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COMPOSITION OPERATORS BETWEEN WEIGHTED
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Communicated by T. Sugawa

Abstract. We study composition operators acting between weighted Bergman
spaces with admissible Békollé weights. The boundedness and compactness of
composition operators are characterized in terms of the generalized Nevanlinna
counting function associated with the inducing map of the composition opera-
tor and the associated weight function of Bergman space. For a special case,
we also give the estimate of the essential norm.

1. Introduction

Let D denote the open unit disk in the complex plane and H(D) the space of
all analytic functions on D. For a given non-negative integrable function σ on D,
we denote Lp(σdA) (p > 0) the space of measurable functions f with

‖f‖p
σ =

∫
D
|f(z)|pσ(z)dA(z) < ∞,

where dA is the normalized Lebesgue measure on D, and Ap(σdA) = Lp(σdA) ∩
H(D). If σ(z) = (1− |z|2)α (α > −1), then Ap(σdA) is the well-known weighted
Bergman space Ap

α. In this paper, we will consider the space Ap(σdA) and study
the composition operator acting on this space.

For any analytic self-map φ : D → D, the composition operator Cφ : H(D) →
H(D) is defined by Cφf = f ◦ φ. One of interesting subjects on studies of this
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operator is to characterize its operator theoretic property in terms of the func-
tion theoretic property of φ. For the Hardy space Hp or the weighted Bergman
space Ap

α, a consequence of the Littlewood subordination principle verifies that
all composition operators are bounded on Hp or Ap

α. However, it is known that
every analytic self-map of D does not induce a compact composition operator on
Hp or Ap

α. The classical Nevanlinna counting function Nφ plays a key role in the
study on compact composition operator on H2. For a given analytic self-map φ
of D, Nφ is defined by

Nφ(z) =
∑

w∈φ−1(z)

log
1

|w|
(z ∈ D \ {φ(0)}),

where we understand that Nφ(z) = 0 for z /∈ φ(D) and w ∈ φ−1(z) is repeated
according to the multiplicity of zeros of φ− z. This Nφ was used for establishing
a formula for the essential norm of Cφ on H2 by Shapiro [11]. As a consequence,
he proved that the compactness of Cφ on H2 is characterized by the condition
Nφ(z) = o(− log |z|) as |z| → 1. Furthermore, he generalized Nφ as follows

Nφ,γ(z) =
∑

w∈φ−1(z)

{
log

1

|w|

}γ

(γ > 0, z ∈ D \ {φ(0)})

and also characterized the compactness of Cφ on A2
α.

Smith [12] used the above generalized counting function to study composition
operators Cφ acting between different weighted Bergman spaces Ap

α. When 0 <
p ≤ q < ∞, Smith proved that Cφ : Ap

α → Aq
β is bounded (or compact) if and

only if Nφ,β+2(z) = O((− log |z|)(α+2)q/p) (or o((− log |z|)(α+2)q/p)) as |z| → 1.
Since this result include the cases Ap

−1 = Hp or Aq
−1 = Hq, he also characterized

the boundedness and compactness of Cφ acting between the Hardy space and
the Bergman space. Pérez-González, Rättyä and Vukotić [7] also considered
the same characterization problem for the compactness of Cφ : Ap

α → Aq
β (0 <

p ≤ q < ∞). They proved that the condition dµ(z) = Nφ,β+2(z)dA(z) is a
vanishing 2 + q(α + 2)/p-Carleson measure also characterizes the compactness of
Cφ : Ap

α → Aq
β.

On the other hand, Smith and Yang [13] considered the case Cφ : Ap
α → Aq

β

when 0 < q < p. The boundedness of this case has a relation to the Carleson-type
embedding theorem. By using a method which is based on Khinchine’s inequality
and the atomic decomposition of f ∈ Ap

α, they proved that Cφ : Ap
α → Aq

β (q < p)
is bounded if and only if the function

D 3 z 7→ Nφ,β+2(z)

(1− |z|2)2+α

belongs to the space L
p

p−q (dAα). They also showed that every bounded composi-
tion operator Cφ : Ap

α → Aq
β (q < p) is also compact.

These results suggest a problem that what conditions on φ characterize the
boundedness and compactness of Cφ acting between different weighted Bergman
spaces Ap(σdA) with more general weight functions σ. Recently, Constantin [4]
studied this problem. Constantin’s characterizations are based on Carleson-type
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measure conditions for the pull-back measure induced by φ (see Theorem 2.11
below). Our aim in the present paper is to give another type characterization for
the boundedness and compactness of Cφ acting between different spaces Ap(σ1dA)
and Aq(σ2dA). In order to investigate this problem, we shall need the following
counting function.

Definition. Let φ be an analytic self-map of D and σ a weight function on D.
We define the function Nφ,σ as follows.

Nφ,σ(z) =
∑

w∈φ−1(z)

σ(w) (z ∈ D \ {φ(0)}).

As in the classical Nevanlinna counting function Nφ, we understand thatNφ,σ(z) =
0 for z /∈ φ(D) and w ∈ φ−1(z) is repeated according to the multiplicity of ze-
ros of φ − z. Conventionally, we consider that Nφ,σ(z) = 0 if z = φ(0). When
σ(z) = − log |z|, this Nφ,σ coincides with Nφ. So we call Nφ,σ a generalized
Nevanlinna counting function associated to φ and σ.

This generalized Nevanlinna counting function Nφ,σ was first introduced by
Kellay and Lefèvre in [8]. They used Nφ,σ to study the compactness of Cφ on
the weighted Dirichlet-type space Hσ which consists of all analytic functions f
on D such that

∫
D |f

′(z)|2σ(z)dA(z) < ∞. They gave the characterization for
the compactness of Cφ on the space Hσ by the growth condition of the general-
ized Nevanlinna counting function Nφ,σ. Their results inspired us to study the
composition operator on Ap(σdA) and gave suggestions for the method of charac-
terizations for the boundedness and compactness of Cφ : Ap(σ1dA) → Ap(σ2dA).

The main result of the paper is to characterize the bounded and compact
composition operator from Ap(σ1dA) into Aq(σ2dA) in terms of the behavior of the
above generalized Nevanlinna counting function. In section 3, we will consider the
operator Cφ : Ap(σ1dA) → Aq(σ2dA) when 0 < p ≤ q < ∞. The first result in this
section says that the boundedness is characterized by the growth condition of this
counting function. The second one is to estimate the essential norm of Cφ under
some restricted assumptions on p and q. Once this estimate is accomplished, we
get as a consequence the characterization of the compactness for 0 < p ≤ q < ∞.
In section 4, we will investigate the case 0 < q < p < ∞. Applications of
well-known Khinchine’s inequality and the Hardy–Littlewood maximal function
play an important role in our argument of this section. The result shows that
the integrability condition of the generalized counting function characterizes the
boundedness of Cφ. Furthermore we prove that the bounded composition operator
Cφ : Ap(σ1dA) → Aq(σ2dA) is also compact when 0 < q < p < ∞.

Throughout this paper, the notation a . b means that there exists a positive
constant C such that a ≤ Cb. Moreover, if both a . b and a & b hold, then one
says that a ≈ b.

2. Preliminaries

In this section, we introduce an admissible Békollé weight function σ and a
composition operator on weighted Bergman spaces Ap(σdA). We shall need some
lemmas on the space Ap(σdA) or the weight σ, so we also describe them.
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For each a ∈ D, let ϕa(z) be the Möbius transformation of D interchanging a
and 0, that is ϕa(z) = (a− z)/(1− az). Recall that the pseudohyperbolic metric
ρ on D is defined by ρ(z, a) = |ϕa(z)|, and the pseudohyperbolic disk E(a, r) is
the set

E(a, r) = {z ∈ D : ρ(z, a) < r},
for a ∈ D and r ∈ (0, 1).

2.1. Admissible Békollé weight. For each α > −1, let dAα denote the nor-
malized measure on D defined by dAα(z) = (α+1)(1−|z|2)αdA(z). For p > 1 and
α > −1, the class Bp(α) consists of all weight functions σ with the property that
there is a constant C > 0 such that for every S(a) = {ϕa(z) : Re(za) ≤ 0}, a ∈ D,(∫

S(a)

σdAα

)
·
(∫

S(a)

σ−
p′
p dAα

) p
p′

≤ C{Aα(S(a))}p,

where p′ is the conjugate exponent of p. Note that we put S(0) = D.
Békollé [2] proved that this condition characterizes the boundedness of the

Bergman projection Pα defined by

Pαf(z) =

∫
D

f(w)

(1− wz)α+2
dAα(w)

on Lp(σdA).

Theorem 2.1 ([2] Békollé). Let 1 < p < ∞ and α > −1. For a weight function
σ, the following conditions are equivalent:

(i) Pα is a bounded projection from Lp(σdA) onto Ap(σdA).

(ii) The sublinear operator P̃α defined by

P̃αf(z) =

∫
D

|f(w)|
|1− wz|α+2

dAα(w)

is bounded on Lp(σdA).
(iii) The z-variable function σ(z)/(1− |z|2)α belongs to Bp(α).

This result is very useful to study on the space Ap(σdA). For instance, Luecking
[9] showed the following dual relation of Ap(σdA).

Theorem 2.2 ([9] Luecking). Let 1 < p < ∞ and α > −1. If a weight function
σ satisfies the condition σ(z)/(1−|z|2)α ∈ Bp(α), then the dual space of Ap(σdA)

can be identified with Ap′(σ−
p′
p dAαp′) under the integral pairing

〈f, g〉α =

∫
D

f(z)g(z)dAα(z), (2.1)

where p′ is the conjugate exponent of p.

As an application of Theorem 2.2, we have the following lemma.

Lemma 2.3. Suppose that 1 < p < ∞, α > −1 and a weight function σ satisfies
σ(z)/(1 − |z|2)α ∈ Bp(α). If a bounded sequence {fj} in Ap(σdA) converges to
0 uniformly on compact subsets of D, then {fj} also converges to 0 weakly in
Ap(σdA).
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Proof. Take a function h ∈ Ap′(σ−
p′
p dAαp′) where p′ is the conjugate exponent of

p. For any ε > 0, there is a continuous function g with compact support such
that [∫

D
|h(z)− g(z)|p′σ(z)−

p′
p (1− |z|2)αp′dA(z)

] 1
p′

< ε. (2.2)

By the integral pairing (2.1) in Theorem 2.2, we have that

|〈fj, h〉α| =
∣∣∣∣∫

D
{fj(z)h(z)− fj(z)g(z) + fj(z)g(z)}dAα(z)

∣∣∣∣
≤
∫

D
|fj(z)||h(z)− g(z)|dAα(z) +

∫
D
|fj(z)||g(z)|dAα(z)

= (I) + (II). (2.3)

By applying the Hölder’s inequality to (I), (2.2) gives that

(I) ≤
[∫

D
|fj|pσdA

] 1
p

·
[∫

D
|h(z)− g(z)|p′σ(z)−

p′
p (1− |z|2)αp′dA(z)

] 1
p′

≤ ε · ‖fj‖σ, (2.4)

for any j ≥ 1.
On the other hand, since g has a compact support supp(g) and fj → 0 uni-

formly on supp(g) as j →∞, we see that

(II) =

∫
supp(g)

|fj(z)||g(z)|dAα(z) → 0 (j →∞). (2.5)

Thus (2.3), (2.4) and (2.5) show that

lim sup
j→∞

|〈fj, h〉α| ≤ sup
j≥1

‖fj‖σ ε,

for each h ∈ Ap′(σ−
p′
p dAαp′). Since {fj} is bounded and ε > 0 is arbitrarily, this

implies that {fj} converges to 0 weakly in Ap(σdA). �

In this paper, σ denotes a non-negative continuous function on [0, 1) such that
σ(r) ≤ 1 for r ∈ [0, 1). For z ∈ D we write σ(z) = σ(|z|) and call such σ a weight
function on D. Our arguments in proofs of main results are based on the above
results and require some growth conditions on σ, so we will consider the following
conditions.

Definition. A weight function σ is called an admissible Békollé weight if σ
satisfies

(W1)
σ(z)

(1− |z|2)α
∈ Bp0(α) for some p0 > 1 and α > −1,

(W2) σ is non-increasing on [0, 1),
(W3) σ(r)/(1− r2)1+δ is non-decreasing on [0, 1) for some δ > 0.

Lemma 2.4. Let p > 0 and σ be an admissible Békollé weight function. Then
for each f ∈ Ap(σdA),
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(i) |f(z)| . ‖f‖σ

σ(z)1/p(1− |z|2)2/p
,

(ii) |f ′(z)| . ‖f‖σ

σ(z)1/p(1− |z|2)1+2/p
.

Proof. Since σ(z)/(1− |z|2)α ∈ Bp0(α), it follows from Lemma (3.1) in [9] that

|f(z)| .
(∫

E(z,r)

σ(w)dA(w)

)− 1
p

‖f‖σ (2.6)

for r ∈ (0, 1) and z ∈ D. For w ∈ E(z, r), we may assume that |z| ≤ |w| without
loss of generality. Since σ is non-increasing, we have that

σ(w) ≤ σ(z).

Since σ(r)/(1 − r2)1+δ is non-decreasing for some δ > 0, on the other hand, we
have that

(1− |z|2)1+δσ(w) ≥ (1− |w|2)1+δσ(z).

Combining this with the relation 1 − |z|2 ≈ 1 − |w|2 for w ∈ E(z, r), we obtain
that

(1− |z|2)1+δσ(w) & (1− |z|2)1+δσ(z),

and so σ(w) & σ(z). These imply that σ(w) ≈ σ(z) for w ∈ E(z, r). By (2.6),
we have that

|f(z)| . {σ(z)A(E(z, r))}−
1
p ‖f‖σ ≈

{
σ(z)(1− |z|2)2

}− 1
p ‖f‖σ,

and so we get the first estimate (i).
Furthermore, the subharmonicity of |f ′|p gives that

|f ′(z)|p .
1

(1− |z|2)2

∫
E(z,r)

|f ′(w)|pdA(w).

By noting that σ(w) ≈ σ(z) and 1− |z|2 ≈ 1− |w|2 for w ∈ E(z, r), we have that

|f ′(z)|p .
1

σ(z)(1− |z|2)2+p

∫
E(z,r)

|f ′(w)|p(1− |w|2)pσ(w)dA(w). (2.7)

From [1, Theorem 3.1], we see that

‖f‖p
σ ≈ |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)pσ(z)dA(z). (2.8)

By applying (2.8) to the last integral in (2.7), we obtain the second estimate
(ii). �

In the above proof, we needed an equivalent norm (2.8) for ‖f‖σ. We also have
another formula for ‖f‖σ. Note that the following lemma holds for any weight
function σ without conditions (W1) ∼ (W3).

Lemma 2.5. Let p > 0 and σ be a weight function. Then it holds that

‖f‖p
σ ≈ |f(0)|p +

∫
D
|f(z)|p−2|f ′(z)|2

{∫ 1

|z|

(
log

r

|z|

)
σ(r)rdr

}
dA(z),

for f ∈ H(D).
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Proof. Recall that if g is in the Hardy space Hp, then |g|p has the least harmonic
majorant and it is equal to the Poisson integral

P [|g∗|p](z) =

∫ 2π

0

P (z, eiθ)|g∗(eiθ)|dθ

2π
,

where P (z, eiθ) = Re eiθ+z
eiθ−z

is the Poisson kernel for D and g∗ is the radial limit of
g. Combining this with the Riesz Decomposition theorem, we have that

|g(z)|p =

∫ 2π

0

P (z, eiθ)|g∗(eiθ)|p dθ

2π
−
∫

D
log

∣∣∣∣1− wz

w − z

∣∣∣∣ dµ|g|p(w).

Here dµ|g|p denotes the Riesz measure of |g|p. In particular, we put z = 0, then
we obtain that

‖g‖p
Hp = |g(0)|p +

∫
D

log
1

|w|
dµ|g|p(w).

Since it is known that the Riesz measure of |g|p (see [14, p.1035 (3.2)]) is given
by

dµ|g|p(w) = p2|g(w)|p−2|g′(w)|2dA(w),

we have that

‖g‖p
Hp = |g(0)|p + p2

∫
D
|g(w)|p−2|g′(w)|2 log

1

|w|
dA(w), (2.9)

for g ∈ Hp.
Now we take an f ∈ H(D) and r ∈ (0, 1). Since the dilated function fr(z) =

f(rz) is analytic in D and continuous on the closure of D, (2.9) gives that∫ 2π

0

|f(reiθ)|p dθ

2π
= |f(0)|p + p2

∫
D
|f(rw)|p−2|f ′(rw)|2r2 log

1

|w|
dA(w)

= |f(0)|p + p2

∫
rD
|f(z)|p−2|f ′(z)|2 log

r

|z|
dA(z).

Multiplying the above formula by 2rσ(r), integrating with respect to r from 0 to
1 and applying Fubini’s theorem, we get

‖f‖p
σ = 2|f(0)|p

∫ 1

0

rσ(r)dr

+ 2p2

∫
D
|f(z)|p−2|f ′(z)|2

{∫ 1

|z|

(
log

r

|z|

)
σ(r)rdr

}
dA(z),

which completes the proof. �

In order to formulate our results, we need to introduce another weight function.
For each weight σ, we put

ωσ(z) =

∫ 1

|z|
(t− |z|)σ(t)dt (z ∈ D).

Then we see that ωσ is non-increasing, convex and ωσ(z) → 0 as |z| → 1. Fur-
thermore ωσ has the following property.
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Lemma 2.6. If σ is an admissible Békollé weight function, then it holds that

ωσ(r) ≈ (1− r2)2σ(r)

for every r ∈ [0, 1).

Proof. Since σ is non-increasing, we have that

ωσ(r) =

∫ 1

r

(t− r)σ(t)dt ≤ 1

2
σ(r)(1− r2)2.

Since σ(r)/(1− r2)1+δ is non-decreasing for some δ > 0, we have that

ωσ(r) ≥ σ(r)

(1− r2)1+δ

∫ 1

r

(t− r)(1− t)1+δdt

≥ 1

23+δ(2 + δ)(3 + δ)
σ(r)(1− r2)2.

We accomplish the proof. �

2.2. Composition operators on Ap(σdA). Now we show that each Möbius
transformations ϕa always induce a bounded composition operator on Ap(σdA).
This property ensures that we may consider the operator Cφ under the assumption
φ(0) = 0.

Proposition 2.7. Let p > 0, p0 > 1 and α > −1. Suppose that σ is an admissible
Békollé weight function. For each a ∈ D, Cϕa is a bounded composition operator
on Ap(σdA).

Proof. Equation (2.8) and the change of variables formula give that

‖Cϕaf‖p
σ ≈ |f(a)|p +

∫
D
|f ′(z)|p|ϕ′

a(ϕa(z))|p(1− |ϕa(z)|2)pσ(ϕa(z))Jϕa(z)dA(z),

where Jϕa(z) denotes the real Jacobian of ϕa at z. By straightforward calculations
we have that

|ϕ′
a(ϕa(z))|p(1− |ϕa(z)|2)p−2Jϕa(z) = (1− |z|2)p−2.

Lemma 2.6 shows that

(1− |ϕa(z)|2)2σ(ϕa(z)) ≈ ωσ(ϕa(z)) and ωσ(z) ≈ (1− |z|2)2σ(z).

Since it follows from [8, Lemma 2.1] that

ωσ(z) ≈ ωσ(ϕa(z)) (z ∈ D), (2.10)

by an application of equation (2.8) once again, we obtain that

‖Cϕaf‖p
σ . |f(a)|p + ‖f‖p

σ,

for each f ∈ Ap(σdA). This implies that Cϕa(A
p(σdA)) ⊂ Ap(σdA). The closed

graph theorem shows that Cϕa is bounded on Ap(σdA). �

The following result is an immediate consequence of Proposition 2.7.

Corollary 2.8. Let p > 0, p0 > 1 and α > −1. Suppose that σ is an admissible
Békollé weight function. Then any analytic self-map φ of D induces a bounded
composition operator Cφ on Ap(σdA).
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The following change of variables formula help us in the arguments in our main
results.

Lemma 2.9. Let p > 0, φ be an analytic self-map of D and σ a weight function.
Then it holds that

‖f ◦ φ‖p
σ ≈ |f(φ(0))|p +

∫
D
|f(z)|p−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ(r)rdr

}
dA(z),

for f ∈ H(D). Here Nφ(r, z) denotes the partial counting function for φ defined
by

Nφ(r, z) =
∑

w∈φ−1(z), |w|≤r

log
r

|w|
(z ∈ D \ {φ(0)}, r ∈ (0, 1)).

Proof. Recall Stanton’s formula ([5, Theorem 2]) for integral means of subhar-
monic functions on D. If u is a positive subharmonic function on D and φ is an
analytic self-map of D, then it holds that∫ 2π

0

u(φ(reiθ))
dθ

2π
= u(φ(0)) +

∫
rD

Nφ(r, z) dµu(z) (r ∈ (0, 1)),

where dµu is the Riesz measure of u. Applying this formula to the positive
subharmonic function z 7→ |f(z)|p, we obtain the desired formula. �

Next we formulate the following sub-mean value property for the generalized
counting function Nφ,ωσ . We will need this property in the proofs of our results.

Lemma 2.10. Let t ∈ (0, 1) be fixed and σ a weight function. For any analytic
self-map φ of D with φ(0) = 0, it holds that

Nφ,ωσ(z) .
1

t2(1− |z|2)2

∫
E(z,t)

Nφ,ωσ(w) dA(w) (t < |z| < 1).

Proof. Fix z ∈ D \ tD and r ∈ (0, 1). Since Nφ(r, ϕz(·)) is subharmonic on

D \ {ϕz
−1(0)} = D \ {a} and tD ⊂ D \ {a}, we have that

Nφ(r, z) = Nφ(r, ϕz(0)) .
1

t2

∫
tD

Nφ(r, ϕz(w))dA(w).

By the change of variables, we have that∫
tD

Nφ(r, ϕz(w))dA(w) =

∫
E(z,t)

Nφ(r, w)
(1− |z|2)2

|1− zw|4
dA(w).

Since |1− zw|4 ≈ (1− |z|2)4 for w ∈ E(z, t), we obtain that

Nφ(r, z) .
1

t2(1− |z|2)2

∫
E(z,t)

Nφ(r, w)dA(w)

for r ∈ (0, 1). Multiplying the above inequality by σ(r) and integrating with
respect to r from 0 to 1, we get∫ 1

0

Nφ(r, z)σ(r)dr .
1

t2(1− |z|2)2

∫
E(z,t)

dA(w)

∫ 1

0

Nφ(r, w)σ(r)dr. (2.11)



COMPOSITION OPERATORS BETWEEN BERGMAN SPACES 73

Now we fix w ∈ E(z, t). Since t < |z| < 1, we see that 0 /∈ E(z, t), and

so c := inf{|v| : v ∈ E(z, t)} > 0 where E(z, t) = {w ∈ D : |ρ(w, z)| ≤ t}.
Since φ(0) = 0, Schwarz’s lemma shows that each u ∈ D with w = φ(u) satisfies
c ≤ |w| ≤ |u|. Thus we have the following inequalities

log
r

|u|
≤ 1

|u|
(r − |u|) ≤ 1

c
(r − |u|)

for |u| < r < 1. These give that∫ 1

0

Nφ(r, w)σ(r)dr =
∑

w=φ(u)

∫ 1

|u|
log

r

|u|
σ(r)dr ≤ 1

c
Nφ,ωσ(w). (2.12)

On the other hand, the inequality r − |u| < log r
|u| for |u| < r < 1 gives that

Nφ,ωσ(z) ≤
∫ 1

0

Nφ(r, z)σ(r)dr. (2.13)

By inequalities (2.11) ∼ (2.13), we obtain the desired inequality. �

At the end of this section, we quote the results on characterizations for the
boundedness and compactness of Cφ : Ap(σ1dA) → Aq(σ2dA) by O. Constantin.

Recently, Constantin [3, 4] obtained some properties of Ap(σdA) under condi-
tion (W1). In [4], Constantin proved the Carleson-type embedding theorem for
Ap(σdA). For a given weight σ and an analytic self-map φ of D, we define a
positive Borel measure µ by

µ(E) =

∫
φ−1(E)

σ(z)dA(z)

for any Borel set E of D. Since it holds that

‖Cφf‖p
σ =

∫
D
|f ◦ φ|p σdA =

∫
D
|f |pdµ,

Constantin’s Carleson-type embedding theorem [4, Theorems 3.1∼3.3] indicate
the following results.

Theorem 2.11 ([4] Constantin). Let p0 > 1, α > −1 and σj (j = 1, 2) be weight
functions. Suppose that σ1(z)/(1− |z|2)α ∈ Bp0(α). For λ ∈ D and r ∈ (0, 1), let
Dλ,r denote the disk {z ∈ D : |z − λ| < r(1− |λ|)}. For any analytic self-map φ
of D, the followings hold.

(i) For 0 < p ≤ q < ∞, Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded if and only if∫
φ−1(Dλ,r)

σ2 dA = O

{∫
Dλ,r

σ1 dA

}q/p
 (|λ| → 1),

and Cφ : Ap(σ1dA) → Aq(σ2dA) is compact if and only if∫
φ−1(Dλ,r)

σ2 dA = o

{∫
Dλ,r

σ1 dA

}q/p
 (|λ| → 1),

for some r ∈ (0, 1).
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(ii) For 0 < q < p < ∞, Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded if and only if

D 3 λ 7→

∫
φ−1(Dλ,r)

σ2 dA∫
Dλ,r

σ1 dA

belongs to Lp/(p−q)(σ1dA) for some r ∈ (0, 1). In this case Cφ is also
compact.

Remark 2.12. In the above theorem, we see from the proof of it that the choice
of {p, q} is independent of p0.

These results have the following corollary. It plays an important role in the
proof of our results below, but its proof is very easy. Thus we state the result
without the proof.

Corollary 2.13. Let m be a positive integer. Under the same assumptions in
Theorem 2.11, Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded (or compact) if and only
if Cφ : Amp(σ1dA) → Amq(σ2dA) is bounded (or compact, respectively).

3. The case 0 < p ≤ q < ∞

Theorem 3.1. Let σ1 be an admissible Békollé weight function, σ2 a weight
function and 0 < p ≤ q < ∞. For any analytic self-map φ of D, Cφ : Ap(σ1dA) →
Aq(σ2dA) is bounded if and only if

Nφ,ωσ2
(z) = O(ωσ1(z)

q
p ) (|z| → 1). (3.1)

Proof. First suppose that (3.1) holds and consider the case q ≥ 2 and φ(0) = 0.
By condition (3.1), we can choose a constant K > 0 and r0 ∈ [1/2, 1) such that

Nφ,ωσ2
(z) ≤ Kωσ1(z)

q
p , z ∈ D \ r0D. (3.2)

For fixed f ∈ Ap(σ1dA), by Lemma 2.9, we have that

‖Cφf‖q
σ2

. |f(0)|q +

∫
D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z). (3.3)

Put

I1(f) =

∫
r0D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z),

I2(f) =

∫
D\r0D

|f(z)|q−2|f ′(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z).

By noting our assumption q − 2 ≥ 0, Lemmas 2.4 (i) and 2.6 give that

|f(z)|q−2 .
‖f‖q−2

σ1

{σ1(z)(1− |z|2)2}
q−2

p

≈
‖f‖q−2

σ1

ωσ1(z)
q−2

p

. (3.4)

By Lemmas 2.4 (ii) and 2.6, we have that

|f ′(z)| .
‖f‖2

σ1

{σ1(z)(1− |z|2)2}
2
p (1− |z|2)2

≈
‖f‖2

σ1

ωσ1(z)
2
p (1− |z|2)2

. (3.5)
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Hence it follows from (3.4) and (3.5) that

I1(f) . max
|z|≤r0

1

ωσ1(z)
q
p (1− |z|2)2

‖f‖q
σ1

∫
r0D

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z). (3.6)

Now we consider the function g(z) = z + 1. Then ‖Cφg‖q
σ2

= ‖φ + 1‖q
σ2
≤ 2q. By

an application of Lemma 2.9 to g, we have that∫
r0D

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) . 2q.

Combining this with (3.6), we have that

I1(f) . max
|z|≤r0

2q

ωσ1(z)
q
p (1− |z|2)2

‖f‖q
σ1

. (3.7)

Fix z ∈ D \ r0D. As in inequality (2.12), we obtain that∫ 1

0

Nφ(r, z)σ2(r)dr ≤ 1

r0

Nφ,ωσ2
(z).

Combining this with (3.2), we have that

I2(f) . K

∫
D\r0D

|f(z)|q−2|f ′(z)|2ωσ1(z)
q
p dA(z).

By Lemma 2.4 and 2.6, we have that

|f(z)|q−2 .
‖f‖q−p

σ1

ωσ1(z)
q−p

p

|f(z)|p−2.

So we obtain that

I2(f) . K‖f‖q−p
σ1

∫
D
|f(z)|p−2|f ′(z)|2ωσ1(z)dA(z).

Since it holds that

ωσ1(z) =

∫ 1

|z|

1

r
(r − |z|)σ1(r)rdr ≤

∫ 1

|z|

(
log

r

|z|

)
σ1(r)rdr, (3.8)

Lemma 2.5 gives that∫
D
|f(z)|p−2|f ′(z)|2ωσ1(z)dA(z) . ‖f‖p

σ1
,

and so we obtain that I2(f) . K‖f‖q
σ1

. Combining this with (3.3) and (3.7),
we see that Cφ(A

p(σ1dA)) ⊂ Aq(σ2dA), that is Cφ : Ap(σ1dA) → Aq(σ2dA) is
bounded by the closed graph theorem.

When the case 0 < q < 2, we choose a positive integer m such that mq ≥ 2.
Since the condition (3.1) implies that

Nφ,ωσ2
(z) = O(ωσ1(z)

mq
mp ) (|z| → 1),

the above arguments show that Cφ : Amp(σ1dA) → Amq(σ2dA) is bounded. Thus
it follows from Corollary 2.13 that Cφ : Ap(σ1dA) → Aq(σ2dA) is also bounded.
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For the case φ(0) 6= 0, we may consider the composition map Φ = ϕφ(0) ◦ φ.
Then Φ(0) = 0. Equation (2.10) shows that

NΦ,ωσ2
(z)

ωσ1(z)q/p
=
Nφ,ωσ2

(ϕφ(0)(z))

ωσ1(z)q/p
≈
Nφ,ωσ2

(ϕφ(0)(z))

ωσ1(ϕφ(0)(z))q/p
,

for any z ∈ D. Since |ϕφ(0)(z)| → 1 as |z| → 1, we see that Φ also satisfies the
condition (3.1), and so CΦ : Ap(σ1dA) → Aq(σ2dA) is bounded. By Proposition
2.7, Cφ = CΦCϕφ(0)

is also bounded from Ap(σ1dA) into Aq(σ2dA).

Finally, we prove that (3.1) is a necessary condition for the boundedness of
Cφ : Ap(σ1dA) → Aq(σ2dA). Fix z ∈ D with |z| > 1/3 and put

fz(w) =
(1− |z|2)α+2−2/p

σ1(z)
1
p (1− zw)α+2

, w ∈ D.

By [4, Lemma 2.1] (see also [3, Lemma 3.1]), it holds that∫
D

1

|1− zw|p(α+2)
σ1(w)dA(w) ≈ σ1(z)

(1− |z|2)p(α+2)−2
,

for z ∈ D. So this implies that fz ∈ Ap(σ1dA) and ‖fz‖σ1 . 1. It follows from
Lemma 2.9 that

‖Cφfz‖q
σ2

&
∫

D
|fz(w)|q−2|f ′z(w)|2

{∫ 1

0

Nφ(r, w)σ2(r)rdr

}
dA(w)

≥
∫

D
|fz(w)|q−2|f ′z(w)|2Nφ,ωσ2

(w)dA(w)

≥
∫

E(z,
1−|z|

2
)

|fz(w)|q−2|f ′z(w)|2Nφ,ωσ2
(w)dA(w). (3.9)

Since |1− zw| ≈ 1− |z|2 for w ∈ E(z, 1−|z|
2

), Lemma 2.6 gives

|fz(w)|q−2|f ′z(w)|2 ≈ (α + 2)2|z|2

ωσ1(z)
q
p (1− |z|2)2

.

Combining this with (3.9), we have that

1

ωσ1(z)
q
p

1

(1− |z|2)2

∫
E(z,

1−|z|
2

)

Nφ,ωσ2
(w)dA(w) . 1, (3.10)

for any z ∈ D with |z| > 1/3. Since it holds that |z| > 1−|z|
2

for |z| > 1/3, Lemma
2.10 and (3.10), we obtain that

Nφ,ωσ2
(z)

ωσ1(z)
q
p

. 1, for |z| > 1/3.

This implies that (3.1) is true. We accomplish the proof. �

Next we will show that the compactness of Cφ : Ap(σ1dA) → Aq(σ2dA) is
characterized by the following condition

Nφ,ωσ2
(z) = o(ωσ1(z)

q
p ) (|z| → 1).
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To prove this, we estimate the essential norm ‖Cφ‖e for the case p ≥ p0, q ≥ 2
and φ(0) = 0. Since the essential norm ‖Cφ‖e is defined to be the distance from
Cφ to the closed ideal of compact operators, that is

‖Cφ‖e = inf{‖Cφ −K‖ : K is compact from Ap(σ1dA) into Aq(σ2dA)},

where ‖Cφ−K‖ denotes the operator norm of Cφ−K, the compactness of Cφ is
characterized by the condition ‖Cφ‖e = 0. Hence our object is to estimate ‖Cφ‖e

in terms of Nφ,ωσ2
(z)/ωσ1(z)q/p. For our aim, we need some preliminary results.

For the Taylor series expansion of f ∈ H(D) and any integer n ≥ 1 we put

Rnf(z) =
∞∑

k=n

akz
k, z ∈ D,

and Kn = I − Rn where If = f is the identity operator. The following Lemma
3.2 and Corollary 3.3 hold for any weight function σ.

Lemma 3.2. If 1 < p < ∞ and f ∈ Ap(σdA), then ‖Knf − f‖σ → 0 as n →∞.

Proof. For f ∈ Ap(σdA) and r ∈ (0, 1), the dilated function fr is in the Hardy
space Hp. Since 1 < p < ∞, Proposition 1 and Corollary 3 in [15] imply that
there exists a constant C > 0 such that∫ 2π

0

|Kn(fr)(e
iθ)|p dθ

2π
≤ C

∫ 2π

0

|fr(e
iθ)|p dθ

2π
,

for all r ∈ (0, 1) and n ≥ 1. Multiplying both sides by 2rσ(r) and integrating with
respect to r from 0 to 1 give ‖Knf‖p

σ ≤ C‖f‖p
σ, and so sup{‖Kn‖ : n ≥ 1} < ∞.

By applying [15, Proposition 1] once again, we have that ‖Knf − f‖σ → 0 as
n →∞ for each f ∈ Ap(σdA). �

Corollary 3.3. If 1 < p < ∞, then ‖Rnf‖σ → 0 as n → ∞ for each f ∈
Ap(σdA). Moreover, sup{‖Rn‖ : n ≥ 1} < ∞.

Proof. The second assertion of this corollary is verified by the principle of uniform
boundedness. So we omit the details of the proof. �

Lemma 3.4. Suppose that 1 < p < ∞ with p ≥ p0, α > −1 and σ is the weight
function satisfied σ(z)/(1− |z|2)α ∈ Bp0(α). For each f ∈ H(D), it holds that

|Rnf(z)| . ‖f‖σ(∫
D σdA

)1/p

∞∑
j=n

Γ(j + α + 2)

j!Γ(α + 2)
|z|j,

for all z ∈ D and n ≥ 1. Here Γ(x) is the well-known Gamma function.

Proof. First note that the assumption p ≥ p0 implies that σ(z)/(1−|z|2)α ∈ Bp(α)
by Hölder’s inequality. Since it follows from Theorem 2.1 that the Bergman
projection Pα is bounded from Lp(σdA) onto Ap(σdA), we have that

Rnf(z) = Pα(Rnf)(z) =

∫
D

Rnf(w)

(1− wz)α+2
dAα(w).
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Furthermore, by using the self-adjointness of Rn and the expansion

1

(1− wz)α+2
=

∞∑
j=0

Γ(j + α + 2)

j!Γ(α + 2)
(wz)j,

we obtain that

|Rnf(z)| ≤
∞∑

j=n

Γ(j + α + 2)

j!Γ(α + 2)
|z|j

∫
D
|f(w)||w|jdAα(w). (3.11)

Hölder’s inequality and the condition σ(z)/(1− |z|2)α ∈ Bp(α) show that∫
D
|f(w)||w|jdAα(w) ≤

[∫
D
|f(w)|pσ(w)dA(w)

] 1
p

×
[∫

D
|w|jp′{σ(w)}−

p′
p (1− |z|2)αp′dA(w)

] 1
p′

.
‖f‖σ(∫

D σdA
)1/p

. (3.12)

By (3.11) and (3.12) we obtain the desired estimation. �

Theorem 3.5. Let σ1 be an admissible Békollé weight function, σ2 a weight
function, p0 ≤ p ≤ q < ∞ and q ≥ 2. Suppose that φ is an analytic self-map of
D with φ(0) = 0 and Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded. Then it holds that

‖Cφ‖q
e ≈ lim sup

|z|→1

Nφ,ωσ2
(z)

ωσ1(z)
q
p

. (3.13)

Proof. First we prove the upper estimate. Since Cφ = CφRn + CφKn and CφKn

is compact, it holds that

‖Cφ‖e ≤ lim inf
n→∞

‖CφRn‖. (3.14)

Take f ∈ Ap(σ1dA) with ‖f‖σ1 ≤ 1 and fix t ∈ (1/2, 1), arbitrarily. By Lemma
3.4 and the assumption φ(0) = 0 we have |Rnf(φ(0))| = 0, and so an application
of Lemma 2.9 to Rnf gives that

‖CφRnf‖q
σ2

.
∫
{|z|≤t}

|Rnf(z)|q−2|(Rnf)′(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

+

∫
{|z|>t}

|Rnf(z)|q−2|(Rnf)′(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z).

(3.15)

It follows from Lemmas 2.4, 2.6 and 3.4 that

|Rnf(z)|q−2|(Rnf)′(z)|2

.
‖f‖q

σ1(∫
D σ1dA

)(q−2)/p

(
∞∑

j=n

Γ(j + α + 2)

j!Γ(α + 2)
tj

)q−2

max
|z|≤t

1

ωσ1(z)2/p(1− |z|2)2
‖Rn‖2,
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for |z| ≤ t. Since supn≥1 ‖Rn‖ < ∞ by Corollary 3.3 and∫
{|z|≤t}

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) < ∞

by the proof of Theorem 3.1, we see that the first integral in (3.15) converges to
0 as n →∞ uniformly on the unit ball of Ap(σ1dA).

On the other hand, the same argument as in the proof of Theorem 3.1 shows
that ∫ 1

0

Nφ(r, z)σ2(r)rdr ≤ 1

t
Nφ,ωσ2

(z), t ≤ |z| < 1,

and so we have that∫
{|z|>t}

|Rnf(z)|q−2|(Rnf)′(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

≤ t

∫
{|z|>t}

|Rnf(z)|q−2|(Rnf)′(z)|2Nφ,ωσ2
(z)dA(z)

≤ t sup
|z|>t

Nφ,ωσ2
(z)

ωσ1(z)
q
p

∫
{|z|>t}

|Rnf(z)|q−2|(Rnf)′(z)|2ωσ1(z)
q
p dA(z). (3.16)

By Lemmas 2.4 and 2.6 we have that

|Rnf(z)|q−2 .
‖Rnf‖q−p

σ1

ωσ1(z)
q−p

p

|Rnf(z)|p−2.

Combining this with (3.16) and (3.8) and using Lemma 2.5, we obtain that∫
{|z|>t}

|Rnf(z)|q−2|(Rnf)′(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

. sup
n≥1

‖Rn‖q t sup
|z|>t

Nφ,ωσ2
(z)

ωσ1(z)
q
p

,

for any n ≥ 1 and t ∈ (1/2, 1).
Taking the supremum over the unit ball of Ap(σ1dA) and letting n → ∞ in

(3.15), we have that

lim inf
n→∞

‖CφRn‖q . t sup
|z|>t

Nφ,ωσ2
(z)

ωσ1(z)
q
p

,

for all t ∈ (1/2, 1). Letting t → 1 in the above inequality, by (3.14), we obtain
that

‖Cφ‖p
e . lim sup

|z|→1

Nφ,ωσ2
(z)

ωσ1(z)
q
p

.

Next we prove the lower estimate in (3.13). For any sequence {zj} ⊂ D with
|zj| → 1 as j →∞, we put

fzj
(w) =

(1− |zj|2)α+2−2/p

σ1(zj)
1
p (1− zjw)α+2

, w ∈ D.
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Then we see that {fzj
} is bounded in Ap(σ1dA) as in the proof of Theorem 3.1,

and converges to 0 uniformly on compact subsets on D as j → ∞. Lemma
2.3 implies that {fzj

} converges to 0 weakly in Ap(σ1dA), and so we see that
‖Kfzj

‖σ2 → 0 as j → ∞ for all compact operators K : Ap(σ1dA) → Aq(σ2dA).
These facts give that

‖Cφ‖q
e & lim

j→∞
‖Cφfzj

‖q
σ2

. (3.17)

As in the proof of (3.9), Lemma 2.9 gives that

‖Cφfzj
‖q

σ2
&
∫

E(zj ,
1−|zj |

2
)

|fzj
(w)|q−2|f ′zj

(w)|2Nφ,ωσ2
(w)dA(w), (3.18)

for all j ≥ 1. By Lemma 2.6, it follows that

|fzj
(w)|q−2|f ′zj

(w)|2 ≈ (α + 2)2|zj|2

ωσ1(zj)
q
p (1− |zj|2)2

, (3.19)

for j ≥ 1 and w ∈ E(zj,
1−|zj |

2
). Since |zj| > 1−|zj |

2
if j is sufficiently large, Lemma

2.10 gives that

Nφ,ωσ2
(zj) .

1

(1− |zj|2)2

∫
E(zj ,

1−|zj |
2

)

Nφ,ωσ2
(w)dA(w). (3.20)

By (3.18), (3.19) and (3.20) we obtain that

|zj|2
Nφ,ωσ2

(zj)

ωσ1(zj)
q
p

. ‖Cφfzj
‖q

σ2
,

for sufficiently large j. Combining this with (3.17), we have that

lim
j→∞

Nφ,ωσ2
(zj)

ωσ1(zj)
q
p

. ‖Cφ‖q
e.

Since {zj} ⊂ D with |zj| → 1 is arbitrarily, we get the desired lower estimate of
‖Cφ‖e. This completes the proof. �

Corollary 3.6. Let σ1 be an admissible Békollé weight function, σ2 a weight
function and 0 < p ≤ q < ∞. Suppose that φ is an analytic self-map of D which
Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded. Then Cφ : Ap(σ1dA) → Aq(σ2dA) is
compact if and only if

Nφ,ωσ2
(z) = o(ωσ1(z)

q
p ) (|z| → 1). (3.21)

Proof. In the view of the proof of Theorem 3.1, we can assume that φ(0) = 0
without loss of generality. Since the case p ≥ p0 and q ≥ 2 is an immediate
consequence of Theorem 3.5, it is enough to prove that the case 0 < p < p0 and
0 < q < 2 because the rest of cases are verified by quite the same argument. Since
we can choose a positive integer m = m(p, q) such that mp ≥ p0 and mq ≥ 2, we
see that Cφ : Amp(σ1dA) → Amq(σ2dA) is compact if and only if

Nφ,ωσ2
(z) = o(ωσ1(z)

mq
mp ) (|z| → 1).
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So, by an application of Corollary 2.13, we see that condition (3.21) also charac-
terizes the compactness of Cφ : Ap(σ1dA) → Aq(σ2dA) for the case p < p0 and
q < 2. �

4. The case 0 < q < p < ∞

In the proof of Theorem 4.1 below, we shall need Khinchine’s inequality and
the Hardy–Littlewood maximal function. Recall that the Rademacher functions
{rj(t)} are defined by

r0(t) =

{
1 0 ≤ t− [t] < 1

2
,

−1 1
2
≤ t− [t] < 1,

rj(t) = r0(2
jt) (j ≥ 1).

Khinchine’s Inequality. Let 0 < p < ∞. There are constants 0 < Ap ≤ Bp <
∞ such that, for any positive integer m and any complex numbers {cj}m

j=1, it
holds that

Ap

(
m∑

j=1

|cj|2
) p

2

≤
∫ 1

0

∣∣∣∣∣
m∑

j=1

cjrj(t)

∣∣∣∣∣
p

dt ≤ Bp

(
m∑

j=1

|cj|2
) p

2

.

The Hardy-Littlewood Maximal Function. Let M[f ] denote the Hardy-
Littlewood maximal function for f , that is

M[f ](z) = sup
δ>0

1

A(B(z, δ))

∫
B(z,δ)

|f | dA,

where B(z, δ) = {w ∈ D : |w − z| < δ}. Since we can find a positive constant c
such that E(z, 1

2
) ⊂ B(z, c(1− |z|2)) for z ∈ D, it holds that

1

(1− |z|2)2

∫
E(z, 1

2
)

|f | dA . M[f ](z) (z ∈ D). (4.1)

Moreover the Hardy-Littlewood maximal theorem (see [6, Theorem 4.3]) says
that M[f ] ∈ Lp and ‖M[f ]‖Lp . ‖f‖Lp for f ∈ Lp (1 < p < ∞).

In our proof of Theorem 4.1, we adapt Luecking’s approach in [10] or the
method by Smith and Yang in [13] to weighted Bergman space with admissible
Békollé weight. By using the same modification of Luecking’s method and a c-adic
decomposition of the disk D, Constantin [4] proved the Carleson-type embedding
theorem for Ap(σdA). In order to construct a suitable test function, however, we
will use an ε-separated sequence of D instead of a c-adic decomposition of D.

Theorem 4.1. Let σ1 be an admissible Békollé weight function, σ2 a weight
function and 0 < q < p < ∞. For any analytic self-map φ of D, Cφ : Ap(σ1dA) →
Aq(σ2dA) is bounded if and only if

Nφ,ωσ2

ωσ1

∈ L
p

p−q (σ1dA). (4.2)

Moreover, if Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded, then it is also compact in
this case.
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Proof. By the same argument in proofs of Theorem 3.1 or Corollary 3.6, we may
only prove the case φ(0) = 0, p ≥ p0 and q ≥ 2.

First suppose that condition (4.2) holds and prove that Cφ : Ap(σ1dA) →
Aq(σ2dA) is bounded. By Lemma 2.5, it is enough to prove that∫

D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) < ∞

for any f ∈ Ap(σ1dA). To prove this, we will divide the integral over D into two
integrals over 1

4
D and D\ 1

4
D. As in the argument on inequality (3.7) in the proof

of Theorem 3.1, however, we see that∫
1
4

D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

. max
|z|≤ 1

4

1

ωσ1(z)
q
p (1− |z|2)2

‖f‖q
σ1

.

Hence we may only consider the integral over D \ 1
4
D. Since φ(0) = 0, it follows

from inequality (2.12) that∫ 1

0

Nφ(r, z)σ2(r)rdr . Nφ,ωσ2
(z)

for z ∈ D \ 1
4
D. Combining this with Lemma 2.10, we have that∫

D\ 1
4

D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

.
∫

D
|f(z)|q−2|f ′(z)|2 1

(1− |z|2)2

{∫
E(z, 1

4
)

Nφ,ωσ2
(w)dA(w)

}
dA(z).

By noting that χE(z, 1
4
)(w) = χE(w, 1

4
)(z) and 1 − |z|2 ≈ 1 − |w|2 for w ∈ E(z, 1

4
),

and applying Fubini’s theorem, we have that∫
D
|f(z)|q−2|f ′(z)|2 1

(1− |z|2)2

{∫
E(z, 1

4
)

Nφ,ωσ2
(w)dA(w)

}
dA(z)

≈
∫

D

{∫
E(w, 1

4
)

|f(z)|q−2|f ′(z)|2dA(z)

}
Nφ,ωσ2

(w)

(1− |w|2)2
dA(w).

Since [13, Lemma 2.4] gives that∫
E(w, 1

4
)

|f |q−2|f ′|2dA .
1

(1− |w|2)2

∫
E(w, 1

2
)

|f |qdA,

we obtain that ∫
D\ 1

4
D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

.
∫

D

{∫
E(w, 1

2
)

|f(z)|qdA(z)

}
Nφ,ωσ2

(w)

(1− |w|2)4
dA(w). (4.3)
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By applying Fubini’s theorem to the last formula in (4.3) once again, we have
that∫

D\ 1
4

D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) .

∫
D
|f(z)|qH(z)dA(z),

(4.4)
where

H(z) =

∫
E(z, 1

2
)

Nφ,ωσ2
(w)

(1− |w|2)4
dA(w).

Furthermore Hölder’s inequality gives that∫
D
|f(z)|qH(z)dA(z)

≤
[∫

D
|f(z)|pσ1(z)dA(z)

] q
p

·
[∫

D
H(z)

p
p−q σ1(z)−

q
p−q dA(z)

] p−q
p

. (4.5)

Since σ1(z) ≈ σ1(w) and 1 − |z|2 ≈ 1 − |w|2 for w ∈ E(z, 1
2
), it follows from

Lemma 2.6 and inequality (4.1) that

H(z) .
σ1(z)

(1− |z|2)2

∫
E(z, 1

2
)

Nφ,ωσ2
(w)

σ1(w)(1− |w|2)2
dA(w)

.
σ1(z)

(1− |z|2)2

∫
E(z, 1

2
)

Nφ,ωσ2
(w)

ωσ1(w)
dA(w)

. σ1(z)M
[Nφ,ωσ2

ωσ1

]
(z) (z ∈ D).

Thus the Hardy-Littlewood maximal theorem shows that[∫
D

H(z)
p

p−q σ1(z)−
q

p−q dA(z)

] p−q
p

.

∥∥∥∥M [Nφ,ωσ2

ωσ1

]∥∥∥∥
L

p
p−q (σ1dA)

.

∥∥∥∥Nφ,ωσ2

ωσ1

∥∥∥∥
L

p
p−q (σ1dA)

. (4.6)

Inequalities (4.3) ∼ (4.6) and condition (4.2) imply that∫
D
|f(z)|q−2|f ′(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) < ∞,

and so Cφf ∈ Aq(σ2dA) for any f ∈ Ap(σ1dA). This indicates the boundedness
of Cφ : Ap(σ1dA) → Aq(σ2dA).

Conversely, we will prove that the boundedness of Cφ : Ap(σ1dA) → Aq(σ2dA)
gives condition (4.2). To do this, we choose an ε-separated sequence {zj} ⊂ D,
that is

inf{|ρ(zj, zk)| : j 6= k} = ε > 0.
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By this condition, we can assume infj≥1 |zj| > 0 without loss of generality. Now
we put

gj(z) =
(1− |zj|2)α+2− 2

p

σ1(zj)
1
p

· 1

(1− zjz)α+2
(z ∈ D, j ≥ 1),

ft(z) =
∞∑

j=1

cjrj(t)

zj

gj(z) (z ∈ D, t ∈ [0, 1))

for some {cj} ∈ lp and the Rademacher functions {rj(t)}. Then these functions
ft are in Ap(σ1dA) and

sup
t∈[0,1)

‖ft‖σ1 .

(
∞∑

j=1

|cj|p
) 1

p

. (4.7)

This inequality is verified by Theorems 2.1 and 2.2. In fact, Theorem 2.2 shows
that

‖ft‖σ1 ≈ sup{|〈ft, h〉α| : h ∈ Ap′(σ1
− p′

p dAαp′), ‖h‖ ≤ 1}.

Here ‖ · ‖ denotes the norm of the space Ap′(σ1
− p′

p dAαp′). Since

σ1(z)

(1− |z|2)α
∈ Bp(α) ⇐⇒ σ1

− p′
p (z)(1− |z|2)αp′

(1− |z|2)α
∈ Bp′(α),

Theorem 2.1 shows that Pα : Lp′(σ1
− p′

p dAαp′) → Ap′(σ1
− p′

p dAαp′) is bounded and
h(w) = Pαh(w) for w ∈ D. Hence we have that

〈ft, h〉α =
∞∑

j=1

cjrj(t)

zj

· (1− |zj|2)α+2− 2
p

σ1(zj)
1
p

· h(zj). (4.8)

As in the proof of Lemma 2.4, it holds that[∫
E(zj ,r)

σ1(z)−
p′
p dAαp′(z)

] 1
p′

≈ (1− |zj|2)α+2− 2
p

σ1(zj)
1
p

(4.9)

for each r ∈ (0, 1) and j ≥ 1. By (4.8), (4.9) and Hölder’s inequality, we have
that

|〈ft, h〉α| .
∞∑

j=1

|cj||h(zj)|

[∫
E(zj ,r)

σ1(z)−
p′
p dAαp′(z)

] 1
p′

≤

[
∞∑

j=1

|cj|p
] 1

p

·

[
∞∑

j=1

|h(zj)|p
′
∫

E(zj ,r)

σ1(z)−
p′
p dAαp′(z)

] 1
p′

Since {zj} is ε-separated, [9, Theorem (3.12)] gives that[
∞∑

j=1

|h(zj)|p
′
∫

E(zj ,r)

σ1(z)−
p′
p dAαp′(z)

] 1
p′

. ‖h‖,
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and so we obtain the desired inequality (4.7).
Since Cφ : Ap(σ1dA) → Aq(σ2dA) is bounded, (4.7) shows that∫

D

∣∣∣∣∣
∞∑

j=1

cjrj(t)

zj

(gj ◦ φ)

∣∣∣∣∣
q

σ2dA ≤ ‖Cφ‖q‖ft‖q
σ1

.

(
∞∑

j=1

|cj|p
) q

p

.

By integrating the above inequalities from 0 to 1 with respect to t, and applying
Fubini’s theorem and Khinchine’s inequality, we get∫

D

(
∞∑

j=1

∣∣∣∣cj

zj

(gj ◦ φ)

∣∣∣∣2
) q

2

σ2 dA .
∫

D

(∫ 1

0

∣∣∣∣∣
∞∑

j=1

cjrj(t)

zj

(gj ◦ φ)

∣∣∣∣∣
q

dt

)
σ2 dA.

Our assumption q ≥ 2 shows that
∞∑

j=1

|cj|q

|zj|q

∫
D
|gj ◦ φ|qσ2 dA =

∫
D

∞∑
j=1

∣∣∣∣cj

zj

(gj ◦ φ)

∣∣∣∣q σ2 dA

≤
∫

D

(
∞∑

j=1

∣∣∣∣cj

zj

(gj ◦ φ)

∣∣∣∣2
) q

2

σ2 dA.

Combining these inequalities with Lemma 2.9, we obtain that

∞∑
j=1

|cj|q

|zj|q

∫
D
|gj|q−2|g′j|2Nφ,ωσ2

dA .

(
∞∑

j=1

|cj|p
) q

p

.

It holds that
|zj|2

σ1(zj)
q
p (1− |zj|2)2+2 q

p

. |gj|q−2|g′j|2

on E(zj,
1
2
), and so

∞∑
j=1

|cj|q
∫

E(zj , 1
2
)
Nφ,ωσ2

(z)dA(z)

σ1(zj)
q
p (1− |zj|2)2+2 q

p

.

(
∞∑

j=1

|cj|p
) q

p

< ∞.

This inequality implies that the sequence{∫
E(zj , 1

2
)
Nφ,ωσ2

(z)dA(z)

σ1(zj)
q
p (1− |zj|2)2+2 q

p

}
j≥1

belongs to the dual of l
p
q . Hence we see that

∞∑
j=1

[∫
E(zj , 1

2
)
Nφ,ωσ2

(z)dA(z)

σ1(zj)
q
p (1− |zj|2)2+2 q

p

] p
p−q

< ∞.

To derive the integrability condition (4.2) from this, we choose an ε-separated
sequence {zj} in D such that the disks E(zj,

1
4
) cover D. By Lemma 2.10, we

have that

Nφ,ωσ2
(z) .

1

(1− |z|2)2

∫
E(z, 1

4
)

Nφ,ωσ2
(w)dA(w)
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for z ∈ D \ 1
4
D. Then∫

D\ 1
4

D

(Nφ,ωσ2

ωσ1

) p
p−q

σ1dA .
∫

D\ 1
4

D

(∫
E(z, 1

4
)
Nφ,ωσ2

(w)dA(w)

ωσ1(z)(1− |z|2)2

) p
p−q

σ1(z)dA(z)

≤
∞∑

j=1

∫
E(zj , 1

4
)

(∫
E(z, 1

4
)
Nφ,ωσ2

(w)dA(w)

ωσ1(z)(1− |z|2)2

) p
p−q

σ1(z)dA(z)

Since 1−|z|2 ≈ 1−|zj|2, σ1(z) ≈ σ1(zj), and so ωσ1(z) ≈ ωσ1(zj) for z ∈ E(zj,
1
2
),

we have that(∫
E(z, 1

4
)
Nφ,ωσ2

(w)dA(w)

ωσ1(z)(1− |z|2)2

) p
p−q

σ1(z) ≈

(∫
E(z, 1

4
)
Nφ,ωσ2

(w)dA(w)

ωσ1(zj)(1− |zj|2)2

) p
p−q

σ1(zj)

≤

(∫
E(zj , 1

2
)
Nφ,ωσ2

(w)dA(w)

ωσ1(zj)(1− |zj|2)2

) p
p−q

σ1(zj)

for z ∈ E(zj,
1
4
). By noting that A(E(zj,

1
4
)) ≈ (1− |zj|2)2 and applying Lemma

2.6, we obtain that∫
D\ 1

4
D

(Nφ,ωσ2

ωσ1

) p
p−q

σ1dA .
∞∑

j=1

(∫
E(zj , 1

2
)
Nφ,ωσ2

(w)dA(w)

ωσ1(zj)(1− |zj|2)2

) p
p−q

σ1(zj)(1− |zj|2)2

≈
∞∑

j=1

(∫
E(zj , 1

2
)
Nφ,ωσ2

(w)dA(w)

σ1(zj)
q
p (1− |zj|2)2+ 2q

p

) p
p−q

< ∞.

Since the integrability on 1
4
D is clear by the inequality

Nφ,ωσ2
(z) .

∫ 1

0

Nφ(z, r)rσ2(r)dr ≤ log
1

|z|
,

we obtain that
Nφ,ωσ2

ωσ1

∈ L
p

p−q (σ1dA).

Finally we show that Cφ : Ap(σ1dA) → Aq(σ2dA) is also compact. Take a
bounded sequence {fj} in Ap(σ1dA) which converges to 0 uniformly on compact
subsets of D. By Lemma 2.3, we see that {fj} also converges to 0 weakly in
Ap(σ1dA), and so it is enough to show that ‖Cφfj‖σ2 → 0 as j →∞. By Lemma
2.9, this is equivalent to

lim
j→∞

∫
D
|fj(z)|q−2|f ′j(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) = 0. (4.10)

Since it holds that ∫
rD

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) < ∞
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for any r ∈ (0, 1), we get that

lim
j→∞

∫
rD
|fj(z)|q−2|f ′j(z)|2

{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z) = 0

for any r ∈ (0, 1). As in the arguments in (4.3) ∼ (4.6), we have that∫
D\rD

|fj(z)|q−2|f ′j(z)|2
{∫ 1

0

Nφ(r, z)σ2(r)rdr

}
dA(z)

.
∫

D\rD
|fj(z)|q

∫
E(z,2r)

Nφ,ωσ2
(w)

(1− |w|2)4
dA(w)dA(z)

.‖fj‖q
σ1

[∫
D\rD

(Nφ,ωσ2
(w)

ωσ1(w)

) p
p−q

σ1(w)dA(w)

] p−q
p

for r ∈ (0, 1) and j ≥ 1. Since the boundedness of Cφ implies that the last
integral above can be made arbitrarily small by choosing r sufficiently close to 1,
we obtain (4.10), and so the proof is complete. �
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