

Banach J. Math. Anal. 8 (2014), no. 2, 60–66

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

PSEUDOQUOTIENTS ON COMMUTATIVE BANACH ALGEBRAS

DRAGU ATANASIU¹, PIOTR MIKUSIŃSKI^{2*} AND ANGELA SIPLE²

Communicated by M. Abel

ABSTRACT. We consider pseudoquotient extensions of positive linear functionals on a commutative Banach algebra \mathcal{A} and give conditions under which the constructed space of pseudoquotients can be identified with all Radon measures on the structure space $\hat{\mathcal{A}}$.

1. INTRODUCTION

Let \mathcal{A} be a Banach algebra with involution. The structure space of \mathcal{A} , denoted by $\hat{\mathcal{A}}$, is the set of all multiplicative linear functionals on \mathcal{A} . We use \hat{x} to denote the Gelfand transform of x, that is $\hat{x}(\xi) = \xi(x)$ for any $x \in \mathcal{A}$ and $\xi \in \hat{\mathcal{A}}$.

A linear functional $f : \mathcal{A} \to \mathbb{C}$ is called positive, if

$$f(x^*x) \ge 0$$
, for all $x \in \mathcal{A}$.

The set of all positive linear functionals on an algebra \mathcal{A} is denoted by $\mathcal{P}(\mathcal{A})$. The following theorem (attributed to Maltese in [5]) describes $\mathcal{P}(\mathcal{A})$ in terms of measures on $\hat{\mathcal{A}}$.

Theorem 1.1. Let \mathcal{A} be a commutative Banach algebra with a bounded approximate identity and an isometric and symmetric involution. Let f be a linear

Date: Received: Aug. 6, 2013; Accepted: Sep. 8, 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46J05; Secondary 43A32, 43A35, 28C05. Key words and phrases. Banach algebra, structure space, positive linear functional, pseudoquotient, Radon measure.

functional on \mathcal{A} . Then $f \in \mathcal{P}(\mathcal{A})$ if and only if

$$f(x) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) d\mu_f(\xi),$$

for all $x \in A$, with respect to a unique positive Radon measure on \hat{A} of total variation ||f||.

By a Radon measure on $\hat{\mathcal{A}}$ we mean a continuous linear functional on the space $\mathcal{K}(\hat{\mathcal{A}})$ of continuous complex-valued functions on $\hat{\mathcal{A}}$ with compact support equipped with the standard inductive limit topology. The space of all such measures will be denoted by $\mathcal{M}(\hat{\mathcal{A}})$. The set of all positive Radon measures on $\hat{\mathcal{A}}$ will be denoted by $\mathcal{M}_+(\hat{\mathcal{A}})$ and the set of all bounded positive Radon measures on $\hat{\mathcal{A}}$ will be denoted by $\mathcal{M}_+^b(\hat{\mathcal{A}})$. The topology of $\mathcal{M}_+^b(\hat{\mathcal{A}})$ is the topology of uniform convergence on $\hat{\mathcal{A}}$ and the topology of $\mathcal{M}_+(\hat{\mathcal{A}})$ is the topology of uniform convergence on compact subsets of $\hat{\mathcal{A}}$.

Let $\mathcal{F} : \mathcal{P}(\mathcal{A}) \to \mathcal{M}^b_+(\hat{\mathcal{A}})$ be the map defined by Maltese's theorem, that is, $\mathcal{F}(f) = \mu_f$. In terms of the introduced notation, Theorem 1.1 states that \mathcal{F} is an isometry between $\mathcal{P}(\mathcal{A})$ and $\mathcal{M}^b_+(\hat{\mathcal{A}})$. In this paper we give conditions under which $\mathcal{P}(\mathcal{A})$ can be extended to a space of pseudoquotients $\mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S})$ such that \mathcal{F} can be extended to a bijection between $\mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S})$ and $\mathcal{M}_+(\hat{\mathcal{A}})$.

In the next section we recall the construction of pseudoquotients and its basic properties. The construction of pseudoquients was introduced in [8] under the name of "generalized quotients." The motivation for the idea, early developments, and later modifications, are discussed in [9]. The construction of pseudoquotients has desirable properties. For instance, it preserves the algebraic structure of Xand has good topological properties. There is growing evidence that pseudoquotients can be a useful tool (see, for example, [1], [2], or [3]).

In Section 3 we formulate and prove the main result of the paper. In the final section we discuss some examples. We also show that the result in [2] is a special case of the construction presented here.

2. Pseudoquotients

Let X be a nonempty set and let S be a commutative semigroup acting on X injectively. The relation

$$(x,\varphi) \sim (y,\psi)$$
 if $\psi x = \varphi y$

is an equivalence in $X \times S$. We define $\mathcal{B}(X, S) = (X \times S)/\sim$. Elements of $\mathcal{B}(X, S)$ are called pseudoquotients. The equivalence class of (x, φ) will be denoted by $\frac{x}{\varphi}$. Thus $\frac{x}{\varphi} = \frac{y}{\psi}$ means $\psi x = \varphi y$.

Elements of X can be identified with elements of $\mathcal{B}(X, S)$ via the embedding $\iota : X \to \mathcal{B}(X, S)$ defined by $\iota(x) = \frac{\varphi x}{\varphi}$, where φ is an arbitrary element of S. The action of S can be extended to $\mathcal{B}(X, S)$ via $\varphi \frac{x}{\psi} = \frac{\varphi x}{\psi}$. If $\varphi \frac{x}{\psi} = \iota(y)$, for some $y \in X$, we simply write $\varphi \frac{x}{\psi} \in X$ and $\varphi \frac{x}{\psi} = y$. For instance, we have $\varphi \frac{x}{\varphi} = x$.

In the case X is a topological space or a convergence space and S is a commutative semigroup of continuous injections acting on X, then we can define a

convergence in $\mathcal{B}(X, S)$ as follows: If, for a sequence $F_n \in \mathcal{B}(X, S)$, there exist a $\varphi \in S$ and an $F \in \mathcal{B}(X, S)$ such that $\varphi F_n, \varphi F \in X$, for all $n \in \mathbb{N}$, and $\varphi F_n \to \varphi F$ in X, then we write $F_n \xrightarrow{I} F$ in $\mathcal{B}(X, S)$. In other words, $F_n \xrightarrow{I} F$ in $\mathcal{B}(X, S)$ if $F_n = \frac{x_n}{\varphi}, F = \frac{x}{\varphi}$, and $x_n \to x$ in X, for some $x_n, x \in X$ and $\varphi \in S$.

This convergence is sometimes referred to as type I convergence. It is quite natural, but it need not be topological. For this reason we prefer to use the convergence defined as follows: $F_n \to F$ in $\mathcal{B}(X, S)$ if every subsequence (F_{p_n}) of (F_n) has a subsequence (F_{q_n}) such that $F_{q_n} \xrightarrow{I} F$.

It is easy to show that the embedding $\iota : X \to \mathcal{B}(X, S)$, as well as the extension of any $\varphi \in S$ to a map $\varphi : \mathcal{B}(X, S) \to \mathcal{B}(X, S)$ defined above, are continuous.

3. The main result

In this section we will assume \mathcal{A} to be a nonunital commutative Banach algebra with bounded approximate identities and an isometric and symmetric involution. In addition, we assume that \mathcal{A} satisfies the following condition:

 Σ There exists a sequence $a_1, a_2, \ldots \in \mathcal{A}$ such that $\hat{a}_1, \hat{a}_2, \ldots \in \mathcal{K}(\mathcal{A})$ and for every $\xi \in \hat{\mathcal{A}}$ there is an n such that $\hat{a}_n(\xi) \neq 0$.

For $a \in \mathcal{A}$, by Λ_a we denote the operation on linear functionals on \mathcal{A} defined by $(\Lambda_a f)(x) = f(ax)$. Let

$$\mathcal{S} = \left\{ \Lambda_a : \hat{a} > 0 \text{ on } \hat{\mathcal{A}} \right\}.$$

Lemma 3.1. If \mathcal{A} satisfies Σ , then \mathcal{S} is a nonempty commutative semigroup of injective maps acting on $\mathcal{P}(\mathcal{A})$.

Proof. Without loss of generality, we may assume that $\hat{a}_n \geq 0$ and that for every $\xi \in \hat{\mathcal{A}}$ there exists an n such that $\hat{a}_n(\xi) > 0$ (otherwise, we take $a_n a_n^*$ instead of a_n). If we choose $\lambda_n > 0$ such that $\sum_{n=1}^{\infty} \|\lambda_n a_n\| < \infty$ and define $a = \sum_{n=1}^{\infty} \lambda_n a_n$, then $\Lambda_a \in \mathcal{S}$.

Clearly, \mathcal{S} is a commutative semigroup. Let $f \in \mathcal{P}(\mathcal{A})$ and $\Lambda_a \in \mathcal{S}$. By Maltese's theorem [5], $f(x) = \int_{\hat{\lambda}} \hat{x}(\xi) d\mu(\xi)$ for some $\mu \in \mathcal{M}^b_+(\hat{\mathcal{A}})$. Thus

$$(\Lambda_a f)(x) = f(ax) = \int_{\hat{\mathcal{A}}} \widehat{ax}(\xi) d\mu(\xi) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) \hat{a}(\xi) d\mu(\xi).$$

Since $\hat{a}(\xi) > 0$ for all $\xi \in \hat{\mathcal{A}}$, \hat{a} is a positive bounded function on $\hat{\mathcal{A}}$. Thus $\tilde{\mu} = \hat{a}\mu \in \mathcal{M}^b_+(\hat{\mathcal{A}})$ and $\Lambda_a f(x) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) d\tilde{\mu}(\xi)$. Consequently $\Lambda_a f \in \mathcal{P}(\mathcal{A})$. If $\Lambda_a f = 0$, then

$$0 = f(ax) = \int_{\hat{\mathcal{A}}} \widehat{ax}(\xi) d\mu(\xi) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) \hat{a}(\xi) d\mu(\xi),$$

for all x in A. Therefore $\hat{a}\mu = 0$ and $\mu = 0$, because $\hat{a} > 0$. Thus

$$f(x) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) d\mu(\xi) = 0.$$

Hence Λ_a is injective.

1			

The map $\mathcal{F}: \mathcal{P}(\mathcal{A}) \to \mathcal{M}^b_+(\hat{\mathcal{A}})$ defined by Maltese's theorem, can be extended to a map $\mathcal{F}: \mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S}) \to \mathcal{M}_+(\hat{\mathcal{A}})$ in the natural way:

$$\mathcal{F}\left(\frac{f}{\Lambda_a}\right) = \frac{\mathcal{F}(f)}{\hat{a}} = \frac{1}{\hat{a}}\mu_f.$$
(3.1)

It is clear that \mathcal{F} is well-defined and that it is injective.

Theorem 3.2. Let \mathcal{A} be a nonunital commutative Banach algebra with a bounded approximate identity and an isometric and symmetric involution. If \mathcal{A} satisfies Σ , then the extended \mathcal{F} defined by (3.1) is an bijection from $\mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S})$ to $\mathcal{M}_+(\hat{\mathcal{A}})$.

Proof. It suffices to show that \mathcal{F} is surjective. Let $\mu \in \mathcal{M}_+(\hat{\mathcal{A}})$. There are $a_n \in \mathcal{A}$ such that $\hat{a}_n \geq 0$, supp \hat{a}_n is compact, and such that for every $\xi \in \hat{\mathcal{A}}$ there exists an n such that $\hat{a}_n(\xi) > 0$. Then $\hat{a}_n\mu$ is a finite positive Radon measure on $\hat{\mathcal{A}}$ for every $n \in \mathbb{N}$. There exist positive numbers $\lambda_1, \lambda_2, \ldots$ such that $\sum_{n=1}^{\infty} \lambda_n \hat{a}_n \mu$ defines a finite positive Radon measure on $\hat{\mathcal{A}}$. By Maltese's theorem there exist $f \in \mathcal{P}(\mathcal{A})$ such that

$$\mu_f = \sum_{n=1}^{\infty} \lambda_n \hat{a}_n \mu$$

Without loss of generality, we can assume that the numbers $\lambda_1, \lambda_2, \ldots$ are chosen such that

$$\sum_{n=1}^{\infty} \|\lambda_n a_n\| < \infty.$$

Let $a = \sum_{n=1}^{\infty} \lambda_n a_n$. Then $\Lambda_a \in \mathcal{S}$ and $\sum_{n=1}^{\infty} \lambda_n \hat{a}_n \mu = \hat{a}\mu$. Thus
 $\mathcal{F}\left(\frac{f}{\Lambda_a}\right) = \frac{\mu_f}{\hat{a}} = \frac{\hat{a}\mu}{\hat{a}} = \mu.$

Theorem 3.3. The map $\mathcal{F} : \mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S}) \to \mathcal{M}_+(\hat{\mathcal{A}})$ is a sequential homeomorphism.

Proof. If $F_n \xrightarrow{I} F$ in $\mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S})$, then $F_n = \frac{f_n}{\Lambda_a}$, $F = \frac{f}{\Lambda_a}$, and $f_n \to f$ in $\mathcal{P}(\mathcal{A})$ for some $f_n, f \in \mathcal{P}(\mathcal{A})$, where $f_n \to f$ means $f_n(x) \to f(x)$ for all $x \in \mathcal{A}$. Consequently,

$$\int_{\hat{\mathcal{A}}} \hat{x}(\xi) d\mu_{f_n}(\xi) \to \int_{\hat{\mathcal{A}}} \hat{x}(\xi) d\mu_f(\xi)$$

for all $x \in \mathcal{A}$. Since the involution in \mathcal{A} is symmetric and $\Gamma(\mathcal{A}) = \{\hat{x} : x \in \mathcal{A}\}$ strongly separates points in $\hat{\mathcal{A}}$ (see, for example, Theorem 2.2.7 in [6]), we obtain

$$\int_{\hat{\mathcal{A}}} \varphi(\xi) d\mu_{f_n}(\xi) \to \int_{\hat{\mathcal{A}}} \varphi(\xi) d\mu_f(\xi)$$

for all $\varphi \in \mathcal{K}(\hat{\mathcal{A}})$. Therefore,

$$\int_{\hat{\mathcal{A}}} \varphi(\xi) \frac{d\mu_{f_n}(\xi)}{\hat{a}(\xi)} \to \int_{\hat{\mathcal{A}}} \varphi(\xi) \frac{d\mu_f(\xi)}{\hat{a}(\xi)}$$

for all $\varphi \in \mathcal{K}(\hat{\mathcal{A}})$, which means that $\mathcal{F}(F_n) \to \mathcal{F}(F)$ in $\mathcal{M}_+(\hat{\mathcal{A}})$.

Now assume $\mu_n, \mu \in \mathcal{M}_+(\hat{\mathcal{A}})$ and

$$\int_{\hat{\mathcal{A}}} \varphi(\xi) d\mu_n(\xi) \to \int_{\hat{\mathcal{A}}} \varphi(\xi) d\mu(\xi)$$

for all $\varphi \in \mathcal{K}(\hat{\mathcal{A}})$. There exist $\lambda_k > 0, k \in \mathbb{N}$, such that $\sum_{k=1}^{\infty} \lambda_k \hat{a}_k \mu_n$ is a finite measure for all $n \in \mathbb{N}$ and $\Lambda_a \in \mathcal{S}$, where $a = \sum_{k=1}^{\infty} \lambda_k a_k$. Let

$$f_n = \mathcal{F}^{-1}\left(\sum_{k=1}^{\infty} \lambda_k \hat{a}_k \mu_n\right) = \mathcal{F}^{-1}(\hat{a}\mu_n)$$

and

$$f = \mathcal{F}^{-1}\left(\sum_{k=1}^{\infty} \lambda_k \hat{a}_k \mu\right) = \mathcal{F}^{-1}(\hat{a}\mu).$$

Then $\frac{f_n}{\Lambda_a} = \mathcal{F}^{-1}(\mu_n)$ and $\frac{f}{\Lambda_a} = \mathcal{F}^{-1}(\mu)$. Moreover,

$$f_n(x) = \int_{\hat{\mathcal{A}}} \hat{x}(\xi) \hat{a}(\xi) d\mu_n(\xi) \to \int_{\hat{\mathcal{A}}} \hat{x}(\xi) \hat{a}(\xi) d\mu(\xi) = f(x)$$

for every $x \in \mathcal{A}$. Therefore $\frac{f_k}{\Lambda_a} \xrightarrow{I} \frac{f}{\Lambda_a}$ in $\mathcal{B}(\mathcal{P}(\mathcal{A}), \mathcal{S})$.

4. EXAMPLES

In this section we give some examples of spaces where the assumptions of Theorem 3.2 are satisfied.

4.1. Normal algebras. Let \mathcal{A} be a commutative Banach algebra. We say that \mathcal{A} is normal [7], if for every compact $K \subset \hat{\mathcal{A}}$ and closed $E \subset \hat{\mathcal{A}}$ such that $K \cap E = \emptyset$, there exists $x \in \mathcal{A}$ such that

$$\hat{x}(\xi) = 1 \text{ for } \xi \in K \text{ and } \hat{x}(\xi) = 0 \text{ for } \xi \in E.$$

If \mathcal{A} is a normal commutative Banach algebra and \mathcal{A} is σ -compact, then \mathcal{A} satisfies condition Σ . Indeed, if $\hat{\mathcal{A}}$ is σ -compact, there are compact sets $K_n \subset \hat{\mathcal{A}}$ such that $\hat{\mathcal{A}} = \bigcup_{n=0}^{\infty} K_n$ and $K_n \subset K_{n+1}^{\circ}$ for all $n \in \mathbb{N}$, where K_{n+1}° is the interior of K_{n+1} . Since \mathcal{A} is regular, for every $n \in \mathbb{N}$ there exists $b_n \in \mathcal{A}$ such that

$$\hat{b}_n(\xi) = \begin{cases} 1 & \text{if } \xi \in K_n \\ 0 & \text{if } \xi \notin K_{n+1}^\circ \end{cases}$$

.

Let $a_n = b_n b_n^*$. Then $\hat{a}_n = |\hat{b}_n|^2 \ge 0$ and $K_n \subset \operatorname{supp} \hat{a}_n \subset K_{n+2}$. Clearly, for every $\xi \in \hat{\mathcal{A}}$, there exists n such that $\hat{a}_n > 0$.

Note that a regular commutative Banach algebra is normal, [7].

4.2. Algebras with σ -compact-open structure spaces. For our next example we use Shilov's idempotent theorem [10].

Theorem 4.1 (Shilov). Let \mathcal{A} be a commutative Banach algebra. If K is a compact and open subset of $\hat{\mathcal{A}}$, then there is a unique idempotent $a \in \mathcal{A}$ such that \hat{a} is the characteristic function of K.

Let \mathcal{A} be a commutative Banach algebra such that $\hat{\mathcal{A}}$ is σ -compact-open, that is, $\hat{\mathcal{A}} = \bigcup_{n=0}^{\infty} K_n$ where K_n are disjoint compact and open sets in the Gelfand topology in $\hat{\mathcal{A}}$. Since, by Shilov's idempotent theorem, for every $n \in \mathbb{N}$ there exist a unique idempotent $a_n \in \mathcal{A}$ such that $\operatorname{supp} \hat{a}_n = K_n$, \mathcal{A} satisfies condition Σ .

4.3. Locally compact groups. Let G be a locally compact abelian group. A continuous function $f: G \to \mathbb{C}$ is called positive definite if

$$\sum_{k,l=1}^{n} c_k \overline{c_l} f(x_l^{-1} x_k) \ge 0$$

for all $c_1, \ldots, c_n \in \mathbb{C}$ and $x_1, \ldots, x_n \in G$ for any $n \in \mathbb{N}$. We denote the cone of positive definite functions on G by $\mathcal{P}_+(G)$. A character α on G is a continuous homomorphism from G into the unit circle group \mathbb{T} . Let \widehat{G} denote the group of characters. By Bochner's theorem [4], $f \in \mathcal{P}_+(G)$ if and only if there exists a unique bounded positive Radon measure μ_f on \widehat{G} such that

$$f(x) = \int_{\widehat{G}} \hat{x} d\mu_f.$$

In [2] it was shown that, if \widehat{G} is σ -compact, then the map $f \mapsto \mu_f$ defined by Bochner's theorem can be extended to a map from a space of pseudoquotients to all positive measures on \widehat{G} . That space of pseudoquotients was $\mathcal{B}(\mathcal{P}_+(G), \mathcal{S})$ where

$$\mathcal{S} = \left\{ \varphi \in L^1(G) : \widehat{\varphi}(\xi) > 0 \text{ for all } \xi \in \widehat{G} \right\}.$$

We will show that this extension is a special case of the extension presented in this note.

Since the convolution algebra $L^1(G)$ is regular, it satisfies Σ , as indicated in 4.1. For $\alpha \in \widehat{G}$ we define $\varphi_{\alpha} : L^1(G) \to \mathbb{C}$ by

$$\varphi_{\alpha}(f) = \int_{G} f(x) \overline{\alpha(x)} dx,$$

where dx indicates the integral with respect to the Haar measure on G. The map $\alpha \mapsto \varphi_{\alpha}$ is a bijection from \widehat{G} onto $\widehat{L^1(G)}$ (see, for example, [6]). This allows us to identify $\mathcal{M}_+(\widehat{G})$ and $\mathcal{M}_+(\widehat{L^1(G)})$. If f is a positive definite function on G, we define a positive functional on $L^1(G)$ by

$$F(\varphi) = \int_G f(x)\varphi(x)dx$$

and a map from $\mathcal{B}(\mathcal{P}_+(G), \mathcal{S})$ to $\mathcal{B}(L^1(G), \mathcal{S})$ by $\frac{f}{\varphi} \mapsto \frac{F}{\Lambda_{\tilde{\varphi}}}$, where $\tilde{\varphi}(x) = \varphi(x^{-1})$.

Since $\mathcal{B}(L^1(G), \mathcal{S})$ is isomorphic with $\mathcal{M}_+(\widehat{L^1(G)})$, by Theorem 3.2, there is a bijection from $\mathcal{B}(\mathcal{P}_+(G), \mathcal{S})$ to $\mathcal{M}_+(\hat{G})$.

References

- D. Atanasiu and P. Mikusiński, The Fourier transform of Levy measures on a semigroup, Integral Transform. Spec. Funct. 19 (2008), 537–543.
- D. Atanasiu and P. Mikusiński, Fourier transform of Radon measures on locally compact groups, Integral Transform. Spec. Funct. 21 (2010), 815–821.
- D. Atanasiu, P. Mikusiński, and D. Nemzer, An algebraic approach to tempered distributions, J. Math. Anal. Appl. 384 (2011), 307–319.
- 4. G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
- M. Fragoulopoulou, *Topological Algebras with Involution*, North-Holland Mathematics Studies 200, Elsevier Science B.V., Amsterdam, 2005.
- 6. E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2008.
- 7. R. Larsen, Banach Algebras an Introduction, Marcel Dekker Inc., New York, 1973.
- P. Mikusiński, Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2003), 377–386.
- 9. P. Mikusiński, Boehmians and pseudoquotients, Appl. Math. Inf. Sci. 5 (2011), 1–13.
- T. W. Palmer, Banach algebras and the general theory of *-algebras, Vol. I, Cambridge, New York, 1994.

¹ UNIVERSITY OF BORÅS, BORÅS, SWEDEN *E-mail address*: Dragu.Atanasiu@hb.se

 2 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA.

E-mail address: piotr.mikusinski@ucf.edu *E-mail address*: asiple@knights.ucf.edu