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Résumé (Abstract in French) La série temporelle des températures maximales
moyennes à Garbonne (Botswanan) est utilisée pour touver le meilleur modèle
prévisionnel. La série s’est révelée très saisonnière . La méthode d’ajustage
saisonnière avant l’application de la procédure de Box et Jenkis n’a pas pu éliminer
les effets saisonniers bien aue le modèle ARIMA(1,1,1) ait été jugé bon. Non plus
n’a pas été très bon le modele SARIMA(p,d,q)(P,D,Q) avec des effets saisonniers
de temps de retards s=12.24,36. Par contre l’utilisation des correllogrammes, les
tests Decker-Feller et autres methodes de comparaison ont abouti à un modèle
ARIMA(1,1,1)(0,1,1)[12] satisfaisant. Les effets saisonniers multiplicative SARIMA
sont rares par rapport au modèle additif.

1. Introduction

Weather is the atmospheric state measured at a given time and place with regard
to temperature, air pressure, wind, humidity and precipitation. The earliest
evidence of scientific activity in meteorology especially its relevance to weather
forecasting is by Aristotle, Craft (2001): An economic history of weather fore-
casting (http://eh.net/article/craft.weather.forecasting.history) who wrote what
is probably the first treatise on the subject. Craft (2001) mentioned that H.W
Brandes attempted to chart weather from reports over a considerable area but it
was not until after the invention of telegraph that the rapid collection of weather
data from remote stations became possible. Over the years researchers have
used computerized models based on mathematical formulations of the dynamics
of the atmosphere to produce weather charts that were used as prognostics of
future weather patterns. The many simplifying assumptions required in these
formulations as well as the incompleteness of weather data limited the accuracy
of computer prediction; though as the world achieved advances in mathematical
modelling and computer systems, these models are becoming more complete,
reliable and accurate.

In this paper, we shall focus on forecasting weather parameters in Botswana using
some competitive classical time series models with a view to ascertain their effect
on long run climate change . In classical time series modelling we assume that a
sequence of series {Yt} could be represented by a definite pattern inclusive of some
random component. One major objective of time series analysis is to differentiate
the series’ pattern from the error component by studying the trend and seasonal-
ity; more importantly is forecasting the future values of the series using reliable
models Chatfield (1980). In time series literature some methods have been de-
veloped to forecast future values of dynamic systems. These include inter alia the
generalized exponential weighted moving average process developed by Makridakis
et al. (2003), the use of univariate time series models discussed by Geweke et al.
(1983) while Quenouille (1949), Ljung and Box (1978) and Pindyck and Rubinfeld
(1981) have emphasized the use of autoregressive moving average process in fore-
casting. This paper will utilize the autoregressive moving average process and the
seasonal autoregressive moving average models in forecasting the weather param-
eters in Botswana. The choice of these methods is due to their similarity in time
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series modelling. Their performance will be evaluated using the significance of the
coefficients and measures of forecast accuracy.

2. Background

There are many factors that affect the weather and climate of Botswana but
the main ones are latitude, position on the continent and cloud cover. These
factors often act in combination with each other. Botswana is situated in the
centre of Southern Africa, straddling the Tropic of Capricorn, a factor that partly
explains why the country is hot. Climatically, the country is continental arid to
semi-arid and rainfall is characterised by extreme variability in time and space.
Temperatures in the north of the country, which is nearer to the equator, are
generally higher than those in the south. For example, Maun, located in the
arid region to the north experiences highest mean maximum and minimum
temperature in June of 25 degrees Celsius and 6.9 degrees Celsius compared with
Tsabong, further south, with a mean maximum and minimum temperatures of
22.0 degrees Celsius and 1.3 degrees Celsius respectively, Selitshena and McLeod
(1989). The effect of position on the continent can be seen in the generally wide

temperature ranges. Tsabong has a highest monthly mean temperature of 26.7
degrees Celsius in January and a lowest monthly mean temperature of 11.6
degrees Celsius in July. This position also explains why the country receives little
rain. The rain-bearing easterly winds - which blow from the Indian Ocean, lose
most of their moisture before they reach Botswana. For this reason rainfall tends
to be higher in northern and eastern Botswana. The country has also experienced
a number of drought periods in 1967 to 1970, 1972, 1981 to 1986, and the early
1990’s.

In many places in Botswana, lack of cloud cover is one of the major causes of high
daytime and low night-time temperatures. In dry years, when there is less cloud
cover, temperatures tend to be higher than in wet years. Also worth noting is the
role of man as agents of climatic change in general. Pollution of the atmosphere
with gases from power stations and industries, and the removal of vegetation
through deforestation and overgrazing, has some effect on climate, though not
necessarily in Botswana.

Botswana is generally flat to gentle undulations in the east. Deep Kalahari sands
cover the centre, south and west. Rock formations are exposed only in the east.
Mean annual rainfall varies broadly from 650 millimetres in the north-east to less
than 250 millimetres in the south-west. Rates of evaporation and transpiration
are high at all times and greatly exceed precipitation. Nationally, average daily
maximum temperatures are around 33.0 degrees Celsius in January and 22.0
degrees Celsius in July. Daily minimums are as low as 5.0 degrees Celsius in July
and frost is not uncommon. Permanent water sources are scarce; the erratic rain-
fall, high evaporation and freely draining soils mean rainwater pools are ephemeral.
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Contribution of agriculture to GDP in Botswana has declined from 42.7% at
independence in 1966 to 2% in 2016, and mining is the largest contributor
at 19.9% Statistics Botswana (2016). Rainfall in Botswana is erratic and sig-
nificantly impacts the country’s economy. Water deficits during global El Nino
events, which hit Southern Africa, such as in 1983 and 1992, lead to poor
food production throughout the region, but not only in Botswana Jury et al.
(1999). An overwhelming rural population depended mainly on agriculture for
a livelihood. Beef production was the mainstay of the economy in terms of the
output and export earnings NDP8 (1997). Despite severe ravages on both arable
and livestock agriculture by long and severe droughts, farmers in Botswana are
still highly dependent on erratic rains, which are highly variable both in time and
space. The rains adverse effects may be partially reduced if the occurrence of
the events is predicted or known in advance and farmers are suitably advised to
take ameliorative measures Parvinder et al. (2003). Like rainfall, surface weather
parameters like the maximum and minimum temperatures play an important role
in agricultural activities. Hence extreme temperatures will have an adverse effect
on agricultural operation.

Due to changes in temperature worldwide there is need for a study in the temper-
ature pattern, evaporation and water levels. The scope of this paper is limited to
modelling temperature patterns and their long term effects only. Temperature de-
pendent parameters like maximum and minimum temperatures are monitored for
seemingly extreme patterns. Simple exploratory models could inform government
and other stakeholders on programs and policies that could mitigate the impact of
Botswana’s fluctuating climate. It is believed that an advance warning of drought
risk and seasonal rainfall prospects will improve the economic growth potential
of Southern Africa and provide additional security for food and water Jury et al.
(1997).

The second objective is that this study is first of its nature in Botswana. Several
studies have been carried out in Botswana but many of them were on Rainfall.
Hence, forecasts of dry periods and extreme temperatures if reliably done can
provide an adequate planning tool for weather based agricultural practices in this
country. High daytime temperatures lead to high water losses throughout the
year from evaporation and transpiration Cooke (1980). Botswana in particular
has been experiencing changes in rainfall season which in turn affects planting
seasons and livestock rearing.

Implications of climate change for agricultural and economic activities cannot
be over emphasized Cline (1992); and effective management of climate change
influence on socio-economic activity will depend on the availability of reliable,
accurate and cost-effective forecast. According to Romilly (2005), both operational
and strategic decision-making in aforementioned activities will have to take
into account not just the realized effects of climate variation but also potential
causative effects.

Journal home page: www.jafristatap.net, projecteuclid.org/euclid.ajas



K. Sediakgotla, W. Molefe K. D. Shangodoyin, African Journal of Applied Statistics, Vol. 6
(2), 2019, pages 689 – 710. Time Series Modelling of Monthly average Temperature in
Gaborone-Botswana. 693

To have undaunted effective agricultural and business managerial decision it is
highly crucial to have a robust climate change forecast and a leading indicator
of climate change is temperature change. This study will focus on developing a
parsimonious time series model for the mean temperature change that is effective
in forecasting over short term horizon of between 5-10 years in the Gaborone area.

3. Statistical methods

Climate data usually exhibit non-stationary behaviour, this includes long term
trends that are mostly associated with independent driving force such as green-
house gas concentration Brohan et al. (2006), this behaviour presents challenges
for analysts using traditional methods which assume stationary time series be-
haviour. The fact that temperature variables are the product of gradually evolving
processes makes it appropriate and desirable to calibrate these causal models
on data that go back in time as much as possible; of course causal variables
may not be reliable and even not available for previous periods under investigation.

To accommodate this challenges a non-seasonal model known as autoregressive
integrated moving average (ARIMA) coupled with seasonal unit testing and gener-
alized autoregressive conditional heteroscedasticity (GARCH) models are used by
several authors such as (Shangodoyin et al. (2010); Mann (2008); Shangodoyin
(2008); Baillie and Chung (2002) and Posamentier and Nicolich (1979)) to

mention a few.

Specifically therefore in this study we shall utilize monthly data that allows for
seasonal unit root testing with or without structural breaks; also more suitable,
reliable, accurate and autoregressive integrated seasonal moving average will be
utilized to make suitable short term forecasting that can inform climate manage-
rial decision.

4. Analytical approach to time series components and structural breaks in
data set

The general features of environmental and climate time series suggest the pres-
ence of basic time series components and structural breaks in data set. We briefly
present the methodology to be utilized in this study.

4.1. Analyzing Time series components

In the classical analysis of time series data, it has been observed that the general
features of environmental and climatic time series suggest the presence of polyno-
mial trend and visible seasonal effect Brohan et al. (2006). The intuition behind
the concept of trend, seasonal variation and cyclical movement leads to the idea of
decomposition of observed series into ‘unobserved component’ as:
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yt =
∑
j

yjt + εt (1)

where yjt denote the accumulation of unobserved components as trend, seasonal
variation and cyclical variation; εt is the residual effect which is referred to as the
irregular component. Alternatively we could write equation (1) as:

yt =
∏
j

yjt + εt (2)

In equations (1) and (2) the random shocks are assumed to be mutually and
serially uncorrelated with expected value equal to zero and variance σ2

ε ; thus the
trend and seasonal effects are assumed to be random variables changing over time
Rivera (1990). In this paper, we assume that the observed series is functionally
related to both secular trend and seasonal variation.

To estimate the trend component (mt) we assume the least squares method of es-
timation to fit the best polynomial model (model with minimum error variance) of
the form

m̂t = â0 + â1t+ â2t
2 + . . .+ âkt

k (3)

The presence of trend could be confirmed by testing for significance of the estimates
âi, i = 0, 1, . . . , k in the model specified in equation (3). The seasonal component
(st) will be estimated using the model

ŝt = yt − m̂t (4)

Using equation (4), we compute the seasonal monthly index for N years as:

SI(p) =
1

N

N∑
t=1

St(p) (5)

For monthly series we define period as p = January, . . . ,December for the year in
use. To confirm the presence of seasonality in the data set, let the total number
of years be denoted as c (column) and r denotes the total number of months.
By using the Kendall’ test each column represents a permutation of integers 1,
2,3,...,12 and summing across the rows gives the monthly score Mj(j = 1, 2, . . . , 12).

Under the null hypothesis of no seasonal variation, the test statistic is

T =
12
∑[

Mj − c(r+1)
2

]2
cr(r + 1)

(6)

If the series contains significant seasonal effect it will be desirable to adjust the
observed time series by removing the influence of the seasonal component, to have
a de-seasonalized series or to fit models that capture seasonality.
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4.2. Structural breaks indentification

There are a number of tests that rely on the maximization or minimization of some
objective function to determine the time of the structural break in the data set;
tests presented by Zivot and Andrews (1992); Perron (1997) and Bai and Perron
(2003) are not pure objective since they depend on model specification to conduct
the test. In most cases analysts prefer graphical detection methods backed up
with Statistical theory Romilly (2005).

We rely on the dummy variable (DV) technique proposed by Perron (1989) to test
the existence of structural break in the series; this seems reasonable for the tem-
perature series since it exhibit significant change in level and trend manifest grad-
ually over time. We confirm the presence of structural break at time point in the
constant or trend term by estimating the dummy regression equation given below.

∆yt = α0 + α1yt−1 + α2DV ut + α3DV TBt + β1t+ β2DV Tt +
∑

wj∆yt−j + εt (7)

where t is a time trend,

DV ut =

{
0 if t ≤ Tb
1 if t > T − b

DV T = (DV ut) ∗ t,

DV TBut =

{
0 if t ≤ Tb + 1
1 elsewhere .

and εt is independently and identically distributed with mean zero and variance
σ2
ε .

4.3. Modeling temperature data with autoregressive integrated seasonal moving
average models

In this section we examine whether the series contains unit roots at seasonal
monthly frequencies. The existence of unit roots in a seasonal time series implies
that the series is non-stationary. This anomaly creates a number of problems for
determining an appropriate forecasting model, and more so model estimation over
the sample period determines the parameter values that may not be applicable to
forecasting due to changing mean and variance level of the series.

Under the null hypothesis that there is no unit root we shall use the Augmented
Dickey Fuller (ADF) procedure to test a data generating process for difference sta-
tionary (trend non-stationary) against trend stationary. The requirements for the
test are: Given the models

∆Yt = α+ βt+ (θ − 1)Yt−1 + εt (8)

Journal home page: www.jafristatap.net, projecteuclid.org/euclid.ajas



K. Sediakgotla, W. Molefe K. D. Shangodoyin, African Journal of Applied Statistics, Vol. 6
(2), 2019, pages 689 – 710. Time Series Modelling of Monthly average Temperature in
Gaborone-Botswana. 696

and if augmented the model becomes:

Model I :

∆Yt = λYt−1 +

p∑
j=1

τj∆Yt−j + εt (no intercept or linear trend) (9)

Model II :

∆Yt = α+ λYt−1 +

p∑
j=1

τj∆Yt−j + εt (no linear trend) (10)

Model III

∆Yt = α+ βt+ λYt−1 +

p∑
j=1

τj∆Yt−j + εt (includes intercept and linear trend) (11)

where λ = (θ − 1).
Essentially Dickey-Fuller test assumes that the error terms are an independent
and identically distributed process. This assumption is relaxed in the Phillips-
Perron test (1988). The Augmented Dickey Fuller (ADF) (1981) test procedure is
specified when εt is autoregressive to eliminate serial correlation of errors. The
parameter of interest in equations (9), (10) and (11) is λ. If λ = 0, then the series Yt
contains a unit root, hence not stationary. The test adopts a step by step procedure
in testing for presence or otherwise of a unit root. The lag order p is selected such
that p ≤ n/4.

The Box and Jenkins model building approach has come to be a major reference
procedure in the statistics of constructing a model for series. Adopting this
modelling procedure the series being modelled must be stationary with a stable
variance. A non-stationary series will have its ACF value dampened out gradually
with increasing lag period while it will die out fast for a stationary series. A
non-stationary series is made stationary by either de-trending or differencing
- regular differencing or seasonal differencing as may be appropriate. Box and
Jenkins (1976) established fundamental algorithms for building a model for
series. The algorithm is an iterative procedure of model identification, estimation,
diagnostic check and forecasting.

After a tentative model has been identified in which the ACF and PACF measures
play important roles, estimation of the parameters of the tentatively identified
model is performed by minimizing the appropriate conditional sum of squares or
evaluating the relationship between ACF or PACF measures and the parameter of
the model.

Being a tentative model, diagnostic check is conducted on it through the analysis
of the error-terms generated, essentially testing its randomness status and the
significance of the parameters estimated for the model. If the check confirm the
adequacy of the identified model the last stage of model forecasting is performed,

Journal home page: www.jafristatap.net, projecteuclid.org/euclid.ajas



K. Sediakgotla, W. Molefe K. D. Shangodoyin, African Journal of Applied Statistics, Vol. 6
(2), 2019, pages 689 – 710. Time Series Modelling of Monthly average Temperature in
Gaborone-Botswana. 697

however if the model is found to be inadequate the cycle in the model building
algorithms is repeated. The Box and Jenkins model building algorithms is appli-
cable to both the univariate and multivariate modelling procedure. In this paper
we will adopt the Box-Jenkins modelling building approach to fit the ARIMA model.

The first model to consider is given by:

ϑ(L)(1− L)dyt = θ0 + φq(L)εt (12)

where ϑ(L) = (1 − ϑ1L − ϑ2L
2 − · · · − ϑpL

p) is the non-seasonal AR order model;
φ(L) = (1 − φ1L − φ2L

2 − · · · − φqL
q) is the non-seasonal MA order model; L is

the lag operator, d is the order of differencing; θ0 , is a constant called the trend
parameter. Equation (12) is called the autoregressive integrated moving average
(ARIMA) model of order (p, d, q) and is denoted as ARIMA(p, d, q). A general
representation of an ARIMA (p,d,q) process is the determination of the three
parameters. Typically according to Johnston (1984), d is zero or one, or very
occasionally two, and one seeks a parsimonious representation with low values
of p and q. The difficulty in choosing the order of p and q may be helped by a
numerical procedure suggested by Hatanaka (1996). When d has been found,
the ARMA procedure for modelling is applied. Equation (12) will be applied after
the necessary transformations and deseasonalization if the series is found to be
seasonal.

An alternative modelling procedure will then be adopted. In this case the
ARIMA(p,d,q), will be varied by fitting another model that captures seasonality,
equation (13). The model does not require deseasonalization of the series before
fitting it. The best model amongst the two approaches will be identified and used
for forecasting.

The model is presented as

θP (LS)ϑp(L)(1− L)d(1− LS)Dyt = µQ(LS)φq(L)εt (13)

where ϑp(L) = (1 − ϑ1L − ϑ2L2 − · · · − ϑpLp) is the non-seasonal AR order; φq(L) =
(1 − φ1L − φ2L2 − · · · − φqLq) is the non-seasonal MA order; θP (LS) = (1 − θSLS −
θ2SL

2S−· · ·−θPSL
PS) is the P th order seasonal AR operator; µQ(LS) = (1−µS(LS)−

µ2S(L2S) − · · · − µSQ(LSQ)) is the Qth order MA seasonal operator; and εt is the
random element with εt ∼ N(0, σ2

ε), P is the multiplicative seasonal AR order, D is
the order of seasonal differences and Q is the multiplicative seasonal MA order.
The model is denoted as ARIMA(p,d,q)(P,D,Q).

5. Data description and analysis

5.1. Analysis

Table 1 gives the results of the test for seasonality. The series was found to be highly
seasonal at the 1% level of significance. Due to the strong seasonal behavior, figure
1 shows that despite seasonally adjusting the series, there are still some inherent
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seasonal patterns visible. The correlograms of the first difference of the series,
figure 2, shows a non-decaying pattern, which is indicative of a non-stationary
series. They also show a strong seasonal behavior of the series. The correlogramms
of the first difference of the deseasonalized series are given in figure 3. It is observed
from the from figure 3, that the auto correlation and the partial autocorrelation
depict fair elements of seasonality, however the single prominent spikes on both
the ACF and the PACF, and the oscillatory decaying behavior is suggestive of an
ARIMA(1,1,1). In a case in which seasonality doesn’t die out due to taking the first
difference of a non-seasonal difference of the series, it is ideal to then take the
seasonal differencing of the series. The series was found not to have structural
breaks and the results are excluded for further discussion.

Table 1. Test for the presence of seasonality assuming stability

Source Sum of Squares Degrees of freedom Mean Square F-value
Between months 77205.4600 11 7018.67818 395.087a

Residual 8527.1381 480 17.76487
Total 85732.5981 491

a Seasonality present at the 0.1 per cent level.

5.2. The 12th seasonal difference

We proceeded and took a 12th seasonal difference of the original series. Figure
4 shows a fairly constant mean, with clearly evident seasonal spikes in the auto-
correlation and partial autocorrelation functions. The signatures of the seasonal
pattern do appear across the multiple lags of 12 (s, 2s, 3s, . . .). The null hypothesis
of the presence of the unit root is rejected at the 1%, 5% and 10% levels of sig-
nificance as shown by the Dicky Fuller test (see Table 3), implying that the series
is stationary series. The Auto correlation function exhibits an exponential decay
starting at lag 1, suggestive of an AR(1) process. Also there are significant spikes at
lags at 12, and multiple lags of seasonal order 12 suggestive of seasonal effects in-
teracting with the moving average term at those lags. The Partial Auto Correlation
function started to decay at lag 1 indicative of an MA(1) process. We proceed and
fit multiplicative auto regressive integrated moving averages due to the inherent
oscillatory behavior of the ACF and PACF and the seasonality effect. We fit several
processes of an ARIMA(p,d,q)(P,D,Q), as defined in (13), results are given in table
2.
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Fig. 1. Time series plot of monthly temperatures
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Fig. 2. Correlograms of the first difference of the series
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plot.jpg

Fig. 3. Correlograms of the seasonally adjusted series
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Fig. 4. 12th seasonal differences of the series
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Table 3. Testing for unit root for the 12th differenced Series: Augmented Dickey-
Fuller Test

data: monthly series
Dickey-Fuller = -8.4789 Lag order = 8 p-value = 0.01
alternative hypothesis: stationary

An ARIMA(1,1,1)(0,1,1), is identified amongst the models that capture seasonality.
It has the lowest values of the AIC and BIC. It also has the lowest value of the
sums of squares error. The model has captured the seasonal effects at lag 12 for
both the Auto regressive and the Moving Average components, and has highly sig-
nificant coefficients. For the de-seasonalised series, we identified an ARIMA(1,1,1),
amongst all the compared models with the series adjusted for seasonality. This
model has highly significant coefficients and fares better over ARIMA(1,1,1)(0,1,1)
in terms of its forecast power as shown by the marginally lower mean absolute
error and the residual mean squared error.

Bell and Hillmer (1984) state that seasonal adjustment is done to simplify data
so that they may be more easily interpreted by statistically unsophisticated users
without a significant loss of information. Grether and Marlove (1970), further argue
that consumers of seasonally adjusted series are not clear about the use of such
and that those who give it extensive thought often finish by becoming hopelessly
confused by using such a series. Also too many people fall in to the trap of ignoring
seasonality if they are working with de-seasonalized or seasonally adjusted series,
Hatanaka (1996); Enders (1995). These findings imply that it is wise to avoid
using a seasonally adjusted data, but instead models that capture seasonality such
as SARIMA models. We therefore present ARIMA(1,1,1)(0,1,1)[12] as our preferred
model and we further asses its suitability by the residual diagnostics.

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The expanded form of the identified ARIMA(1,1,1)(0,1,1)[12] is as follows:

θP (LS)ϑp(L)(1− L)d(1− LS)Dyt = µq(LS)φq(L)εt

by substituting for p = 1, d = 1, q = 1, P = 0, D = 1 and Q = 1 in to (13), gives

θ1(L)(1− L)1(1− L12)yt = µ1(L12)φ1(L)εt

where ϑ1(L) = (1 − ϑ1L) is the non-seasonal AR order 1, φ1(L) = (1 − φ1L) is the
non-seasonal MA order 1, µ1(L12) = (1 − µ12(L12)) is the MA seasonal operator at
seasonal period 12.
Upon substituting for the lag operators and the coefficients, (13) can be expanded
into

yt = ϑ1yt−1 − µ12εt−12 − φ1εt−1 + φ1µ12εt−13 + εt εt ∼ N(0, σ2)

fit(yt) = 0.378047yt−1 + 0.999εt−12 + 0.9685εt−1 + 0.9675εt−13
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Table 4. Fitted Model - ARIMA(1,1,1)

ar1 ma1
Coefficients 0.3890 -0.9773
s.e. 0.0419 0.0163

(σ̂2 = 2.167) log(L) = −1168.36 AIC=2342.72 AICc=2342.76 BIC=2356.14

z test of coefficients
Estimate Std. Error z-value Pr(> |z|)

ar1 0.389027 0.041932 9.2775 < 2.2e− 16 a

ma1 -0.977250 0.016261 -60.0993 < 2.2e− 16 b

a significant code at 0.000
b significant code at 0.000

Table 5. Fitted Model ARIMA(1,1,1)(0,1,1)[12]

ar1 ma1 sma1
Coefficients 0.378 -0.9685 -1.0000
s.e. 0.044 0.0201 0.0481

σ̂2 = 2.213 log(L)=-1177.76 AIC=2363.52 AICc=2363.58 BIC=2381.33

z-test of coefficients
Estimate Std. Error z-value Pr(> |z|)

ar1 0.378047 0.044009 8.5902 < 2.2e− 16 a

ma1 -0.968455 0.020113 -48.1509 < 2.2e− 16 b

sma1 -0.999998 0.048084 -20.7970 < 2.2e− 16 c

a significant code at 0.000
b significant code at 0.000
c significant code at 0.000

The interaction term φ1µ12 allows the model to be parsimonious. Had we fitted an
additive model, we could have had an unconstraint, coefficient of MA at lag 13,
and this would have led to an over parametrized model.

5.3. Residual Diagnostics

Figure 5 gives the results of the diagnostic analysis. The histogram of residuals
resembles a bell shaped curve, indicating that the normality assumption on the
error terms is not violated. The QQ plot shows that our sample data plotted against
the quantiles computed from a theoretical standard normal distribution follows its
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behavior of a fairly straight line. The plot of the residuals against the fitted values
show a random scatter around the zero line, safe for the concentration of the fitted
values at 22, 25 and 32 points, and it also shows a fairly horizontal band about
that line showing that the variance of the errors is constant. The auto correlation
function shows an immediate decay to zero, a condition consistent with stationary
processes. Overall our plots point to a good model fit.

5.4. Forecasts

Figure 5 shows the forecasts together with the forecast confidence band. It shows
that our forecasts mimic the past behavior of the series. Table 6 shows that our
forecasted values are highly significant with an 80 to 90% confidence level.

Fig. 5. Residual Diagnostics
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Table 6. Forecast

Jan 2014 31.02735 29.10302 32.95167 28.08435 33.97034
Feb 2014 30.78203 28.70248 32.86157 27.60163 33.96242
Mar 2014 29.60049 27.49019 31.71079 26.37306 32.82791
Apr 2014 27.03743 24.91800 29.15686 23.79604 30.27882
May 2014 24.67792 22.55419 26.80165 21.42995 27.92588
Jun 2014 21.85014 19.72347 23.97680 18.59768 25.10259
Jul 2014 21.98954 19.86038 24.11870 18.73327 25.24580
Aug 2014 25.05969 22.92820 27.19118 21.79986 28.31952
Sep 2014 29.10115 26.96739 31.23491 25.83784 32.36445
Oct 2014 30.68132 28.54531 32.81733 27.41457 33.94807
Nov 2014 31.08225 28.94398 33.22051 27.81206 34.35244
Dec 2014 31.56043 29.41991 33.70095 28.28679 34.83407
Jan 2015 31.87609 29.73152 34.02066 28.59625 35.15593
Feb 2015 31.09709 28.94960 33.24458 27.81278 34.38140
Mar 2015 29.71379 27.56378 31.86381 26.42563 33.00196
Apr 2015 27.07447 24.92207 29.22686 23.78266 30.36627
May 2015 24.68611 22.53140 26.84083 21.39076 27.98147
Jun 2015 21.84743 19.69041 24.00445 18.54856 25.14631
Jul 2015 21.98271 19.82340 24.14202 18.68033 25.28509
Aug 2015 25.05131 22.88971 27.21290 21.74543 28.35718
Sep 2015 29.09218 26.92829 31.25606 25.78280 32.40155
Oct 2015 30.67213 28.50596 32.83830 27.35925 33.98500
Nov 2015 31.07297 28.90450 33.24144 27.75658 34.38936
Dec 2015 31.55112 29.38034 33.72190 28.23119 34.87105

Journal home page: www.jafristatap.net, projecteuclid.org/euclid.ajas



K. Sediakgotla, W. Molefe K. D. Shangodoyin, African Journal of Applied Statistics, Vol. 6
(2), 2019, pages 689 – 710. Time Series Modelling of Monthly average Temperature in
Gaborone-Botswana. 708

6. Conclusion

The average maximum temperatures in Gaborone observed at the meteorology De-
partment from January 1960 to December 2013 were studied with the intention of
identifying the best time series model that can be used for forecasting. The series
was found to be highly seasonal with peaks observed around the periods of Decem-
ber to January. It was found that seasonally adjusting the series prior to applying
the Box and Jenkins procedure for identifying the best model did not lead to the
seasonal effects dying out, despite giving a fairly good ARIMA(1,1,1). It is argued by
many authors that it is wise to avoid using a seasonally adjusted data, but instead
models that capture seasonality such as SARIMA models. This prompted fitting a
seasonal auto regressive moving average process, ARIMA(p,d.q)(P,D,Q). Seasonal-
ity was captured at lags s=12, and multiple lags s, 2s, 3s, . . .. The autocorrelation
function and the partial autocorrelation function, Dickey Fuller tests of station-
arity and other model comparison methods led to an ARIMA(1,1,1)(0,1,1)[12].The
seasonal multiplicative ARIMA was found to be parsimonious as compared to an
additive seasonal ARIMA which would have been over parametrized. The identified
model gave a good fit and can be used for short term forecasts.
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