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Abstract. A generalization of the Repeated Median of Slope (RMS) is carried out to ac-
commodate multiple regression models. This is obtained through the investigation of the
behavior of total change in the dependent variable with respect to an independent variable.
The asymptotic behavior of the estimator is investigated when certain percentage of the
observations come from contamination-outlier generating unknown distribution. The per-
formance of the estimator is compared with that of the ordinary least square (OLS) and
huber estimator using bias, variance and RMSE. Expectedly, the estimator is consistent and
more efficient than the OLS and huber when the observations are contaminated with outlier.
Though using RMSE as evaluation criteria its performance is comparably very poor.
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Résumé : Une généralisation de la méthode de la médiane répétée du coefficient à l’origine
est mise en oueuvre pour améloirer les méthodes de regression multiples. Ceci est opérée
par l’investigation du comportement de la variable dépendante par rapport à la variable
indépendante lorsque la premiére subit un changement total. Le comportement asympto-
tique est étudiée lorsqu’un certain pourcentage des observations provient d’une distribution
inconnue générant des contaminations tendant à l’aberration (outliers). L’estimateur obtenu
est plus performant, dans les conditions décrites plus hait, que ceux de la méthode des moin-
dres carrés et de la méthode Uber par le biais et la variance. Cependant, par le RMSE, elle
est moins efficace.

1. Introduction

Statistical inferences are based in part upon the observations and equally in part upon
the assumptions about the underlying distribution Huber (1981). These assumptions are
generally formalization of the conjecture about an often blurred knowledge of the data
set. However, the formalizations are simplifications of reality and their validity is at best
approximate. The normality assumption is central to most classical methods. Justification
of the normality assumption has been unsuccessfully attempted by several authors in
the past but it is widely believe that the assumption gives approximate representation
to many real data sets and at the same time is theoretically convenient Maronna et al.
(2006). In practice, though most observations could be accounted for by underlying normal
distribution, but the underlying distributions of some or part of observations are always
non-normal. The non-normality of some or part of observations makes the classical method
unsuitable for such observations. Such observations which are legitimate and yet comes
from non-normal distribution could be said to be outlying observation if they are farther
apart from the rest of the observations.

The Least Square method proposed by Legendre in 1805 is a classical method based on
normality of the random term. This method was widely accepted as it was the only method
of estimation that could be effectively computed before the advent of electronic computer
Stigler (1986). But despite the effectiveness of this method, it has a breakdown point of zero
(like most classical method). That is, the maximum fraction of contamination the estimate
can tolerate before its value is completely determined by the contaminating data is zero
Yohai (1987). A number of estimators with higher breakdown points have been proposed.
Notably among are the Median based estimators like the Median of Pair-wise slope (MPS)
by Thiel (1950) and Sen (1968), Generalized Median of Slope (GMS) by Brown and Mood
(1951) and Repeated Median of Slope(RMS) by Siegel (1982). Most of these estimators
have higher breakdown points than the Least Square but RMS is the most desirable due
to its breakdown point of 0.5. Since the introduction of this procedure by Siegel (1982),
researchers have investigated some methodology relating to the procedure while others are
basically interested in the application. Among such researchers are Borowski and Fried
(2011), Bernholt et al. (2006), Bernholt and Fried (2003) and Fried et al. (2003)

Unlike the least square method, RMS can only be used to estimate the slope of simple
linear regression. Though other median based estimators for multiple regression such as
Least Median of Slopes (LMS) by Rousseeuw and Wagner (1994) have been developed, the
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generalization of the RMS into multiple repeated median of slope is still appealing due to its
high breakdown point. This work attempts to generalize the RMS estimator into Multiple
Repeated Median of Slope (MRMS) for the estimation of the parameters of multiple linear
regression.

2. Generalization

Consider the regression through the origin

yi = βxi + εi. (1)

The slope of Siegel’s Repeated Median regression line Siegel (1982) is define as

β̂RMS = Med1≤i≤nMedj∈Jir(i, j). (2)

where Ji = {j : (i, j) ∈ Integer}, for 1 ≤ i ≤ n.

The ratio r(i, j) is defined as

r(i, j) =
yj − yi

xj − xi
; xj 6= xi. (3)

where (xi, yi) and (xj , yj) are independent. Equation (3) can be written in a more compact
form as

r =
δy

δx
; δx 6= 0. (4)

Suppose model (1) is a multiple regression through the origin given by

yi = β1x1i + β2x2i + · · ·+ βmxmi + εi (5)

Following a similar notation as Eq. (4),the slope of y with respect to x1 can be written as

r1 =
δy

δx1
=

δy

δx1

δx1

δx1
+

δy

δx2

δx2

δx1
+ · · ·+ δy

δxm

δxm

δxm
. (6)

where δx1, δx2, . . . , δxm 6= 0. That is, the slope of Equation (5) with respect to x1 can be
written as

r1(i, j) =
δy

δx1
=

(
yj − yi

x1j − x1i

) (
x1j − x1i

x1j − x1i

)
+

(
yj − yi

x2j − x2i

)
(

x2j − x2i

x1j − x1i

)
+ · · ·+

(
yj − yi

xmj − xmi

) (
xmj − xmi

x1j − x1i

)
. (7)

In general, the slope of y with respect to xk is :

rk =
δy

δxk
=

δy

δx1

δx1

δxk
+

δy

δx2

δx2

δxk
+ · · ·+ δy

δxk

δxk

δxk
+ · · ·+ δy

δxm

δxm

δxk
. (8)
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for δx1, δx2, . . . , δxm 6= 0 and 1 ≤ k ≤ m; {k ∈ Integer}, implying;

rk(i, j) =
δy

δxk
=

(
yj − yi

x1j − x1i

) (
x1j − x1i

xkj − xki

)
+

(
yj − yi

x2j − x2i

) (
x2j − x2i

xkj − xki

)
+ · · ·+

(
yj − yi

xkj − xki

) (
xkj − xki

xkj − xki

)
+ · · ·+

(
yj − yi

xmj − xmi

) (
xmj − xmi

xkj − xki

)
. (9)

Let gk(i, j) =
yj − yi

xkj − xki
and ghk(i, j) =

xhj − xhi

xkj − xki

Thus rk(i, j) can be represented as

rk(i, j) = g1.g1k(i, j) + g2.g2k(i, j) + · · ·+ gk.gkk(i, j) + · · ·+ gm.gmk(i, j). (10)

Thus the multiple repeated median is written as1

β̂MRMS
k =

m∑
h=1

[(Med1≤i≤nMedj∈Ji
gh(i, j))(Med1≤i≤nMedj∈Ji

ghk(i, j))] . (11)

3. Algorithm

Suppose the regression model (5) is written in matrix form as

y = Xβ + ε, (12)

where y is n × 1 vector of dependent variable, X is matrix of independent variables and
β = (β1, β2, . . . βm) is the vector of parameters to be estimated. The algorithm goes as
follows:

1. Repeat the following step for j = 1(1)n, where h = 1 and i = 1:
(a) Compute

gh =
yi − yj

xhi − xhj
; (i, j) ∈ I2, j = 1(1)n,

, where
yi − yj

xhi − xhj
= 0, if i = j. This gives a row vector with n elements.

(b) Obtain the median of the elements. Denote this median by

Medj∈Ji
g1(1, j)

.
2. Repeat step1 above for i = 2(1)n and h = 1. This gives n column vector of medians

(i = 1 inclusive)
3. Obtain the median of the column vector in step2 and denote it by

Med1≤i≤nMedj∈Ji
g1(i, j)

.
1 For a simple linear regression model, m = 1 and h = k = 1, thus Eq. (11) reduces to RMS.
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4. For k = 1, carry out steps1− 3 above on

ghk =
xhi − xhj

xki − xkj
; (i, j) ∈ I2, j = 1(1)n,

where
xhi − xhj

xki − xkj
= 0, if i = j and denote the median by

Med1≤i≤nMedj∈Ji
g11(i, j)

.
5. Obtain the product

(Med1≤i≤nMedj∈Jig1(i, j)) . (Med1≤i≤nMedj∈Jig11(i, j))

.
6. Repeat step1− 5 above for h = 2(1)m
7. Obtain the sum;

β̂MRMS
1 =

m∑
h=1

[(Med1≤i≤nMedj∈Ji
gh(i, j))(Med1≤i≤nMedj∈Ji

ghk(i, j))] .

. This is the estimate of β1.
8. Repeat step1− 6 for k = 2(1)m to obtain estimates of other parameters.

4. Monte Carlo

A Monte Carlo experiment is conducted to examine the performance and sensitivity of
the estimator to different fractions of contamination. Assumed values are assigned to the
parameters of the model and the variables are simulated in three different stages:

1. The regressors are simulated from uniform distribution according to Kmenta (1971). This
is done with the preconception of testing the suitability of the estimator for economic
data, since most economic time series data are positive numbers.

2. The random errors are simulated from N(0, 1)
3. Using the assumed values of the parameters, the simulated regressors and random errors,

the regressand is obtained using model (5)

The ϕ-contamination neighborhood defined by Tukey (1960) is employed to allow for outliers
in one of the regressors. This neighborhood is defined as

Fϕ(Fθ) = {F : F = (1− ϕ)Fθ + ϕF ∗}, (13)

where ϕ is the fraction of contamination, Fθ is the distribution of the regressors; assumed
to be a uniform(0, 1) distribution; and F ∗ is the contamination-outlier generating unknown
distribution. F ∗ is assumed to be uniform(7, 10). This design gives control over the fraction
of outliers in the simulation. The experiment is carried out for sample sizes (n) of 10, 20,
40, 60, 80 and 100 in other to examine both the small sample and large sample properties
of the estimator. The contamination levels (ϕ) are set at 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.
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Table 1. Simulated Sample of size n = 20 and ϕ = 0.2

n y x1 x2 x3 e

1 3.9208678 7.696101178 0.98675716 0.33107634 0.38917344
2 1.5877772 7.614867472 0.72719996 0.03299742 -1.12868708
3 0.3884104 9.776816593 0.13738814 0.76277599 -0.09546952
4 2.1795572 9.721272234 0.61011762 0.81987150 -1.03705413
5 3.5537455 0.266365227 0.65817356 0.47676172 -0.33193291
6 1.4631162 0.005320937 0.68434302 0.39929991 -0.87587793
7 2.4110814 0.708098713 0.17853648 0.20310558 0.91457350
8 1.4269872 0.477091049 0.72996698 0.02361824 0.11124994
9 4.7310033 0.334091914 0.49334642 0.92244026 -0.57565853
10 2.2506782 0.042785810 0.99334720 0.68291477 0.74083597
11 1.9876764 0.316999218 0.20024144 0.89857855 -0.14300568
12 5.0363247 0.907181498 0.91401146 0.48215578 -1.02542318
13 −0.8603620 0.028331155 0.41152147 0.06107988 1.54798131
14 3.7697408 0.334414804 0.73388429 0.84995186 1.37866657
15 1.1732457 0.045177345 0.24205835 0.83040722 -1.84259309
16 0.7929323 0.733478248 0.80711575 0.36932534 1.01564571
17 1.8999194 0.056418553 0.55033752 0.88539232 -0.45762652
18 3.6672891 0.590559146 0.56523018 0.76656049 0.75489645
19 4.7607825 0.724298270 0.84155729 0.68817198 -0.91297653
20 4.7607825 0.724298270 0.84155729 0.68817198 1.57328223

The experiment is replicated 1, 000 times.

Table 1 is a sample data from the simulation of a regression model with three regressors.
The parameters of the model (β) are set at (1.2 2 1.5)′ in accordance with matrix form
in Eq. (12). The sample size n = 20 and ϕ is set at 0.2. Setting ϕ = 0.2 allows for four
sample points to come from the contamination-outlier generating distribution U(7, 10) and
the rest from the main distribution U(7, 10). All simulations and computations programs
are done using R statistical software.

This design not only allows for violation of regression distributional assumption which mo-
tivates the development of this estimator but also allows for certain number of outliers in a
regressors. The performance of the estimator when no assumption is violated is investigated
by assuming ϕ = 0.0

5. Analysis and Discussion of Results

The estimator is evaluated using asymptotic bias, variance and root mean square errors
(RMSE). The results are examined both across the sample sizes and fraction of contami-
nation. Comparison is carried out between the asymptotic properties of the estimator and
that of both ordinary least square (ols) and huber estimator. For ease of evaluation, the
Euclidean norms; of the values from the criteria; over the variables are used instead of the
real values from the criteria. Table 2 below shows the values obtained for the bias both
across the sample sizes and the fraction of contamination ϕ.
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Table 2. Comparison of Bias of MRMS, OLS and Huber estimator

ϕ Estrs n = 20 n = 40 n = 60 n = 80 n = 100

0.0
mrms 0.079337 0.049610 0.017282 0.020060 0.021903
ols 0.023034 0.012189 0.013445 0.009198 0.010548
h 0.021064 0.015159 0.011108 0.011055 0.010288

0.1
mrms 0.661179 0.734359 0.733884 0.764685 0.763978
ols 1.169018 1.166978 1.169208 1.167135 1.168809
h 1.170668 1.167122 1.169280 1.167258 1.1688229

0.2
mrms 1.025203 1.050809 1.065086 1.065370 1.065714
ols 1.179500 1.178410 1.176515 1.175425 1.177344
h 1.179191 1.178339 1.176184 1.175594 1.177205

0.3
mrms 1.135147 1.141504 1.136983 1.137731 1.136331
ols 1.179170 1.176424 1.180804 1.179312 1.178269
h 1.178871 1.176360 1.180225 1.179175 1.178147

0.4
mrms 1.172789 1.170705 1.169520 1.169504 1.169137
ols 1.179737 1.179049 1.177334 1.17855 1.178793
h 1.180013 1.179295 1.177149 1.178616 1.178790

0.5
mrms 1.183010 1.191613 1.190554 1.189385 1.189167
ols 1.176694 1.179213 1.177333 1.177620 1.177223
h 1.176447 1.178738 1.177159 1.177643 1.177215

If no outlier is present, though OLS is better, but MRMS competes reasonably. When the
observations are contaminated, expectedly OLS breaks down while MRMS is able to absorb
the shock due to outliers (especially when the fraction of contamination is small), though
its asymptotic bias tends to fluctuate with increasing fraction of contamination but it tends
to converge to the true value of the parameter.

To examine the general performances of the estimators irrespective of their performances
with respect to each of the parameters, the Euclidean norm of the variance is also used. The
variance of OLS is smaller than that of the MRMS when no outlier is present but when the
observations become contaminated with outliers that of the MRMS performs better; though
when fraction of contamination increases above 40%, the variance of OLS tends to be better.
As expected of any good estimator, the variance of MRMS decreases consistently as sample
size is increased. Thus MRMS is asymptotically consistent.
Using RMSE as evaluation criterion, it is discovered that both mrms and huber estima-
tor performs poorly unlike the OLS. This can be attributed to better variance of OLS in
comparison with the other two estimators.

6. Conclusion

A generalization of the Repeated Median of Slope (RMS) is carried out to accommodate
more than one independent variable in the regression models. This is obtained through the
investigation of the behavior of total change in the dependent variable with respect to an
independent variable. A Monte Carlo experiment is conducted to investigate the asymptotic
behavior of the estimator obtained; Multiple Repeated Median of Slope (MRMS); when cer-
tain percentage of the observations comes from contamination-outlier generating unknown
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Table 3. Comparison of variance of MRMS, OLS and Huber estimator

ϕ Estrs n = 20 n = 40 n = 60 n = 80 n = 100

0.0
mrms 1.913983 1.325794 0.937852 0.937852 0.838022
ols 1.746626 1.221282 0.831740 0.831740 0.749025
h 1.888921 1.305542 0.925093 0.925093 0.821508

0.1
mrms 0.931970 0.641697 0.450296 0.450296 0.381520
ols 1.667803 1.150668 0.809852 0.809852 0.722136
h 1.761182 1.287431 0.879185 0.879185 0.814008

0.2
mrms 0.395660 0.261082 0.156952 0.156952 0.130952
ols 1.628530 1.143849 0.780252 0.780252 0.725138
h 1.665506 1.248003 0.829442 0.829442 0.804302

0.3
mrms 0.184248 0.119758 0.088998 0.088998 0.083475
ols 1.617309 1.108583 0.782661 0.782661 0.703805
h 1.689279 1.200506 0.857375 0.857375 0.746224

0.4
mrms 0.141642 0.101591 0.071799 0.071799 0.066578
ols 1.605376 1.096815 0.782052 0.782052 0.709216
h 1.681168 1.215627 0.829810 0.829810 0.767835

0.5
mrms 0.127374 0.091921 0.064898 0.064899 0.060856
ols 1.665452 1.133068 0.793207 0.793207 0.712386
h 1.780848 1.186381 0.901578 0.901578 0.782579

Table 4. Comparison of RMSE of MRMS, OLS and Huber estimator

ϕ Estrs n = 20 n = 40 n = 60 n = 80 n = 100

0.0
mrms 2.736653 1.316286 0.668114 0.677499 0.541361
ols 2.167027 1.089508 0.495614 0.506909 0.418272
h 2.617947 1.283965 0.635742 0.646337 0.522890

0.1
mrms 2.335384 2.150211 2.436754 2.082757 2.066172
ols 2.082743 1.110979 0.575138 0.653584 0.554261
h 2.333979 1.360319 0.675270 0.743597 0.677992

0.2
mrms 2.309015 2.287612 2.633326 2.272637 2.274221
ols 2.006458 1.084645 0.533304 0.612771 0.569744
h 2.125101 1.292760 0.589972 0.675903 0.646274

0.3
mrms 2.369599 2.359320 2.721901 2.358832 2.353661
ols 1.946561 1.014107 0.530951 0.608540 0.511680
h 2.158916 1.179065 0.633632 0.692967 0.595661

0.4
mrms 2.413164 2.402825 2.738591 2.396628 2.396298
ols 1.935293 0.979870 0.522162 0.591837 0.509176
h 2.123809 1.199404 0.578757 0.646806 0.603765

0.5
mrms 2.415916 2.429854 2.763109 2.420653 2.418941
ols 2.061542 1.004630 0.511887 0.585889 0.510950
h 2.397901 1.141492 0.676883 0.728189 0.581821

distribution. To allow for the presence of outlier in the observation the gross error model
is used in simulating outlier infested dependent variables. The performance of MRMS is
evaluated and compared with that of the ordinary least square (OLS) and huber estimator
using bias, variance and RMSE. The bias, variance and RMSE of the MRMS decrease with
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increase in sample size. As expected of median based estimators, MRMS is more consistent
and efficient than the OLS and huber when the observations are contaminated with outlier,
though OLS out-performs it when no outlier is present. Using RMSE, the estimator is
outperformed by the other two estimators.
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