ; a1; a2; a3 A GLð1Þ;
a r2
1 ¼ bm3�t

2 ;

am1�r2
2 � bm3�t

2 ¼ 1;

am2�r2
3 � bm3�t

2 ¼ 1;

������������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

and

L2 ¼
b2 � g1E1 0

0 b2 � g2E2

� �
A L1

E1 A SLðsÞ;E2 A SLðm3 � t� sÞ
b2; g1; g2 A GLð1Þ;
g s1 � g

m3�t�s
2 ¼ 1

�������
8><
>:

9>=
>;:

We put Y ¼
X 0

2

X 0
3

� �
A Mðm1 þm2 � 2r2; sÞ, and let

K3 ¼
a2C2 0

0 a3C3

� �
A GLðm1 þm2 � 2r2Þ

C2 A SLðm1 � r2Þ;
C3 A SLðm2 � r2Þ;
a2; a3 A GLð1Þ
am1�r2
2 � bm3�t

2 ¼ 1;

am2�r2
3 � bm3�t

2 ¼ 1

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

be the middle reductive part of K2. Hence it is enough to show

0 X 0
1

Y 0

� �
7! a1C1 0

0 h 0

� �
0 X 0

1

Y 0

� �
b2 � g1E1 0

0 b2 � g2E2

� �

is an FP with h 0 A K3, ar2
1 ¼ bm3�t

2 , am1�r2
2 � bm3�t

2 ¼ 1, am2�r2
3 � bm3�t

2 ¼ 1 and

gs1 � g
m3�t�s
2 ¼ 1, namely
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3. Mðr2;m3 � t� sÞ C X 0
1 7! ða1C1ÞX 0

1ðb2 � g2E2Þ is an FP, and

4. Mðm1 þm2 � 2r2; sÞ C Y 7! h 0Yðb2 � g1E1Þ is, at the same time, an FP with

the conditions ar2
1 ¼ bm3�t

2 , am1�r2
2 � bm3�t

2 ¼ 1, am2�r2
3 � bm3�t

2 ¼ 1 and

gs1 � g
m3�t�s
2 ¼ 1.

The space 3 is clearly an FP. Then the space 4 is an FP by Lemma 2.4 since

m1 � r2 0m2 � r2. Hence our representation is an FP.

Next we assume that t ð¼ n�m1 �m2 þ r2Þ ¼ 0. The isotropy subgroup H4

is isomorphic to

H 0
4 ¼

C 0
1 0 0

� C 0
2 �

0 0 C 0
3

2
64

3
75 A SLðnÞ

�������
C 0

1 A SLðn�m2Þ;
C 0

2 A SLðm1 þm2 � nÞ;
C 0

3 A SLðn�m1Þ;

8><
>:

9>=
>;:

Then H 0
4 contains

H5 ¼
SLðn�m2Þ 0

0 K4

� �
ðHH 0

4Þ

where

K4 ¼
C 0

2 �
0 C 0

3

�
A SLðm2Þ

� ����C 0
2 A SLðm1 þm2 � nÞ;

C 0
3 A SLðn�m1Þ

� �
:

By Theorem 1.3, we can see the conditions to be an FP of

�
SLðn�m2Þ �

SLðm3Þ �
SLðm2Þ �

SLðm1þm2�nÞ
:

In particular

�
SLðn�m2Þ �

SLðm3Þ �K4

is an FP. Therefore

�H5 �
SLðm3Þ

is an FP, except n�m2 ¼ m1 þm2 � n, i.e., 2n ¼ m1 þ 2m2.

On the other hand, the isotropy subgroup H 0
4 contains

H6 ¼
K5 0

0 SLðn�m1Þ

� �
ðHH 0

4Þ

where

K5 ¼
C 0

1 0

� C 0
2

�
A SLðm1Þ

� ����C 0
1 A SLðn�m2Þ;

C 0
2 A SLðm1 þm2 � nÞ

� �
:
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We can show similarly this case to be an FP, except the case of 2n ¼ 2m1 þm2.

Therefore it remains the case of 2n ¼ m1 þ 2m2 ¼ 2m1 þm2, i.e., m1 ¼ m2.

However m1 ¼ m2 contradicts the assumption of m1 0m2. Hence we obtain our

results. r

By Propositions 2.1 to 2.3, 2.5 and 2.6, we have the following theorem.

Theorem 2.7. The diagram

� �
�

�

G1 G4

G2

G3

where Gi ¼ GLðmiÞ or SLðmiÞ for i ¼ 1; 2; 3; 4, is a non FP if and only if it satisfies

at least one of the following conditions:

1. m4 ¼ m1 with G1 ¼ SLðm1Þ and G4 ¼ SLðm4Þ,
2. m4 ¼ m2 with G2 ¼ SLðm2Þ and G4 ¼ SLðm4Þ,
3. m4 ¼ m3 with G3 ¼ SLðm3Þ and G4 ¼ SLðm4Þ,
4. m4 > m1 ¼ m2 with Gi ¼ SLðmiÞ for i ¼ 1; 2,

5. m4 > m1 ¼ m3 with Gi ¼ SLðmiÞ for i ¼ 1; 3,

6. m4 > m2 ¼ m3 with Gi ¼ SLðmiÞ for i ¼ 2; 3,

7. m4 ¼ m1 þm2 with Gi ¼ SLðmiÞ for i ¼ 1; 2 and G4 ¼ SLðm4Þ,
8. m4 ¼ m1 þm3 with Gi ¼ SLðmiÞ for i ¼ 1; 3 and G4 ¼ SLðm4Þ,
9. m4 ¼ m2 þm3 with Gi ¼ SLðmiÞ for i ¼ 2; 3 and G4 ¼ SLðm4Þ,

10. m4 bm1 ¼ m2 þm3 with Gi ¼ SLðmiÞ for i ¼ 1; 2; 3,

11. m4 bm2 ¼ m1 þm3 with Gi ¼ SLðmiÞ for i ¼ 1; 2; 3,

12. m4 bm3 ¼ m1 þm2 with Gi ¼ SLðmiÞ for i ¼ 1; 2; 3,

13. m4 ¼ 2m1 with m1 aminfm2;m3g, G1 ¼ SLðm1Þ and G4 ¼ SLðm4Þ,
14. m4 ¼ 2m2 with m2 aminfm1;m3g, G2 ¼ SLðm2Þ and G4 ¼ SLðm4Þ,
15. m4 ¼ 2m3 with m3 aminfm1;m2g, G3 ¼ SLðm3Þ and G4 ¼ SLðm4Þ,
16. m4 þm1 ¼ m2 þm3 with m1 < minfm2;m3g and Gi ¼ SLðmiÞ for i ¼

1; 2; 3; 4,

17. m4 þm2 ¼ m1 þm3 with m2 < minfm1;m3g and Gi ¼ SLðmiÞ for i ¼
1; 2; 3; 4,

18. m4 þm3 ¼ m1 þm2 with m3 < minfm1;m2g and Gi ¼ SLðmiÞ for i ¼
1; 2; 3; 4,

19. m4 ¼ m1 þm2 þm3 with Gi ¼ SLðmiÞ for i ¼ 1; 2; 3; 4,

20. 2m4 ¼ m1 þm2 þm3 with m4 > maxfm1;m2;m3g and Gi ¼ SLðmiÞ for

i ¼ 1; 2; 3; 4.
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