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Abstract. Matrix rank and inertia optimization problems are a class of dis-
continuous optimization problems in which the decision variables are matrices
running over certain matrix sets, while the ranks and inertias of the vari-
able matrices are taken as integer-valued objective functions. In this paper,
we establish a group of explicit formulas for calculating the maximal and
minimal values of the rank and inertia objective functions of the Hermitian
matrix-valued function A1 − B1XB∗

1 subject to the common Hermitian solu-
tion of a pair of consistent matrix equations B2XB∗

2 = A2 and B3XB∗
3 = A3,

and Hermitian solution of the consistent matrix equation B4X = A4, respec-
tively. Many consequences are obtained, in particular, necessary and suffi-
cient conditions are established for the triple matrix equations B1XB∗

1 = A1,
B2XB∗

2 = A2 and B3XB∗
3 = A3 to have a common Hermitian solution,

as well as necessary and sufficient conditions for the two matrix equations
B1XB∗

1 = A1 and B4X = A4 to have a common Hermitian solution.

1. Introduction

The matrix approximation problem is to approximate optimally, with respect
to some criteria, a matrix by one of the same dimension from a given feasible
matrix set. Assume that A is a matrix to be approximated. Then a conventional
statement of general matrix optimization problems of A from this point of view
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can be written as

minimize ρ(A−X ) subject to X ∈ S, (1.1)

where ρ(·) is certain objective function, which is usually taken as the determinant,
trace, norms, rank, inertia of matrix, and S is a given feasible matrix set. A best-
known case of (1.1) is to minimize the norm ‖A−X ‖2

F subject to X ∈ S.
In this paper, we take two matrix sets as

S = {X ∈ Cn
H | [B2XB

∗
2 , B3XB

∗
3 ] = [A2, A3 ] }, (1.2)

T = {X ∈ Cn
H | B4X = A4 }, (1.3)

where Ai ∈ Cmi
H , Bi ∈ Cmi×n, A4, B4 ∈ Cm4×n are given, i = 2, 3, and X ∈ Cn

H

is a variable matrix, and study the following constrained optimization problems.

Problem 1.1. For the Hermitian matrix-valued function A1 − B1XB
∗
1 , where

A1 ∈ Cm1
H and B1 ∈ Cm1×n, and the matrix set in S in (1.2), establish explicit

formulas for calculating

max
X∈S

r(A1 −B1XB
∗
1 ), (1.4)

min
X∈S

r(A1 −B1XB
∗
1 ), (1.5)

min
X∈S

i±(A1 −B1XB
∗
1 ), (1.6)

min
X∈S

i±(A1 −B1XB
∗
1 ). (1.7)

Problem 1.2. Establish necessary and sufficient conditions for the following
three linear Hermitian matrix equations

[B1XB
∗
1 , B2XB

∗
2 , B3XB

∗
3 ] = [A1, A2, A3 ] (1.8)

to have a common Hermitian solution, and establish necessary and sufficient
conditions for the Löwner partial ordering matrix inequalities

A1 −B1XB
∗
1 > 0, A1 −B1XB

∗
1 > 0, A1 −B1XB

∗
1 < 0, A1 −B1XB

∗
1 6 0 (1.9)

to hold respectively for an (all) X ∈ S in (1.2).

Problem 1.3. For the Hermitian matrix-valued function A1 − B1XB
∗
1 , where

A1 ∈ Cm1
H and B1 ∈ Cm1×n, and the matrix set T in (1.3), establish explicit

formulas for calculating

max
X∈T

r(A1 −B1XB
∗
1 ), (1.10)

min
X∈T

r(A1 −B1XB
∗
1 ), (1.11)

max
X∈T

i±(A1 −B1XB
∗
1 ), (1.12)

min
X∈T

i±(A1 −B1XB
∗
1 ). (1.13)

Problem 1.4. Establish necessary and sufficient conditions for the following two
matrix equations

[B1XB
∗
1 , B4X ] = [A1, A4 ] (1.14)
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to have a common Hermitian solution and positive semi-definite solution, respec-
tively, and establish necessary and sufficient conditions for the Löwner partial
ordering matrix inequalities

A1 −B1XB
∗
1 > 0, A1 −B1XB

∗
1 > 0, A1 −B1XB

∗
1 < 0, A1 −B1XB

∗
1 6 0 (1.15)

to hold, respectively, for an (all) X ∈ T in (1.3).

Throughout this paper,

Cm×n and Cm
H stand for the sets of all m×n complex matrices and m×m

complex Hermitian matrices; respectively;
AT , A∗, r(A), R(A) stand for the transpose, conjugate transpose, rank
and range (column space) of a matrix A ∈ Cm×n, respectively;
Im denotes the identity matrix of order m;
[A, B ] denotes a row block matrix consisting of A and B;
A > 0 (A > 0) means that A is Hermitian positive definite (Hermitian
positive semi-definite);
two A, B ∈ Cm

H are said to satisfy the inequality A > B (A > B) in the
Löwner partial ordering ifA−B is positive definite (positive semi-definite);
the Moore–Penrose inverse of A ∈ Cm×n, denoted by A†, is defined to be
the unique solution X satisfying the four matrix equations AXA = A,
XAX = X, (AX)∗ = AX and (XA)∗ = XA, which satisfies AA† = A†A
if A = A∗;
a matrix X is called a Hermitian g-inverse of A ∈ Cm

H , denoted by A−, if
it satisfies both AXA = A and X = X∗;
EA and FA stand for EA = Im − AA† and FA = In − A†A, and the ranks
of EA and FA are given by r(EA) = m− r(A) and r(FA) = n− r(A);
i+(A) and i−(A), usually called the partial inertia of A ∈ Cm

H , are defined
to be the numbers of the positive and negative eigenvalues of A counted
with multiplicities, respectively, which satisfy r(A) = i+(A) + i−(A).

Once close-form formulas for the extremal ranks and inertias of a matrix-valued
function are established, they can directly be used to describe some behaviors of
the matrix-valued function, for example,

(I) the maximal and minimal dimensions of the row and column spaces of the
matrix-valued function;

(II) nonsingularity of the matrix-valued function when it is square;
(III) solvability of the corresponding matrix equation;
(IV) rank, inertia and range invariance of the matrix-valued function;
(V) semi-definiteness of the matrix-valued function, etc.

On the other hand, matrix rank and inertia optimization problems are NP-hard
in general due to the discontinuity and combinational nature of rank and inertia
of a matrix and the complexity of algebraic structure of the given matrix set S.

Mappings between matrix spaces with symmetric patterns can be constructed
arbitrarily, but the matrix-valued function φ(X) = A−BXB∗ is the simplest case
among all matrix-valued functions with symmetric patterns. This function is the
starting point in dealing with various complicated matrix-valued functions with
symmetric patterns. In recent years, the present author and his coauthors gave
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a comprehensive study on the φ(X) and its algebraic properties, and obtained
many fundamental results. The work done includes:

(i) establishing expansion formulas for calculating the (global extremal) rank
and inertia of φ(X) when X running over Cn

H, and the matrix X such that
the objective rank and inertia functions attain the global extremal ranks
and inertias, see [17, 27, 39];

(ii) characterizing nonsingularity, positive definiteness, positive semi-definiteness,
rank and inertia invariance, etc., of φ(X), see [27, 39];

(iii) establishing canonical forms of φ(X) under generalized singular value de-
compositions and characterizing their algebraic properties, see [17];

(iv) deriving solutions and least-squares solutions of the matrix equation φ(X) =
0 and characterizing their algebraic properties, see [14, 18, 31, 33, 36];

(v) deriving solutions of the matrix inequalities φ(X) > 0 (> 0, < 0, 6 0)
and characterizing their properties, see [27];

(vi) minimizing tr[φ(X)φ∗(X) ] s.t. r[φ(X)] = min, see [36];

(vii) establishing formulas for calculating the extremal ranks and inertias of
φ(X) under the restrictions r(X) 6 k and/or ±X > 0, see [32];

(viii) establishing formulas for calculating the extremal ranks and inertias of
φ(X) subject to a consistent matrix equation CXC∗ = D, see [16].

This seminal work was also extended to some general matrix-valued functions
with symmetric patterns, such as,

A−BX − (BX)∗, A−BXB∗ − CY C∗, A−BXC − (BXC)∗,

where X and Y are (Hermitian) variable matrices of appropriate sizes, see, e.g.,
[13, 14, 15, 16, 29, 31, 33].

We shall use some pure algebraic operations on matrices to derive two groups
of closed-form formulas for calculating the global extremal values of the objective
functions in (1.4)–(1.7) and (1.10)–(1.13), and then to present a variety of valuable
consequences of these formulas.

Since variable entries in a matrix-valued function are often regarded as con-
tinuous variables in some feasible sets, while the objective functions—the rank
and inertia of the matrix-valued function take values only from a finite set of
nonnegative integers. Hence, (1.4)–(1.7) and (1.10)–(1.13) can be regarded as
continuous-integer optimization problems subject to equality constraints. This
kind of non-smooth optimization problems cannot be solved by using various op-
timization methods for solving continuous or discrete cases. There is no rigorous
mathematical theory for solving a general rank and inertia optimization problem
due to the discontinuity and nonconvexity of rank and inertia of matrix. In fact,
it has been realized that rank and inertia optimization problems have deep con-
nections with computational complexity, and are regarded as NP-hard in general;
see, e.g., [1, 2, 3, 4, 6, 7, 8, 10, 11, 20, 21, 22, 23, 25]. Fortunately, some special
rank and inertia optimization problems now can be solved analytically by pure
algebraical methods.
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2. Preliminaries

The following are some known results for ranks and inertias of matrices and
their usefulness, which will be used in Sections 3 and 4.

Lemma 2.1 ([27]). Let H be a matrix set in Cm
H . Then, the following hold.

(a) H has a matrix X > 0 (X < 0) if and only if

max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(b) All X ∈ H satisfy X > 0 (X < 0), namely, H is a subset of the cone of
positive definite matrices (negative definite matrices), if and only if

min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(c) H has a matrix X > 0 (X 6 0) if and only if

min
X∈H

i−(X) = 0

(
min
X∈H

i+(X) = 0

)
.

(d) All X ∈ H satisfy X > 0 (X 6 0) namely, H is a subset of the cone
of positive semi-definite matrices (negative semi-definite matrices), if and
only if

max
X∈H

i−(X) = 0

(
max
X∈H

i+(X) = 0

)
.

The question of whether a given function is definite or semi-definite everywhere
is ubiquitous in mathematics and applications. Lemma 2.1(a)–(d) show that if
some explicit formulas for calculating the global maximal and minimal inertias
of a given Hermitian matrix-valued function are established, we can use them, as
demonstrated in sections below, to derive necessary and sufficient conditions for
the Hermitian matrix-valued function to be definite or semi-definite.

Lemma 2.2 ([19]). Let A ∈ Cm×n, B ∈ Cm×p and C ∈ Cq×n. Then, the following
rank expansion formulas hold

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.1)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.2)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC). (2.3)
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Three useful rank expansion formulas derived from (2.3) are

r

[
A B 0
C 0 P

]
= r(P ) + r

[
A B

EPC 0

]
, (2.4)

r

 A B
C 0
0 Q

 = r(Q) + r

[
A BFQ

C 0

]
, (2.5)

r

A B 0
C 0 P
0 Q 0

 = r(P ) + r(Q) + r

[
A BFQ

EPC 0

]
. (2.6)

We shall use them in Sections 3 and 4 to simplify ranks of block matrices involving
EP and FQ.

Lemma 2.3 ([27]). Let A ∈ Cm
H , B ∈ Cm×n, D ∈ Cn

H, and let

U =

[
A B
B∗ 0

]
, V =

[
A B
B∗ D

]
.

Then, the following expansion formulas hold

i±(U) = r(B) + i±(EBAEB), (2.7)

r(U) = 2r(B) + r(EBAEB), (2.8)

i±(V ) = i±(A) + i±

[
0 EAB

B∗EA D −B∗A†B

]
, (2.9)

r(V ) = r(A) + r

[
0 EAB

B∗EA D −B∗A†B

]
. (2.10)

In particular, the following hold.

(a) If A > 0, then

i+(U) = r[A, B ], i−(U) = r(B), r(U) = r[A, B ] + r(B). (2.11)

(b) If A 6 0, then

i+(U) = r(B), i−(U) = r[A, B ], r(U) = r[A, B ] + r(B). (2.12)

(c) If R(B) ⊆ R(A), then

i±(V ) = i±(A) + i±(D −B∗A†B ), r(V ) = r(A) + r(D −B∗A†B ). (2.13)

(d) If R(B) ∩R(A) = {0} and R(B∗) ∩R(D) = {0}, then

i±(V ) = i±(A) + i±(D) + r(B), r(V ) = r(A) + 2r(B) + r(D). (2.14)

Three general expansion formulas derived from (2.7) and (2.8) are

i±

[
A BFP

FPB
∗ 0

]
= i±

 A B 0
B∗ 0 P ∗

0 P 0

− r(P ), (2.15)

r

[
A BFP

FPB
∗ 0

]
= r

 A B 0
B∗ 0 P ∗

0 P 0

− 2r(P ). (2.16)
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We shall use them to simplify the inertias of block Hermitian matrices that involve
FP = I − P †P .

Lemma 2.4. Let Aj ∈ Cmj×n, Bj ∈ Cp×qj and Cj ∈ Cmj×qj be given, j = 1, 2.
Then, the following hold.

(a) [24] The pair of matrix equations

A1XB1 = C1 and A2XB2 = C2 (2.17)

have a common solution for X ∈ Cn×p if and only if

R(Cj) ⊆ R(Aj), R(C∗
j ) ⊆ R(B∗

j ), j = 1, 2, (2.18)

r

 C1 0 A1

0 −C2 A2

B1 B2 0

 = r

[
A1

A2

]
+ r[B1, B2 ]. (2.19)

(b) [26] Under (2.18) and (2.19), the general common solution of (2.17) can
be written in the following parametric form

X = X0 + FAV1 + V2EB + FA1V3EB2 + FA2V4EB1 , (2.20)

where A =

[
A1

A2

]
, B = [B1, B2 ], and the four matrices V1, . . . , V4 ∈ Cn×p

are arbitrary.

Lemma 2.5. Let A ∈ Cm×n and B ∈ Cm
H be given. Then, the following hold.

(a) [5, 9] The matrix equation AXA∗ = B has a solution X ∈ Cn
H if and only

if R(B) ⊆ R(A), or equivalently, AA†B = B.
(b) [27] Under AA†B = B, the general Hermitian solution of AXA∗ = B can

be written in the following two forms

X = A†B(A†)∗ + U − A†AUA†A, (2.21)

X = A†B(A†)∗ + FAV + V ∗FA, (2.22)

where U ∈ Cn
H and V ∈ Cn×n are arbitrary.

More results on properties of solutions of AXA∗ = B can be found in [14, 18].

Lemma 2.6 ([9]). Let A, B ∈ Cm×n be given. Then, the following hold.

(a) The matrix equation AX = B has a Hermitian solution X ∈ Cn
H if and

only if R(B) ⊆ R(A) and AB∗ = BA∗. In this case, the general Hermitian
solution of AX = B can be written as

X = A†B + (A†B)∗ − A†BA†A+ FAUFA, (2.23)

where U ∈ Cn
H is arbitrary.

(b) The matrix equation AX = B has a solution 0 6 X ∈ Cn
H if and only if

R(B) ⊆ R(A), AB∗ > 0 and r(AB∗) = r(B). In this case, the general
positive semi-definite solution of AX = B can be written as

X = B∗(AB∗)†B + FAUFA, (2.24)

where 0 6 U ∈ Cn
H is arbitrary.
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Lemma 2.7. Let A ∈ Cm
H and B ∈ Cm×n be given, and let M =

[
A B
B∗ 0

]
.

Then, the following hold.

(a) [27, 39] The global maximal and minimal ranks and inertias of the Her-
mitian matrix-valued function A − BXB∗ subject to X ∈ Cn

H are given
by

max
X∈Cn

H

r(A−BXB∗ ) = r[A, B ], (2.25)

min
X∈Cn

H

r(A−BXB∗ ) = 2r[A, B ]− r(M), (2.26)

max
X∈Cn

H

i±(A−BXB∗ ) = i±(M), (2.27)

min
X∈Cn

H

i±(A−BXB∗ ) = r[A, B ]− i∓(M). (2.28)

(b) [32] The global maximal and minimal ranks and inertias of the Hermitian
matrix-valued functions A±BXB∗ subject to 0 6 X ∈ Cn

H are given by

max
06X∈Cn

H

r(A+BXB∗ ) = r[A, B ], (2.29)

min
06X∈Cn

H

r(A+BXB∗ ) = i+(A) + r[A, B ]− i+(M), (2.30)

max
06X∈Cn

H

i+(A+BXB∗ ) = i+(M), (2.31)

min
06X∈Cn

H

i+(A+BXB∗ ) = i+(A), (2.32)

max
06X∈Cn

H

i−(A+BXB∗ ) = i−(A), (2.33)

min
06X∈Cn

H

i−(A+BXB∗ ) = r[A, B ]− i+(M), (2.34)

max
06X∈Cn

H

r(A−BXB∗ ) = r[A, B ], (2.35)

min
06X∈Cn

H

r(A−BXB∗ ) = i−(A) + r[A, B ]− i−(M), (2.36)

max
06X∈Cn

H

i+(A−BXB∗ ) = i+(A), (2.37)

min
06X∈Cn

H

i+(A−BXB∗ ) = r[A, B ]− i−(M), (2.38)

max
06X∈Cn

H

i−(A−BXB∗ ) = i−(M), (2.39)

min
06X∈Cn

H

i−(A−BXB∗ ) = i−(A). (2.40)

Lemma 2.8 ([16]). Let A ∈ Cm
H , B ∈ Cm×p and C ∈ Cq×m be given, and let

M1 =

[
A B
B∗ 0

]
, M2 =

[
A C∗

C 0

]
, (2.41)

N = [A, B, C∗ ], N1 =

[
A B C∗

B∗ 0 0

]
, N2 =

[
A B C∗

C 0 0

]
. (2.42)
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Then, the global maximal and minimal ranks and inertias of the Hermitian matrix-
valued function A−BXC − (BXC)∗ are given by

max
X∈Cp×q

r[A−BXC − (BXC)∗ ] = min {r(N), r(M1), r(M2)}, (2.43)

min
X∈Cp×q

r[A−BXC − (BXC)∗ ] = 2r(N) + max{ s1, s2, s3, s4 }, (2.44)

max
X∈Cp×q

i±[A−BXC − (BXC)∗ ] = min{i±(M1), i±(M2)}, (2.45)

min
X∈Cp×q

i±[A−BXC − (BXC)∗ ] = r(N) + max{ i±(M1)− r(N1),

i±(M2)− r(N2) }, (2.46)

where
s1 = r(M1)− 2r(N1), s2 = r(M2)− 2r(N2),

s3 = i+(M1) + i−(M2)− r(N1)− r(N2), s4 = i−(M1) + i+(M2)− r(N1)− r(N2).

In particular, if R(C∗) ⊆ R(B), then

max
X∈Cp×q

r[A−BXC − (BXC)∗ ] = min

{
r[A, B ], r

[
A C∗

C 0

]}
, (2.47)

min
X∈Cp×q

r[A−BXC − (BXC)∗ ] = 2r[A, B ] + r

[
A C∗

C 0

]
− 2r

[
A B
C 0

]
, (2.48)

max
X∈Cp×q

i±[A−BXC − (BXC)∗ ] = i±

[
A C∗

C 0

]
, (2.49)

min
X∈Cp×q

i±[A−BXC − (BXC)∗ ] = r[A, B ] + i±

[
A C∗

C 0

]
− r

[
A B
C 0

]
. (2.50)

The matrices X that satisfy (2.43)–(2.50) (namely, the global maximizers and
minimizers of the objective rank and inertia functions) are not necessarily unique
and their expressions were also given in [16] by using certain simultaneous de-
composition of the three given matrices and discrete methods. Observe that the
right-hand sides of (2.43)–(2.50) are represented in analytical forms of the ranks
and inertias of the five given block matrices, we can easily use them to derive
extremal ranks and inertias of some general linear and nonlinear matrix-valued
functions. In these cases, combining the rank and inertia formulas obtained with
the assertions in Lemma 2.1 may yield various conclusions on algebraic properties
of linear and nonlinear matrix-valued functions.

3. The extremal ranks and inertias of A−B1XB
∗
1 subject to

B2XB
∗
2 = A2 and B3XB

∗
3 = A3

We first derive a parametric form for the general common Hermitian solution
of the pair of matrix equations in (1.2).

Lemma 3.1 ([31]). Let Ai ∈ Cmi
H , Bi ∈ Cmi×n be given for i = 2, 3, and suppose

that each of the two matrix equations

B2XB
∗
2 = A2 and B3XB

∗
3 = A3 (3.1)

has a solution, i.e., R(Ai) ⊆ R(Bi) for i = 2, 3. Then, the following hold.
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(a) The pair of matrix equations have a common Hermitian solution if and
only if

r

A2 0 B2

0 −A3 B3

B∗
2 B∗

3 0

 = 2r

[
B2

B3

]
. (3.2)

(b) Under (3.2), the general common Hermitian solution of the pair of equa-
tions can be written in the following parametric form

X = X0 + V FB + FBV
∗ + FB2UFB3 + FB3U

∗FB2 , (3.3)

where X0 is a special Hermitian common solution to the pair of equations,

B =

[
B2

B3

]
, and U, V ∈ Cn×n are arbitrary.

Substituting (3.3) into A1 −B1XB
∗
1 gives

A1 −B1XB
∗
1 = A1 −B1X0B

∗
1 −B1V FBB

∗
1

−B1FBV
∗B∗

1 −B1FB2UFB3B
∗
1 −B1FB3U

∗FB2B
∗
1 , (3.4)

which is a matrix-valued function involving two variable matrices V and U . Thus,
the matrix-valued function A1−B1XB

∗
1 subject to (1.2) is equivalently converted

to the unconstrained matrix-valued function in (3.4). To find the global maximal
and minimal ranks and inertias of (3.4), we need the following result.

Lemma 3.2. Let

φ(X1, X2) = A−B1X1C1 − (B1X1C1)
∗ −B2X2C2 − (B2X2C2)

∗, (3.5)

where A ∈ Cm
H , Bi ∈ Cm×pi and Ci ∈ Cqi×m are given, and Xi ∈ Cpi×qi are

variable matrices for i = 1, 2, and assume that

R(B2) ⊆ R(B1), R(C∗
1) ⊆ R(B1), R(C∗

2) ⊆ R(B1). (3.6)

Also let

N =

[
A B2 C∗

1 C∗
2

C1 0 0 0

]
, N1 =

 A B2 C∗
1 C∗

2

B∗
2 0 0 0

C1 0 0 0

, N2 =

 A B2 C∗
1 C∗

2

C1 0 0 0
C2 0 0 0

,
M =

[
A B1

C1 0

]
, M1 =

 A B2 C∗
1

B∗
2 0 0

C1 0 0

, M2 =

 A C∗
1 C∗

2

C1 0 0
C2 0 0

.
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Then, the global maximal and minimal ranks and inertias of φ(X1, X2) are given
by

max
X1∈Cp1×q1 , X2∈Cp2×q2

r[φ(X1, X2) ] = min{r[A, B1 ], r(N), r(M1), r(M2)}, (3.7)

min
X1∈Cp1×q1 , X2∈Cp2×q2

r[φ(X1, X2) ] = 2r[A, B1 ]− 2r(M) + 2r(N)

+ max{ s1, s2, s3, s4 }, (3.8)

max
X1∈Cp1×q1 , X2∈Cp2×q2

i±[φ(X1, X2) ] = min{i±(M1), i±(M2)}, (3.9)

min
X1∈Cp1×q1 , X2∈Cp2×q2

i±[φ(X1, X2) ] = r[A, B1 ]− r(M) + r(N)

+ max{ i±(M1)− r(N1), i±(M2)− r(N2) },
(3.10)

where

s1 = r(M1)− 2r(N1), s2 = r(M2)− 2r(N2),

s3 = i+(M1) + i−(M2)− r(N1)− r(N2),

s4 = i−(M1) + i+(M2)− r(N1)− r(N2).

Proof. Under (3.6), applying (2.47)–(2.50) to the variable matrix X1 in (3.5) and
simplifying, we obtain

max
X1∈Cp1×q1

r[φ(X1, X2) ]

= min

{
r[A−B2X2C2 − (B2X2C2)

∗, B1 ], r

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]}
= min

{
r[A, B1 ], r

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]}
, (3.11)

min
X1∈Cp1×q1

r[φ(X1, X2) ]

= 2r[A−B2X2C2 − (B2X2C2)
∗, B1 ] + r

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
− 2r

[
A−B2X2C2 − (B2X2C2)

∗ B1

C1 0

]
= 2r[A, B1 ] + r

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
− 2r

[
A B1

C1 0

]
, (3.12)
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max
X1∈Cp1×q1

i±[φ(X1, X2) ] = i±

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
, (3.13)

min
X1∈Cp1×q1

i±[φ(X1, X2) ]

= r[A−B2X2C2 − (B2X2C2)
∗, B1 ] + i±

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
− r

[
A−B2X2C2 − (B2X2C2)

∗ B1

C1 0

]
= r[A, B1 ] + i±

[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
− r

[
A B1

C1 0

]
. (3.14)

Notice that[
A−B2X2C2 − (B2X2C2)

∗ C∗
1

C1 0

]
=

[
A C∗

1

C1 0

]
−

[
B2

0

]
X2[C2, 0 ]−

[
C∗

2

0

]
X∗

2 [B∗
2 , 0 ] := ψ(X2). (3.15)

Applying (2.43)–(2.46) to this matrix-valued function ψ(X2) gives

max
X2∈Cp2×q2

r[ψ(X2)] = min { r(N), r(M1), r(M2) }, (3.16)

min
X2∈Cp2×q2

r[ψ(X2)] = 2r(N) + max{ s1, s2, s3, s4 }, (3.17)

max
X2∈Cp2×q2

i±[ψ(X2)] = min{ i±(M1), i±(M2) }, (3.18)

min
X2∈Cp2×q2

i±[ψ(X2)] = r(N) + max{ i±(M1)− r(N1), i±(M2)− r(N2) }, (3.19)

where

s1 = r(M1)− 2r(N1), s2 = r(M2)− 2r(N2),

s3 = i+(M1) + i−(M2)− r(N1)− r(N2), s4 = i−(M1) + i+(M2)− r(N1)− r(N2).

Substituting these results into (3.11)–(3.14) yields (3.7)–(3.10). �

For convenience of representation, we rewrite (3.4) as

A1 −B1XB
∗
1 = A−G1V G2 − (G1V G2)

∗ −G3UG4 − (G3UG4)
∗, (3.20)

where

A = A1 −B1X0B
∗
1 , G1 = B1, G2 = FBB

∗
1 , G3 = B1FB2 , G4 = FB3B

∗
1 . (3.21)

It is easy to verify that the above matrices satisfy the conditions

R(G∗
2) ⊆ R(G1), R(G3) ⊆ R(G1), R(G∗

4) ⊆ R(G1), (3.22)

R(G∗
2) ⊆ R(G3), R(G∗

2) ⊆ R(G∗
4). (3.23)

So that (3.20) is special case of (3.5) under (3.6). In this case, applying Lemma
3.2 to (3.20) yields the main results of this section.
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Theorem 3.3. Let Ai ∈ Cmi
H and Bi ∈ Cmi×n be given for i = 1, 2, 3, and assume

that the pair of matrix equations

B2XB
∗
2 = A2 and B3XB

∗
3 = A3 (3.24)

have a common solution X ∈ Cn
H. Also let S be defined in (1.2) and define

P1 =

[
A1 B1 0 0
B∗

1 0 B∗
2 B∗

3

]
, P2 =

A1 0 B1

0 −A2 B2

B∗
1 B∗

2 0

, (3.25)

P3 =

A1 0 B1

0 −A3 B3

B∗
1 B∗

3 0

, Q1 =


A1 0 0 B1 B1

0 −A2 0 B2 0
0 0 −A3 0 B3

B∗
1 B∗

2 B∗
3 0 0

, (3.26)

Q2 =


A1 0 B1 B1

0 −A2 B2 0
B∗

1 B∗
2 0 0

0 0 0 B3

, Q3 =


A1 0 B1 B1

0 −A3 B3 0
B∗

1 B∗
3 0 0

0 0 0 B2

. (3.27)

Then, the following hold.

(a) The global maximal rank of A1 −B1XB
∗
1 subject to S in (1.2) is

max
X∈S

r(A1 −B1XB
∗
1 ) = min

{
r[A1, B1 ], r(Q1)− r

[
B2

B3

]
− r(B2)− r(B3)

r(P2)− 2r(B2), r(P3)− 2r(B3)} . (3.28)

(b) The global minimal rank of A1 −B1XB
∗
1 subject to S in (1.2) is

min
X∈S

r(A1 −B1XB
∗
1 ) = 2r[A1, B1 ]− 2r(P1) + 2r(Q1)

+ max{r(P2)− 2r(Q2), r(P3)− 2r(Q3), u1, u2}, (3.29)

where

u1 = i+(P2) + i−(P3)− r(Q2)− r(Q3),

u2 = i−(P2) + i+(P3)− r(Q2)− r(Q3).

(c) The global maximal inertia of A1 −B1XB
∗
1 subject to S in (1.2) is

max
X∈S

i±(A1 −B1XB
∗
1 ) = min {i±(P2)− r(B2), i±(P3)− r(B3)} . (3.30)

(d) The global minimal inertia of A1 −B1XB
∗
1 subject to S in (1.2) is

min
X∈S

i±(A1 −B1XB
∗
1 ) = r[A1, B1 ]− r(P1) + r(Q1)

+ max{i±(P2)− r(Q2), i±(P3)− r(Q3)}. (3.31)
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Proof. Under (3.23), we find by Lemma 3.2 that

max
X∈S

r(A1 −B1XB
∗
1 )

= max
V, U

r [A−G1V G2 − (G1V G2)
∗ −G3UG4 − (G3UG4)

∗]

= min

{
r[A, G1 ], r

[
A G3 G∗

4

G2 0 0

]
, r

[
A G3

G∗
3 0

]
, r

[
A G∗

4

G4 0

]}
, (3.32)

min
X∈S

r(A1 −B1XB
∗
1 )

= min
V, U

r [A−G1V G2 − (G1V G2)
∗ −G3UG4 − (G3UG4)

∗ ]

= 2r[A, G1 ]− 2r

[
A G1

G2 0

]
+ 2r

[
A G3 G∗

4

G2 0 0

]
+ max{s1, s2, s3, s4 }, (3.33)

max
X∈S

i±(A1 −B1XB
∗
1 )

= max
V, U

i± [A−G1V G2 − (G1V G2)
∗ −G3UG4 − (G3UG4)

∗]

= min

{
i±

[
A G3

G∗
3 0

]
, i±

[
A G∗

4

G4 0

]}
, (3.34)

min
X∈S

i±(A1 −B1XB
∗
1 )

= min
V, U

i± [A−G1V G2 − (G1V G2)
∗ −G3UG4 − (G3UG4)

∗ ]

= r[A, G1 ]− r

[
A G1

G2 0

]
+ r

[
A G3 G∗

4

G2 0 0

]
+ max{t1, t2 }, (3.35)

where

s1 = r

[
A G3

G∗
3 0

]
− 2r

[
A G3 G∗

4

G∗
3 0 0

]
,

s2 = r

[
A G∗

4

G4 0

]
− 2r

[
A G3 G∗

4

G4 0 0

]
,

s3 = i+

[
A G3

G∗
3 0

]
+ i−

[
A G∗

4

G4 0

]
− r

[
A G3 G∗

4

G∗
3 0 0

]
− r

[
A G3 G∗

4

G4 0 0

]
,

s4 = i−

[
A G3

G∗
3 0

]
+ i+

[
A G∗

4

G4 0

]
− r

[
A G3 G∗

4

G∗
3 0 0

]
− r

[
A G3 G∗

4

G4 0 0

]
,

t1 = i±

[
A G3

G∗
3 0

]
− r

[
A G3 G∗

4

G∗
3 0 0

]
,

t2 = i±

[
A G4

G∗
4 0

]
− r

[
A G3 G∗

4

G∗
4 0 0

]
.

Applying (2.4)–(2.6), (2.15) and (2.16), and simplifying by [B2X0B
∗
2 , B3X0B

∗
3 ] =

[A2, A3 ], elementary matrix operations and congruence matrix operations, we
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obtain

r[A, G1 ] = r[A1 −B1X0B
∗
1 , B1 ] = r[A1, B1 ], (3.36)

r

[
A G3 G∗

4

G2 0 0

]
= r

[
A1 −B1X0B

∗
1 B1FB2 B1FB3

FBB
∗
1 0 0

]

= r


A1 −B1X0B

∗
1 B1 B1 0

B∗
1 0 0 B∗

0 B2 0 0
0 0 B3 0

− r(B)− r(B2)− r(B3)

= r


A1 B1 B1 B1X0B

∗

B∗
1 0 0 B∗

0 B2 0 0
0 0 B3 0

− r(B)− r(B2)− r(B3)

= r


A1 B1 B1 0 0
B∗

1 0 0 B∗
2 B∗

3

0 B2 0 −A2 0
0 0 B3 0 −A3

− r(B)− r(B2)− r(B3)

= r(Q1)− r(B)− r(B2)− r(B3), (3.37)

r

[
A G1

G2 0

]
= r

[
A1 −B1X0B

∗
1 B1

FBB
∗
1 0

]
= r

[
A1 B1 0
B∗

1 0 B∗

]
− r(B)

= r(P1)− r(B), (3.38)

i±

[
A G3

G∗
3 0

]
= i±

[
A1 −B1X0B

∗
1 B1FB2

FB2B
∗
1 0

]

= i±

A1 −B1X0B
∗
1 B1 0

B∗
1 0 B∗

2

0 B2 0

− r(B2)

= i±

 A1 B1 B1X0B
∗
2/2

B∗
1 0 B∗

2

B1X0B
∗
2/2 B2 0

− r(B2)

= i±

A1 B1 0
B∗

1 0 B∗
2

0 B2 −A2

− r(B2) = i±(P2)− r(B2), (3.39)
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r

[
A G3 G∗

4

G∗
3 0 0

]
= r

[
A1 −B1X0B

∗
1 B1FB2 B1FB3

FB2B
∗
1 0 0

]

= r


A1 −B1X0B

∗
1 B1 B1 0

B∗
1 0 0 B∗

2

0 B2 0 0
0 0 B3 0

− 2r(B2)− r(B3)

= r


A1 B1 B1 B1X0B

∗
2

B∗
1 0 0 B∗

2

0 B2 0 0
0 0 B3 0

− 2r(B2)− r(B3)

= r


A1 B1 B1 0
B∗

1 0 0 B∗
2

0 B2 0 −A2

0 0 B3 0

− 2r(B2)− r(B3)

= r(Q2)− 2r(B2)− r(B3). (3.40)

By a similar approach, we can obtain

i±

[
A G4

G∗
4 0

]
= i±(P3)− r(B3), (3.41)

r

[
A G3 G∗

4

G4 0 0

]
= r(Q3)− r(B2)− 2r(B3). (3.42)

Substituting (3.36)–(3.42) into (3.32)–(3.35) yields (3.28)–(3.31). �

Some direct consequences of the previous theorem are given below.

Corollary 3.4. Let Ai ∈ Cmi
H and Bi ∈ Cmi×n be given for i = 1, 2, 3, and

suppose that each pair of B1XB
∗
1 = A1, B2XB

∗
2 = A2 and B3XB

∗
3 = A3 have a

common Hermitian solution. Also let S be defined in (1.2). Then,

max
X∈S

r(A1 −B1XB
∗
1 ) = min

{
r(B1), r(Q1)− r

[
B2

B3

]
− r(B2)− r(B3),

2r

[
B1

B2

]
− 2r(B2), 2r

[
B1

B3

]
− 2r(B3)

}
, (3.43)

min
X∈S

r(A1 −B1XB
∗
1 ) = 2r(Q1)− 2r

B1

B2

B3

− 2r

B1 B1

B2 0
0 B3

, (3.44)

max
X∈S

i±(A1 −B1XB
∗
1 ) = min

{
r

[
B1

B2

]
− r(B2), r

[
B1

B3

]
− r(B3)

}
, (3.45)

min
X∈S

i±(A1 −B1XB
∗
1 ) = r(Q1)− r

B1

B2

B3

− r

B1 B1

B2 0
0 B3

, (3.46)

where Q1 is of the form (3.26).
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Proof. Under the given conditions, the ranks and inertias of the block matrices
in (3.25) and (3.27) are given by

r(P1) = r(B1) + r

B1

B2

B3

 , r(P2) = 2r

[
B1

B2

]
, r(P3) = 2r

[
B1

B3

]
,

i±(P2) = r

[
B1

B2

]
, i±(P3) = r

[
B1

B3

]
,

r(Q2) = r

B1 B1

B2 0
0 B3

 + r

[
B1

B2

]
, r(Q3) = r

B1 B1

B2 0
0 B3

 + r

[
B1

B3

]
.

Hence (3.28)–(3.31) reduce to (3.43)–(3.46). �

Corollary 3.5. Let Ai ∈ Cmi×mi
H and Bi ∈ Cmi×n be given for i = 1, 2, 3, and

suppose that each pair of the triple matrix equations

B1XB
∗
1 = A1, B2XB

∗
2 = A2, B3XB

∗
3 = A3 (3.47)

have a common Hermitian solution. Then, there exists a Hermitian X such that
(3.47) holds if and only if

r


A1 0 0 B1 B1

0 −A2 0 B2 0
0 0 −A3 0 B3

B∗
1 B∗

2 B∗
3 0 0

 = r

B1 B1

B2 0
0 B3

 + r[B∗
1 , B

∗
2 , B

∗
3 ]. (3.48)

Proof. It follows from (3.44). �

A challenging open problem on the triple matrix equations in (3.47) is to give
a parametric form for their general common Hermitian solution.

Setting B1 = In in Theorem 3.3 may yield a group of results on the extremal
ranks and inertias of A1 − X subject to the set in (1.2). In particular, we have
the following consequences.

Corollary 3.6. Let Ai ∈ Cmi
H and Bi ∈ Cmi×n be given for i = 2, 3, and assume

that (3.24) has a common solution. Also let S be defined in (1.2). Then, the
following hold.

(a) The global maximal rank of the matrices in (1.2) is

max
X∈S

r(X) = min{n, s1, s2, s3 }, (3.49)

where

s1 = 2n+ r

[
A2 0 B2

0 A3 B3

]
− r

[
B2

B3

]
− r(B2)− r(B3),

s2 = 2n+ r(A2)− 2r(B2), s3 = 2n+ r(A3)− 2r(B3).
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(b) The global minimal rank of the matrices in (1.2) is

min
X∈S

r(X) = 2r

[
A2 0 B2

0 A3 B3

]
+ max{ t1, t2, t3, t4 }, (3.50)

where

t1 = r(A2)− 2r

[
A2 B2

0 B3

]
, t2 = r(A3)− 2r

[
0 B2

A3 B3

]
,

t3 = i+(A2) + i−(A3)− r

[
A2 B2

0 B3

]
− r

[
0 B2

A3 B3

]
,

t4 = i−(A2) + i+(A3)− r

[
A2 B2

0 B3

]
− r

[
0 B2

A3 B3

]
.

(c) The global maximal inertia of the matrices in (1.2) is

max
X∈S

i±(X) = min{n+ i±(A2)− r(B2), n+ i±(A3)− r(B3) }. (3.51)

(d) The global minimal inertia of the matrices in (1.2) is

min
X∈S

i±(X) = r

[
A2 0 B2

0 A3 B3

]
+ max

{
i±(A2)− r

[
A2 B2

0 B3

]
, i±(A3)− r

[
0 B2

A3 B3

]}
. (3.52)

In consequence, the following hold.

(e) Eq. (3.24) has a solution X > 0 if and only if

A2 > 0, A3 > 0, R(A2) = R(B2), R(A3) = R(B3).

(f) All solutions of (3.24) satisfy X > 0 if and only if A2 > 0, A3 > 0 and
one of

r(A2) = r(B2) = n, r(A3) = r(B3) = n.

(g) Eq. (3.24) has a solution X < 0 if and only if

A2 6 0, A3 6 0, R(A2) = R(B2), R(A3) = R(B3).

(h) All solutions of (3.24) satisfy X < 0 if and only if A2 6 0, A3 6 0 and
one of

r(A2) = r(B2) = n, r(A3) = r(B3) = n.

(i) Eq. (3.24) has a solution X > 0 if and only if

A2 > 0, A3 > 0, R

[
A2

0

]
⊆ R

[
0 B2

A3 B3

]
, R

[
0
A3

]
⊆ R

[
A2 B2

0 B3

]
.

(j) All solutions of (3.24) satisfy X > 0 if and only if A2 > 0, A3 > 0 and
one of

r(B2) = n, r(B3) = n.

(k) Eq. (3.24) has a solution X 6 0 if and only if

A2 6 0, A3 6 0, R

[
A2

0

]
⊆ R

[
0 B2

A3 B3

]
, R

[
0
A3

]
⊆ R

[
A2 B2

0 B3

]
.
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(l) All solutions of (3.24) satisfy X 6 0 if and only if A2 6 0, A3 6 0 and
one of

r(B2) = n, r(B3) = n.

Proof. Set A1 = 0 and B1 = In in Theorem 3.3 and simplifying, we obtain (a)–(d).
Applying Lemma 2.1 to (3.49)–(3.52), we obtain the results in (e)–(l). �

Corollary 3.6(e)–(l) give a set of analytical characterizations for the existence
of definite common solutions of the two matrix equations in (3.24) by using some
rank and range equalities and inequalities. These characterizations are simple
and easy to understand in comparison with some known ambiguous conditions
(see, e.g., [12, 40, 41]) on the existence of definite common solutions of (3.24).

Rewrite B2XB
∗
2 = A2 and B3XB

∗
3 = A3 as

[B21, B22 ]

[
X1 X2

X∗
2 X3

][
B∗

21

B∗
22

]
= A2, [B31, B32 ]

[
X1 X2

X∗
2 X3

][
B∗

31

B∗
32

]
= A3, (3.53)

where Bi1 ∈ Cmi×n1 , Bi2 ∈ Cmi×n2 , i = 2, 3, X1 ∈ Cn1
H , X2 ∈ Cn1×n2 and

X3 ∈ Cn2
H with n1 + n2 = n. We next derive the extremal ranks and inertias

of the submatrices X1 and X3 in a Hermitian solution of (3.53). Note that
X1, X2, X3 in (3.53) can be rewritten as

X1 = P1XP
∗
1 , X2 = P1XP

∗
2 , X3 = P2XP

∗
2 , (3.54)

where P1 = [ In1 , 0 ] and P2 = [ 0, In2 ]. For convenience, we adopt the following
notation for the collections of the submatrices X1 and X3 in (3.53):

S1 = {X1 = P1XP
∗
1 | B2XB

∗
2 = A2, B3XB

∗
3 = A3, X = X∗} , (3.55)

S3 = {X3 = P2XP
∗
2 | B2XB

∗
2 = A2, B3XB

∗
3 = A3, X = X∗} . (3.56)

The global maximal and minimal ranks and inertias of the submatrices X1 and
X3 in (3.53) can easily be derived from Theorem 3.3. The details are omitted.

If each of the triple matrix equations in (1.8) is not consistent, people may al-
ternatively seek its common approximation solutions under various given optimal
criteria. One of the most useful approximation solutions of BXB∗ = A is the
well-known least-squares Hermitian solution, which is defined to be a Hermitian
matrix X that minimizes the objective function:

‖A−BXB∗ ‖2 = tr[ (A−BXB∗ )(A−BXB∗ )∗ ]. (3.57)

The normal equation corresponding to the norm minimization problem is given
by

B∗BXB∗B = B∗AB. (3.58)

This equation is always consistent. Concerning the common least-squares Her-
mitian solution of (1.8), we have the following result.

Corollary 3.7. Let Ai ∈ Cmi
H and Bi ∈ Cmi×n be given for i = 1, 2, 3. Then,

there exists an X ∈ Cn
H such that

‖Ai −BiXB
∗
i ‖ = min, i = 1, 2, 3, (3.59)
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hold simultaneously, if and only if

r

B∗
iAiBi 0 B∗

iBi

0 −B∗
jAjBj B∗

jBj

B∗
iBi B∗

jBj 0

 = 2r

[
Bi

Bj

]
, i 6= j, i, j = 1, 2, 3, (3.60)

r


B∗

1A1B1 0 0 B∗
1B1 B∗

1B1

0 −B∗
2A2B2 0 B∗

2B2 0
0 0 −B∗

3A3B3 0 B∗
3B3

B∗
1B1 B∗

2B2 B∗
3B3 0 0

 = r

B1 B1

B2 0
0 B3

 + r

B1

B2

B3

.
(3.61)

Proof. It follows from Lemma 3.1, Corollary 3.5 and (3.58). �

4. The extremal ranks and inertias of A1 −B1XB
∗
1 subject to the

Hermitian solutions of B4X = A4

Although B4X = A4 in (1.3) is not symmetric in form, it may have a Hermitian
solution, as shown in Lemma 2.6. So that the global extremal ranks and inertias
of A1−B1XB

∗
1 subject to the Hermitian solution or positive semi-definite solution

of B4X = A4 can also be derived.

Theorem 4.1. Assume that the matrix equation B4X = A4 in (1.3) has a Her-
mitian solution, i.e., R(A4) ⊆ R(B4) and A4B

∗
4 = B4A

∗
4, T is defined in (1.3),

and let

M =

[
A1 B1

A4B
∗
1 B4

]
, N =

A1 B1 0
B∗

1 0 B∗
4

0 B4 −A4B
∗
4

. (4.1)

Then,

max
X∈T

r(A1 −B1XB
∗
1 ) = r(M)− r(B4), (4.2)

min
X∈T

r(A1 −B1XB
∗
1 ) = 2r(M)− r(N), (4.3)

max
X∈T

i±(A1 −B1XB
∗
1 ) = i±(N)− r(B4), (4.4)

min
X∈T

i±(A1 −B1XB
∗
1 ) = r(M)− i∓(N). (4.5)

In consequences, the following hold.

(a) B4X = A4 has a solution X ∈ Cn
H such that A1 − B1XB

∗
1 is nonsingular

if and only if r(M) = r(B4) +m1.
(b) A1 − B1XB

∗
1 is nonsingular for all Hermitian solution of B4X = A4 if

and only if 2r(M) = r(N) +m1.
(c) The pair of matrix equations B1XB

∗
1 = A1 and B4X = A4 have a common

Hermitian solution if and only if R

[
A1

A4B
∗
1

]
⊆ R

[
B1

B4

]
.

(d) B1XB
∗
1 = A1 holds for all Hermitian solutions of B4X = A4 if and only

if r(M) = r(B4).
(e) B4X = A4 has a solution X ∈ Cn

H such that A1 − B1XB
∗
1 > 0 (A1 −

B1XB
∗
1 < 0 ) if and only if i+(N) = r(B4) +m1 ( i−(N) = r(B4) +m1 ).
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(f) A1−B1XB
∗
1 > 0 (A1−B1XB

∗
1 < 0 ) holds for all Hermitian solutions of

B4X = A4 if and only if r(M) = i−(N) +m1 ( r(M) = i+(N) +m1 ).
(g) B4X = A4 has a solution X ∈ Cn

H such that A1 − B1XB
∗
1 > 0 (A1 −

B1XB
∗
1 6 0 ) if and only if r(M) = i+(N) (r(M) = i−(N)) .

(f) A1−B1XB
∗
1 > 0 (A1−B1XB

∗
1 6 0 ) holds for all Hermitian solutions of

B4X = A4 if and only if i−(N) = r(B4) ( i+(N) = r(B4) ).

Proof. From Lemma 2.6(a), the general Hermitian solution of B4X = A4 can be
written as

X = B†
4A4 + (B†

4A4)
∗ −B†

4A4B
†
4B4 + FB4WFB4 , (4.6)

where W ∈ Cn
H is arbitrary. Substituting (4.6) into A1 −B1XB

∗
1 gives

A1 −B1XB
∗
1 = G−B1FB4WFB4B

∗
1 , (4.7)

where G = A1−B1B
†
4A4B

∗
1 −B1(B

†
4A4)

∗B∗
1 +B1B

†
4A4B

†
4B4B

∗
1 . Applying (2.25)–

(2.28) to (4.7) yields

max
X∈T

r(A1 −B1XB
∗
1 ) = max

W∈Cn
H

r(G−B1FB4WFB4B
∗
1 ) = r[G, B1FB4 ], (4.8)

min
X∈T

r(A1 −B1XB
∗
1 ) = min

W∈Cn
H

r(G−B1FB4WFB4B
∗
1 )

= 2r[G, B1FB4 ]− r

[
G B1FB4

FB4B
∗
1 0

]
, (4.9)

max
X∈T

i±(A1 −B1XB
∗
1 ) = max

W∈Cn
H

r(G−B1FB4WFB4B
∗
1 )

= i±

[
G B1FB4

FB4B
∗
1 0

]
, (4.10)

min
X∈T

i±(A1 −B1XB
∗
1 ) = min

W∈Cn
H

r(G−B1FB4WFB4B
∗
1 )

= r[G, B1FB4 ]− i∓

[
G B1FB4

FB4B
∗
1 0

]
. (4.11)

It is easy to verify that under B4B
†
4A4 = A4, the equality

B4(B
†
4A4)

∗ = B4A
∗
4(B

†
4)
∗ = A4B

∗
4(B

†
4)
∗ = A4B

†
4B4

holds. In this case, applying (2.5), (2.15) and (2.16) to (4.8)–(4.11) and sim-
plifying by elementary matrix operations and congruence matrix operations, we
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obtain

r[G, B1FB4 ]

= r

[
A1 −B1B

†
4A4B

∗
1 −B1(B

†
4A4)

∗B∗
1 +B1B

†
4A4B

†
4B4B

∗
1 B1

0 B4

]
− r(B4)

= r

[
A1 B1

A4B
∗
1 +B4(B

†
4A4)

∗B∗
1 − A4B

†
4B4B

∗
1 B4

]
− r(B4)

= r

[
A1 B1

A4B
∗
1 B4

]
− r(B4) = r(M)− r(B4), (4.12)

i±

[
G B1FB4

FB4B
∗
1 0

]

= i±

A1 −B1B
†
4A4B

∗
1 −B1(B

†
4A4)

∗B∗
1 +B1B

†
4A4B

†
4B4B

∗
1 B1 0

B∗
1 0 B∗

4

0 B4 0

− r(B4)

= i±

[
A1 B1

1
2
B1B†

4A4B∗
4 + 1

2
B1A∗

4 −
1
2
B1B†

4A4B∗
4

B∗
1 0 B∗

4
1
2
A4B∗

1 + 1
2
B4B1(B†

4A4)∗B∗
1 −

1
2
A4B†

4B4B∗
1 B4 0

]
− r(B4)

= i±

 A1 B1
1
2
B1A

∗
4

B∗
1 0 B∗

4
1
2
A4B

∗
1 B4 0

− r(B4) = i±

A1 B1 0
B∗

1 0 B∗
4

0 B4 −A4B
∗
4

− r(B4)

= i±(N)− r(B4). (4.13)

Substituting (4.12) and (4.13) into (4.8)–(4.11) yields (4.2)–(4.5). Applying
Lemma 2.1 to (4.2)–(4.5) yields (a)–(f). �

Theorem 4.2. Assume that the matrix equation B4X = A4 in (1.3) has a positive
semi-definite solution, i.e., R(A4) ⊆ R(B4), A4B

∗
4 > 0 and r(A4B

∗
4) = r(A4),

and let

T = { 0 6 X ∈ Cn
H | A4X = B4 }, M1 =

[
A1 B1

A4B
∗
1 B4

]
, (4.14)

M2 =

[
A1 B1A

∗
4

A4B
∗
1 A4B

∗
4

]
, N =

 A1 B1 0
B∗

1 0 B∗
4

0 B4 −A4B
∗
4

. (4.15)
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Then,

max
X∈T

r(A1 −B1XB
∗
1 ) = r(M1)− r(B4), (4.16)

min
X∈T

r(A1 −B1XB
∗
1 ) = r(M1) + i−(M2)− i−(N), (4.17)

max
X∈T

i+(A1 −B1XB
∗
1 ) = i+(M2)− r(A4), (4.18)

min
X∈T

i+(A1 −B1XB
∗
1 ) = r(M1)− i−(N), (4.19)

max
X∈T

i−(A1 −B1XB
∗
1 ) = i−(N)− r(A4), (4.20)

min
X∈T

i−(A1 −B1XB
∗
1 ) = i−(M2). (4.21)

In consequences, the following hold.

(a) B4X = A4 has a positive semi-definite solution such that A1 −B1XB
∗
1 is

nonsingular if and only if r(M1) = r(B4) +m1.
(b) A1−B1XB

∗
1 is nonsingular for all positive semi-definite solution of B4X =

A4 if and only if r(M1) + i−(M2) = i−(N) +m1.
(c) The pair of matrix equations B1XB

∗
1 = A1 and B4X = A4 have a common

positive semi-definite solution if and only if r(M1) + i−(M2) = i−(N).
(d) B1XB

∗
1 = A1 holds for all positive semi-definite solutions of B4X = A4 if

and only if r(M) = r(B4).
(e) B4X = A4 has a solution 0 6 X ∈ Cn

H such that A1 − B1XB
∗
1 > 0 if and

only if i+(M2) = r(A4) +m1.
(f) A1−B1XB

∗
1 > 0 holds for all positive semi-definite solutions of B4X = A4

if and only if r(M1) = i−(N) +m1.
(g) B4X = A4 has a solution 0 6 X ∈ Cn

H such that A1 − B1XB
∗
1 < 0 if and

only if i−(N) = r(A4) +m1.
(h) A1−B1XB

∗
1 < 0 holds for all positive semi-definite solutions of B4X = A4

if and only if i−(M2) = m1.
(i) B4X = A4 has a solution 0 6 X ∈ Cn

H such that A1 − B1XB
∗
1 > 0 if and

only if M2 > 0.
(j) A1−B1XB

∗
1 > 0 holds for all positive semi-definite solutions of B4X = A4

if and only if i−(N) = r(A4).
(k) B4X = A4 has a solution 0 6 X ∈ Cn

H such that A1 − B1XB
∗
1 6 0 if and

only if r(M1) = i−(N).
(l) A1−B1XB

∗
1 6 0 holds for all positive semi-definite solutions of B4X = A4

if and only if i+(M2) = r(A4).

Proof. From Lemma 2.6(b), the general positive semi-definite solution of B4X =
A4 can be written as

X = A∗4(A4B
∗
4)
†A4 + FB4WFB4 , (4.22)

where 0 6 W ∈ Cn
H is arbitrary. Substituting (4.22) into A1 −B1XB

∗
1 gives

A1 −B1XB
∗
1 = G−B1FB4WFB4B

∗
1 , (4.23)
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where G = A1 −B1A
∗
4(A4B

∗
4)
†A4B

∗
1 . Applying (2.37)–(2.40) to (4.23) yields

max
X∈T

r(A1 −B1XB
∗
1 ) = max

06W∈Cn
H

r(G−B1FB4WFB4B
∗
1 )

= r[G, B1FB4 ], (4.24)

min
X∈T

r(A1 −B1XB
∗
1 ) = min

06W∈Cn
H

r(G−B1FB4WFB4B
∗
1 )

= i−(G) + r[G, B1FB4 ]− i−

[
G B1FB4

FB4B
∗
1 0

]
, (4.25)

max
X∈T

i+(A1 −B1XB
∗
1 ) = max

06W∈Cn
H

r(G−B1FB4WFB4B
∗
1 ) = i+(G), (4.26)

min
X∈T

i+(A1 −B1XB
∗
1 ) = max

06W∈Cn
H

i+(G−B1FB4WFB4B
∗
1 )

= r[G, B1FB4 ]− i−

[
G B1FB4

FB4B
∗
1 0

]
, (4.27)

max
X∈T

i−(A1 −B1XB
∗
1 ) = max

06W∈Cn
H

i−(G−B1FB4WFB4B
∗
1 )

= i−

[
G B1FB4

FB4B
∗
1 0

]
, (4.28)

min
X∈T

i−(A1 −B1XB
∗
1 ) = min

06W∈Cn
H

i−(G−B1FB4WFB4B
∗
1 ) = i−(G). (4.29)

Applying (2.4)–(2.6), (2.15) and (2.16) and simplifying, we obtain

r[G, B1FB4 ] = r

[
A1 −B1A

∗
4(A4B

∗
4)
†A4B

∗
1 B1

0 B4

]
− r(B4)

= r

[
A1 B1

A4B
∗
1 B4

]
− r(B4), (4.30)

i±

[
G B1FB4

FB4B
∗
1 0

]
= i±

A1 −B1A
∗
4(A4B

∗
4)
†A4B

∗
1 B1 0

B∗
1 0 B∗

4

0 B4 0

− r(B4)

= i±

 A1 B1
1
2
B1A

∗
4

B∗
1 0 B∗

4
1
2
A4B

∗
1 B4 0

− r(B4)

= i±

A1 B1 0
B∗

1 0 B∗
4

0 B4 −A4B
∗
4

− r(B4), (4.31)

i±(G) = i±[A1 −B1A
∗
4(A4B

∗
4)
†A4B

∗
1 ]

= i±

[
A1 B1A

∗
4

A4B
∗
1 A4B

∗
4

]
− i±(A4B

∗
4). (4.32)

Substituting (4.30)–(4.32) into (4.24)–(4.29) yields (4.16)–(4.21). Applying Lemma
2.1 to (4.2)–(4.5) yields (a)–(l). �

Corollary 4.3. Assume that the matrix equation AX = B has a Hermitian
solution, i.e., R(B) ⊆ R(A) and AB∗ = BA∗, where A, B ∈ Cm×n are given, let
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P ∈ Cn
H and define T = {X ∈ Cn

H |AX = B }. Then,

max
X∈T

r(X − P ) = r(B − AP )− r(A) + n, (4.33)

min
X∈T

r(X − P ) = 2r(B − AP )− r(BA∗ − APA∗ ), (4.34)

max
X∈T

i±(X − P ) = i±(BA∗ − APA∗ )− r(A) + n, (4.35)

min
X∈T

i±(X − P ) = r(B − AP )− i∓(BA∗ − APA∗ ). (4.36)

In consequence, the following hold.

(a) There exists an X ∈ T such that X − P is nonsingular if and only if

R(AP −B ) = R(A).

(b) X − P is nonsingular for all X ∈ T if and only if

2r(B − AP ) = r(BA∗ − APA∗ ) + n.

(c) There exists an X ∈ T such that X > P (X < P ) holds if and only if

R(BA∗ − APA∗ ) = R(A) and BA∗ > APA∗

( R(BA∗ − APA∗ ) = R(A) and BA∗ 6 APA∗ ) .

(d) X > P (X < P ) holds for all X ∈ T if and only if

r(B − AP ) = n and BA∗ > APA∗ ( r(B − AP ) = n and AB∗ 6 APA∗ ) .

(e) There exists an X ∈ T such that X > P (X 6 P ) holds if and only if

R(B − AP ) = R(BA∗ − APA∗ ) and BA∗ > APA∗

( R(B − AP ) = R(BA∗ − APA∗ ) and BA∗ 6 APA∗ ).

(f) X > P (X 6 P ) holds for all X ∈ T if and only if

BA∗ > APA∗ and r(A) = n (BA∗ 6 APA∗ and r(A) = n ) .

Corollary 4.4. Assume that the matrix equation AX = B has a Hermitian
solution X > 0, where A, B ∈ Cm×n are given, let 0 6 P ∈ Cn

H and define

T = { 0 6 X ∈ Cn
H | AX = B }, M =

[
BA∗ B
B∗ P

]
. (4.37)

Then,

max
X∈T

r(X − P ) = r(B − AP )− r(A) + n, (4.38)

min
X∈T

r(X − P ) = i−(M) + r(B − AP )− i+(BA∗ − APA∗ ), (4.39)

max
X∈T

i+(X − P ) = i+(BA∗ − APA∗ )− r(A) + n, (4.40)

min
X∈T

i+(X − P ) = i−(M), (4.41)

max
X∈T

i−(X − P ) = i+(M)− r(B), (4.42)

min
X∈T

i−(X − P ) = r(B − AP )− i+(BA∗ − APA∗ ). (4.43)

In consequence, the following hold.
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(a) There exists an X ∈ T such that X − P is nonsingular if and only if
R(B − AP ) = R(A).

(b) X −P is nonsingular for all X ∈ T if and only if i−(M) + r(B−AP ) =
i+(BA∗ − APA∗ ) + n.

(c) There exists an X ∈ T such that X > P holds if and only if R(BA∗ −
APA∗ ) = R(A) and BA∗ > APA∗.

(d) X > P holds for all X ∈ T if and only if i−(M) = r(A).
(e) There exists an X ∈ T such that X < P holds if and only if i−(M) =

r(B) + n.
(f) X < P holds for all X ∈ T if and only if r(B − AP ) = n and BA∗ 6

APA∗.
(g) There exists an X ∈ T such that X > P if and only if R(B − AP ) =

R(BA∗ − APA∗ ) and BA∗ > APA∗.
(h) X > P holds for all X ∈ T if and only if i−(M) = r(B).
(i) There exists an X ∈ T such that X 6 P if and only if M > 0.
(j) X 6 P holds for all X ∈ T if and only if i+(BA∗ − APA∗ ) = n− r(A).

Corollary 4.5. Assume that the matrix equation AX = B has a Hermitian
solution, i.e., R(B) ⊆ R(A) and AB∗ = BA∗, where A, B ∈ Cm×n are given.
Then,

max
AX=B, X∈Cn

H

r(X) = n+ r(B)− r(A), (4.44)

min
AX=B, X∈Cn

H

r(X) = 2r(B)− r(AB∗), (4.45)

max
AX=B, X∈Cn

H

i±(X) = n+ i±(AB∗)− r(A), (4.46)

min
AX=B, X∈Cn

H

i±(X) = r(B)− i∓(AB∗). (4.47)

Hence, the following hold.

(a) AX = B has a nonsingular Hermitian solution if and only if r(A) = r(B).
(b) AX = B has a solution X > 0 (X < 0) if and only if AB∗ > 0 and

r(AB∗) = r(A) (AB∗ 6 0 and r(AB∗) = r(A)).
(c) AX = B has a solution X > 0 (X 6 0) if and only if AB∗ > 0 and

r(AB∗) = r(B) (AB∗ 6 0 and r(AB∗) = r(B)).
(d) The rank of the Hermitian solution of AX = B is invariant ⇔ the positive

index of inertia of the Hermitian solution of AX = B is invariant ⇔ the
negative index of inertia of the Hermitian solution of AX = B is invariant
⇔ r(AB∗) = r(A) + r(B)− n.

Finally, we rewrite the matrix equation AX = B as

[A1, A2 ]

[
X1 X2

X∗
2 X3

]
= [B1, B2 ], (4.48)

where Ai ∈ Cm×ni , Bi ∈ Cm×ni , X1 ∈ Cn1
H , X2 ∈ Cn1×n2 , X3 ∈ Cn2

H for i = 1, 2
and n1 + n2 = n. Note that the unknown submatrices in (4.48) can be written as

X1 = P1XP
∗
1 , X2 = P1XP

∗
2 , X3 = P2XP

∗
2 , (4.49)
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where P1 = [ In1 , 0 ] and P2 = [ 0, In2 ]. We next find the extremal ranks and
inertias of the submatrices X1 and X3 in a Hermitian solution of (4.48). For
convenience, let

T1 = {X1 ∈ Cn1
H | X1 = P1XP

∗
1 , AX = B, X ∈ Cn

H}, (4.50)

T3 = {X3 ∈ Cn2
H | X3 = P2XP

∗
2 , AX = B, X ∈ Cn

H}. (4.51)

Applying Theorem 4.1 to (4.50) and (4.51) gives the following results. The details
of the proof are omitted.

Theorem 4.6. Assume that matrix equation in (4.48) has a Hermitian solution,
and let T1 and T3 be of the forms in (4.50) and (4.51). Then, the global maximal
and minimal ranks and inertias of the Hermitian matrices in T1 and T3 are given
by

max
X1∈T1

r(X1 ) = n1 + r[A2, B1 ]− r(A), (4.52)

min
X1∈T1

r(X1 ) = 2r[A2, B1 ]− r

[
AB∗ A2

A∗2 0

]
, (4.53)

max
X1∈T1

i±(X1 ) = n1 + i±

[
AB∗ A2

A∗2 0

]
− r(A), (4.54)

min
X1∈T1

i±(X1 ) = r[A2, B1 ]− i∓

[
AB∗ A2

A∗2 0

]
, (4.55)

and

max
X3∈T3

r(X3 ) = n2 + r[A1, B2 ]− r(A), (4.56)

min
X3∈T3

r(X3 ) = 2r[A1, B2 ]− r

[
AB∗ A1

A∗1 0

]
, (4.57)

max
X3∈T3

i±(X3 ) = n2 + i±

[
AB∗ A1

A∗1 0

]
− r(A), (4.58)

min
X3∈T3

i±(X3 ) = r[A1, B2 ]− i∓

[
AB∗ A1

A∗1 0

]
. (4.59)

Applying Lemma 2.1 to (4.52)–(4.55), we easily obtain the following algebraic
properties of the submatrix X1 in (4.48).

Corollary 4.7. Assume that matrix equation in (4.48) has a Hermitian solution.
Then, the following hold.

(a) (4.48) has a Hermitian solution in which X1 is nonsingular if and only if
r[A2, B1 ] = r(A).

(b) X1 is nonsingular in all Hermitian solutions of (4.48) if and only if

r

[
AB∗ A2

A∗2 0

]
= 2r[A2, B1 ]− n1.

(c) (4.48) has a Hermitian solution in which X1 > 0 (X1 < 0) if and only if

i+

[
AB∗ A2

A∗2 0

]
= r(A)

(
i−

[
AB∗ A2

A∗2 0

]
= r(A)

)
.
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(d) X1 > 0 (X1 < 0) in all Hermitian solutions of (4.48) if and only if

i−

[
AB∗ A2

A∗2 0

]
= r[A2, B1 ]− n1

(
i+

[
AB∗ A2

A∗2 0

]
= r[A2, B1 ]− n1

)
.

(e) (4.48) has a Hermitian solution in which X1 > 0 (X1 6 0) if and only if

i+

[
AB∗ A2

A∗2 0

]
= r[A2, B1 ]

(
i−

[
AB∗ A2

A∗2 0

]
= r[A2, B1 ]

)
.

(f) X1 > 0 (X1 6 0) in all Hermitian solutions of (4.48) if and only if

i−

[
AB∗ A2

A∗2 0

]
= r(A)− n1

(
i+

[
AB∗ A2

A∗2 0

]
= r(A)− n1

)
.

(g) (4.48) has a Hermitian solution in which X1 = 0 if and only if R(B1) ⊆
R(A2).

(h) X1 = 0 in all Hermitian solutions of (4.48) if and only if r[A2, B1 ] =
r(A)− n1.

(i) The rank of X1 in the Hermitian solution of (4.48) is invariant ⇔ the
positive index of inertia of X1 in the Hermitian solution of (4.48) is in-
variant ⇔ the negative index of inertia of X1 in the Hermitian solution

of (4.48) is invariant ⇔ r

[
AB∗ A2

A∗2 0

]
= r[A2, B1 ] + r(A)− n1.

5. Conclusions

In this paper, we studied the problems of maximizing and minimizing the rank
and partial inertia of the Hermitian matrix-valued function A1−B1XB

∗
1 when X

runs over the two matrix sets in (1.2) and (1.3), respectively, and obtained many
symbolic formulas for calculating the maximal and minimal ranks and inertias of
A1−B1XB

∗
1 by using pure algebraic operations of matrices and their generalized

inverses. As direct applications, we gave necessary and sufficient conditions for
the existence of X satisfying the matrix equations in (1.8) and (1.14), as well
as the Löwner partial ordering matrix inequalities in (1.9) and (1.15). Although
there is no general theory for establishing closed-form formulas for calculating
(maximal and minimal) ranks and inertias of matrices, the results presented in
the previous sections as well as those in References [13]–[16] and [27]–[39], etc. by
the present author show that many problems on calculations and optimizations
of ranks and inertias of matrices can be solved explicitly by using some pure
algebraic operations of matrices, while the closed-form formulas obtained can be
used to solve many fundamental problems in matrix theory, as mentioned in the
beginning of this paper. This work seems extremely fruitful, while the results
obtained in these papers are easy to understand within the scope of elementary
linear algebra. This series of seminal researches show that for many basic or
classic problems like solvability of matrix equations and matrix inequalities, we
are still able to establish a variety of innovative results by some tricky algebraic
methods.

Motivated by the fruitful work on ranks and inertias of matrices, lots of people
did much parallel work in recent years on establishing formulas for calculating
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ranks and inertias of matrices, and many results obtained in their papers were
overlapped with those in this paper and References [13]–[16] and [27]–[39], etc.
In these cases, the originality of those overlapped results should belong to the
comprehensive work in this paper, [13]–[16] and [27]–[39], etc. by the present
author.

As a continuation, we mention some research problems on Hermitian matrix-
valued functions and Hermitian matrix equations for further consideration:

(a) A challenging task is to give the closed-form of the general common Her-
mitian solution of B2XB

∗
2 = A2 and B3XB

∗
3 = A3 that satisfies X > 0

(> 0, < 0, 6 0), which is equivalent to solving the following Hermitian
matrix inequalities

X0 + V FB + FBV
∗ + FB2UFB3 + FB3U

∗FB2 > 0 (> 0, < 0, 6 0).

Moreover, give the extremal ranks and inertias of the Hermitian matrix-
valued function A1 − B1XB

∗
1 subject to B2XB

∗
2 = A2 and B3XB

∗
3 = A3

and X > 0 (X 6 0).
(b) Derive possible closed-form formulas for calculating the extremal ranks

and inertias of the Hermitian matrix-valued function A1−B1XB
∗
1 subject

to common Hermitian solutions of the k − 1 consistent Hermitian matrix
equations

[B2XB
∗
2 , . . . , BkXB

∗
k ] = [A2, . . . , Ak ],

and establish necessary and sufficient condition for the set of Hermitian
matrix equations

[B1XB
∗
1 , . . . , BkXB

∗
k ] = [A1, . . . , Ak ]

to have a common Hermitian solution, as well as a common semi-definite
solution, respectively.

(c) Derive possible closed-form formulas for calculating the extremal ranks
and inertias of the Hermitian matrix-valued function A1−B1XB

∗
1 subject

to a Hermitian matrix inequality B2XB
∗
2 > A2 (B2XB

∗
2 6 A2). In such a

case, it is necessary to first give a closed-form formula of general Hermitian
solution of B2XB

∗
2 > A2 (B2XB

∗
2 6 A2).

(d) Derive possible closed-form formulas for calculating the the extremal ranks
and inertias of A1 −B1XB

∗
1 subject to B2X = A2 and X > 0 (X 6 0).
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