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Abstract. In this paper, we establish necessary and sufficient conditions for
the solvability of the system of real quaternion matrix equations

A1X = C1,
Y B1 = D1,
A2Z = C2, ZB2 = D2, A3ZB3 = C3,
A4X + Y B4 + C4ZD4 = E1.

We also present an expression of the general solution to the system. The
findings of this paper widely extend the known results in the literature.

1. Introduction and preliminaries

Throughout this paper we denote the set of all m×n matrices over the quaternion
number field H

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}
by Hm×n. For a matrix A, A∗ and R (A) stand for the conjugate and the column
space of A, respectively. In denotes the n×n identity matrix. The Moore-Penrose
inverse A† of A is defined to be the unique matrix A†, such that

(i) AA†A = A, (ii) A†AA† = A†, (iii) (AA†)∗ = AA†, (iv) (A†A)∗ = A†A.

Linear matrix functions and their special cases- linear matrix equations are
fundamental subjects of study in matrix theory (e.g. [3]-[8], [21]-[27]). The
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matrix function is a matrix-valve map between two linear spaces. The definition
of matrix function and introduction of some matrix functions can be seen in [9]. In
matrix theory and applications, many problems can be transformed in equivalent
rank problems. In recent years this has been applied in seeking for the solvability
for matrix equations (see, e.g. [16, 17, 24, 25]).

It is well known that in engineering and linear models, many problems can be
expressed by some matrix functions. The limited conditions can be interpreted in
limited matrix equations. With the developments of statistical and other science
subjects, more parameters and variables are demanded for the matrix equations.
Thus, investigations on some matrix functions with more parameters and vari-
ables are necessary for the matrix theory and the practical applications. For
instance, Roth [13] developed the Sylvester’s matrix equation

AX −XB = C,

giving a necessary and sufficient condition for the consistency of

AX − Y B = C. (1.1)

In statistics, the growth curve model is consistent if and only if the more gener-
alized matrix equation

AY3B + CY4D = E (1.2)

is consistent [18]. A regression model related to equation (1.2) is M = AXB +
CYD + ε, where both X and Y are unknown parameter matrices and ε is a
random error matrix. This matrix function is also called the nested growth curve
model (see [14, 15]). In general, more limited equations means more complexity
because more parameters and variables must be considered. Therefore, we first
retrospect the development of some matrix equations and investigate the more
complex ones.

There have been many papers discussing the classical system of matrix equa-
tions

A1XB1 = C1, A2XB2 = C2. (1.3)

For instance, Mitra [10] first studied the system (1.3) over C. Vander Woude [21]
investigated it over a field in 1987. Özgüler and Akar [12] gave a condition for
the solvability of the system over a principle domain in 1991. In 2004, Wang [26]
gave some necessary and sufficient conditions for the existence of the solution to
the system (1.3) and provided the expression of the general solution when it is
solvable. Moreover, Wang, Chang and Ning [27] provided some necessary and
sufficient conditions for the existence of and an explicit expression for a common
solution to the six classical linear quaternion matrix equations

A1X = C1, XB2 = C2, A2X = C3, XB2 = C4, A3XB3 = C5, A4XB4 = C6.
(1.4)
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Observe that (1.1), (1.3) and (1.4) are special cases of the following system of
real quaternion matrix equations

A1X = C1,
Y B1 = D1,
A2Z = C2, ZB2 = D2, A3ZB3 = C3,
A4X + Y B4 + C4ZD4 = E1

(1.5)

However, to our knowledge, so far there has been little information on the expres-
sion of the general solution to (1.5) with more variables and more parameters.
This paper aims to give some solvability conditions and the expressions of the
general solution to (1.5).

In order to get some necessary and sufficient conditions for the existence of the
solution to the system (1.5), we need to derive the maximal and minimal ranks
of the real quaternion matrix function with triple variables

g(X, Y, Z) = E1 − A4X − Y B4 − C4ZD4, (1.6)

where X, Y and Z satisfy the following consistent matrix equations

A1X = C1, Y B1 = D1, A2Z = C2, ZB2 = D2, A3ZB3 = C3. (1.7)

The investigation on extremal ranks has been actively ongoing for more than
30 years. It is worthy to say that Professor Yongge Tian made great contributions
in the literature. Minimal and maximal ranks and inertias are found to be useful
in control theory (e.g. [1], [2]). In 2002, Tian [20] considered the maximal and
minimal ranks of the matrix function

p(X) = A1 −B1XC1 (1.8)

subject to

B2XC2 = A2. (1.9)

In 2008, Wang, Yu and Lin [22] studied the extremal ranks of the quaternion
matrix function

f(X) = C4 − A4XB4 (1.10)

subject to

A1X = C1, XB2 = C2, A3XB3 = C3. (1.11)

Note that (1.8) and (1.10) are special cases of (1.6). The other goal of this
paper is to consider the extremal ranks of (1.6) with more variables.

The remaining of this paper is organized as follows. In Section 2, we consider
the extremal ranks of the real quaternion matrix function (1.6) subject to (1.7).
In Section 3, we give some necessary and sufficient conditions for the solvability
to the system of real quaternion matrix equations (1.5) and present an expression
of the general solution to system (1.5).

2. Extremal ranks of (1.6) subject to (1.7) with applications

In this section, we investigate the matrix function (1.6) subject to (1.7). The
conclusion extends the known results in [20] and [22]. We begin with the following
lemmas.
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Lemma 2.1. [23] Let A1 ∈ Hm×n1 , B1 ∈ Hp1×q, C3 ∈ Hm×n2 , D3 ∈ Hp2×q, C4 ∈
Hm×n3 , D4 ∈ Hp3×q, and E1 ∈ Hm×q be given. Set

A = RA1C3, B = D3LB1 , C = RA1C4, D = D4LB1 ,

E = RA1E1LB1 ,M = RAC,N = DLB, S = CLM .

Then the following statements are equivalent:
(1) Equation

A1X1 + X2B1 + C3X3D3 + C4X4D4 = E1 (2.1)

is consistent.
(2)

RAE = MM †E, ELB = EN †N, RAELD = 0, RCELB = 0.

(3)

r

[
E1 C4 C3 A1

B1 0 0 0

]
= r

[
C4 C3 A1

]
+ r(B1), r


E1 A1

D4 0
D3 0
B1 0

 = r

D4

D3

B1

+ r(A1),

r

E1 C3 A1

B1 0 0
D4 0 0

 = r
[
C3 A1

]
+ r

[
D4

B1

]
, r

E1 C4 A1

B1 0 0
D3 0 0

 = r
[
C4 A1

]
+ r

[
D3

B1

]
.

In this case, the general solution of (2.1) can be expressed as

X1 = A†1(E1 − C3X3D3 − C4X4D4)− A†1W2B1 + LA1W1,

X2 = RA1(E1 − C3X3D3 − C4X4D4)B
†
1 + A1A

†
1W2 + W3RB1 ,

X3 = A†EB† − A†CM †EB† − A†SC†EN †DB† − A†SV4RNDB† + LAV3 + V4RB,

X4 = M †ED† + S†SC†EN † + LMLSU1 + LMV4RN + V5RD,

where V1, V2, V3, V4, V5,W1,W2,W3 are arbitrary matrices over H with appropriate
sizes.

Lemma 2.2. [11] Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hm×p, E ∈ Hq×n, Q ∈
Hm1×k, and P ∈ Hl×n1 be given. Then

(1) r(A) + r(RAB) = r(B) + r(RBA) = r
[
A B

]
.

(2) r(A) + r(CLA) = r(C) + r(ALC) = r

[
A
C

]
.
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(3) r(B) + r(C) + r(RBALC) = r

[
A B
C 0

]
.

(4) r(P ) + r(Q) + r

[
A BLQ

RPC 0

]
= r

A B 0
C 0 P
0 Q 0

 .

(5) r

[
RBALC RBD
ELC 0

]
+ r(B) + r(C) = r

A D B
E 0 0
C 0 0

 .

Lemma 2.3. [22] Let A1 and C1 be given. Then the equation A1X1 = C1 is
consistent if and only if r

[
A1 C1

]
= r(A1). In this case, the general solution to

A1X1 = C1 can be expressed as

X1 = A†1C1 + LA1U1,

where U1 is an arbitrary matrix over H with appropriate size.

Lemma 2.4. [22] Let B1 and D1 be given. Then the equation X2B1 = D1 is

consistent if and only if r

[
B1

D1

]
= r(B1). In this case, the general solution to

X2B1 = D1 can be expressed as

X2 = D1B
†
1 + U2RB1 ,

where U2 is an arbitrary matrix over H with appropriate size.

Lemma 2.5. [22] Let A2, B2, C2, D2, A3, B3 and C3 be given. Set

A5 = A3LA2 , B5 = RB2B3, C5 = C3 − A3(A
†
2C2 + LA2D2B

†
2)B3.

Then the following statements are equivalent:
(1) System of real quaternion matrix equations

A2Z = C2, ZB2 = D2, A3ZB3 = C3 (2.2)

is consistent.
(2)

RA2C2 = 0, D2LB2 = 0, RA5C5 = 0, C5LB5 = 0, A2D2 = C2B2.

(3)

r
[
A2 C2

]
= r(A2),

[
D2

B2

]
= r(B2), A2D2 = C2B2,

r

[
A3 C3

A2 C2B3

]
= r

[
A3

A2

]
, r

[
C3 A3D2

B3 B2

]
= r

[
B3 B2

]
.

In this case, the general solution to (2.2) can be expressed as

Z = A†2C2 + LA2D2B
†
2 + LA2A

†
5C5B

†
5RB2 + LA2LA5U3RB2 + LA2U4RB5RB2 ,

where U3 and U4 are arbitrary matrices over H with appropriate sizes.

The next Lemma is due to Tian.
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Lemma 2.6. [19] Let

p(X1, X2, X3, X4) = A−B1X1 −X2C2 −B3X3C3 −B4X4C4

be a matrix expression over H, where A ∈ Hm×n. Then the extremal ranks of
p(X1, X2, X3, X4) are the following

max
{Xi}

r [p (X1, X2, X3, X4)] = min

{
m,n, r


A B1

C2 0
C3 0
C4 0

 , r

[
A B1 B3 B4

C2 0 0 0

]
,

r

 A B1 B3

C2 0 0
C4 0 0

 , r

 A B1 B4

C2 0 0
C3 0 0

},
and

min
{Xi}

r [p (X1, X2, X3, X4)] = r


A B1

C2 0
C3 0
C4 0

+r

[
A B1 B3 B4

C2 0 0 0

]
−r(B1)−r(C2)

+ max

r

 A B1 B3

C2 0 0
C4 0 0

− r

 A B1 B3 B4

C2 0 0 0
C4 0 0 0

− r


A B1 B3

C2 0 0
C3 0 0
C4 0 0

 ,

r

 A B1 B4

C2 0 0
C3 0 0

− r

 A B1 B3 B4

C2 0 0 0
C3 0 0 0

− r


A B1 B4

C2 0 0
C3 0 0
C4 0 0


 .

For convenience, we adopt the following notations:

J1 =
{
X
∣∣∣A1X = C1

}
, J2 =

{
Y
∣∣∣Y B1 = D1

}
,

J3 =
{
Z
∣∣∣A2Z = C2, ZB2 = D2, A3ZB3 = C3

}
.

Theorem 2.7. Let A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, A4, B4, C4, D4 and
E1 ∈ Hm×n be given. Assume that J1 − J3 are not empty sets. Denote that

N1 =


E1 A4 D1 C4D2

B4 0 B1 0
D4 0 0 B2

C1 A1 0 0

 , N2 =


E1 A4 C4 D1

B4 0 0 B1

C1 A1 0 0
C2D4 0 A2 0

 ,
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N3 =


E1 A4 C4 D1 0 0
B4 0 0 B1 0 0
D4 0 0 0 B3 B2

C1 A1 0 0 0 0
0 0 A3 0 −C3 −A3D2

C2D4 0 A2 0 0 0

 , N4 =


E1 A4 C4 D1 0
B4 0 0 B1 0
D4 0 0 0 B2

C1 A1 0 0 0
C2D4 0 A2 0 0

 ,

N5 =


E1 A4 C4 D1 0 0
B4 0 0 B1 0 0
D4 0 0 0 B3 B2

C1 A1 0 0 0 0
C2D4 0 A2 0 0 0

 , N6 =


E1 A4 C4 D1 C4D2

B4 0 0 B1 0
D4 0 0 0 B2

C1 A1 0 0 0
0 0 A3 0 0
0 0 A2 0 0

 .

Then we have the following:
(a) The maximal rank of (1.6) subject to (1.7) is

max
X∈J1,Y ∈J2,Z∈J3

r [g(X, Y, Z)] = min

{
m,n, r(N1)− r(A1)− r(B1)− r(B2),

r(N2)− r(A1)− r(B1)− r(A2), r(N3)− r(A1)− r(B1)− r

[
A2

A3

]
− r

[
B2 B3

]}
.

(2.3)

(b) The minimal rank of (1.6) subject to (1.7) is

min
X∈J1,Y ∈J2,Z∈J3

r [g(X, Y, Z)] = r(N1) + r(N2)− r

[
A1

A4

]
− r

[
B1 B4

]
+

max {r(N3)− r(N5)− r(N6),−r(N4)} . (2.4)

Proof. It follows from Lemma 2.3, Lemma 2.4 and Lemma 2.5 that the general
solutions of

A1X = C1, Y B1 = D1, A2Z = C2, ZB2 = D2, A3ZB3 = C3

can be expressed as

X = X0 + LA1U1, Y = Y0 + U2RB1 , Z = Z0 + LA2LA5U3RB2 + LA2U4RB5RB2 ,
(2.5)

where X0, Y0, Z0 are special solutions of the corresponding matrix equations, U1−
U3 are arbitrary matrices over H with appropriate sizes. Substituting (2.5) into
(1.6) yields

g(X, Y, Z) = A− A4LA1U1 − U2RB1B4 − C4LA2LA5U3RB2D4 − C4LA2U4RB5RB2D4,
(2.6)

where

A = E1 − A4X0 − Y0B4 − C4Z0D4.
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Applying Lemma 2.6 to (2.6) gives

max
X∈J1,Y ∈J2,Z∈J3

r [g (X, Y, Z)] = min{m,n, l1, l2, l3}. (2.7)

min
X∈J1,Y ∈J2,Z∈J3

r [g (X, Y, Z)] =

l1 + l2 − r(A4LA1)− r(RB1B4) + max{t3 − t5 − t6,−t4}, (2.8)

where

l1 = r

 A A4LA1

RB1B4 0
RB2D4 0

 , l2 = r

[
A A4LA1 C4LA2

RB1B4 0 0

]
,

l3 = r

 A A4LA1 C4LA2LA5

RB1B4 0 0
RB5RB2D4 0 0

 , l4 = r

 A A4LA1 C4LA2

RB1B4 0 0
RB2D4 0 0

 ,

l5 = r

 A A4LA1 C4LA2

RB1B4 0 0
RB5RB2D4 0 0

 , l6 = r

 A A4LA1 C4LA2LA5

RB1B4 0 0
RB2D4 0 0

 .

By Lemma 2.2 and

A1X0 = C1, Y0B1 = D1, A2Z0 = C2, Z0B2 = D2, A3Z0B3 = C3,

we obtain that

l1 = r(N1)− r(A1)− r(B1)− r(B2), (2.9)

l2 = r(N2)− r(A1)− r(B1)− r(A2), (2.10)

l3 = r(N3)− r(A1)− r(B1)− r

[
A2

A3

]
− r

[
B2 B3

]
, (2.11)

l4 = r(N4)− r(A1)− r(B1)− r(A2)− r(B2), (2.12)

l5 = r(N5)− r(A1)− r(B1)− r(A2)− r
[
B2 B3

]
, (2.13)

l6 = r(N6)− r(A1)− r(B1)− r

[
A2

A3

]
− r(B2). (2.14)

Substituting (2.9)-(2.14) into (2.7) and (2.8) yields (2.3) and (2.4). �

In Theorem 2.7, let A1, B1, C1, D1, A4 and B4 vanish. Then we can obtain the
extremal ranks of (1.10) subject to (1.11).

Corollary 2.8. The extremal ranks of the quaternion matrix expression f(X) =
C4 − A4XB4 subject to the consistent system (1.11) are the following:

max
A1X = C1

XB2 = C2

A3XB3 = C3

r(f(X)) = min{a, b, c},
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where

a = r

[
C1B4 A1

C4 A4

]
− r(A1),

b = r

[
B2 B4

A4C2 C4

]
− r(B2),

c = r


A1 0 0 C1B4

A3 −A3C2 −C3 0
A4 0 0 C4

0 B2 B3 B4

− r

[
A1

A3

]
− r

[
B2 B3

]
,

min
A1X1 = C1

XB2 = C2

A3XB3 = C3

r(f(X)) = r

[
C1B4 A1

C4 A4

]
+ r

[
B2 B4

A4C2 C4

]

+ r


A1 0 0 C1B4

A3 −A3C2 −C3 0
A4 0 0 C4

0 B2 B3 B4



− r


A1 0 C1B4

A3 −A3C2 0
A4 0 C4

0 B2 B4

− r

 A1 0 0 C1B4

A4 0 0 C4

0 B2 B3 B4

 .

Remark 2.9. Corollary 2.8 is Theorem 2.5 in [22].

In Theorem 2.7, let A1, B1, C1, D1, A2, B2, C2, D2, A4 and B4 vanish. Then we
can obtain the extremal ranks of (1.8) subject to (1.9).

Corollary 2.10. Suppose that the matrix equation B2XC2 = A2 is consistent.
Then
(a) The maximal rank of p(X) = A1 −B1XC1 subject to B2XC2 = A2 is

max
B2XC2=A2

r(p(X)) = min

{
r

 A1 0 B1

0 −A2 B2

C1 C2 0

−r(B2)−r(C2), r

[
A1

C1

]
, r
[
A1 B1

]}
.

(b) The minimal rank of p(X) = A1 −B1XC1 subject to B2XC2 = A2 is

min
B2XC2=A2

r(p(X)) = r

[
A1

C1

]
+ r

[
A1 B1

]
− r

[
A1 B1 0
C1 0 C2

]

−r

 A1 B1

C1 0
0 B2

+ r

 A1 0 B1

0 −A2 B2

C1 C2 0

 .

Remark 2.11. Corollary 2.10 is Theorem 3.2 in [20].
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3. The solvable conditions and the expression of the general solution
to (1.5)

Our goal in this section is to give some solvable conditions for (1.5) and to
provide an expression of this general solution when the solvability conditions are
met.

Theorem 3.1. Let A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, A4, B4, C4, D4 and
E1 be as in Theorem 2.7. Set

A5 = A3LA2 , B5 = RB2B3, C5 = C3 − A3(A
†
2C2 + LA2D2B

†
2)B3, A6 = A4LA1 ,

B6 = RB1B4, C6 = C4LA2LA5 , D6 = RB2D4, C7 = C4LA2 , D7 = RB5RB2D4,

E2 = E1 − A4A
†
1C1 −D1B

†
1B4 − C4(A

†
2C2 + LA2D2B

†
2 + LA2A

†
5C5B

†
5RB2)D4,

A = RA6C6, B = D6LB6 , C = RA6C7, D = D7LB6 ,

E = RA6E2LB6 ,M = RAC,N = DLB, S = CLM .

Then the following statements are equivalent:
(a) System (1.5) is consistent.
(b)

RAi
Ci = 0, DiLBi

= 0, i = 1, 2, RA5C5 = 0, C5LB5 = 0, A2D2 = C2B2,

RAE = MM †E, ELB = EN †N, RAELD = 0, RCELB = 0.

(c)

r
[
Ai Ci

]
= r(Ai),

[
Di

Bi

]
= r(Bi), i = 1, 2, A2D2 = C2B2,

r

[
A3 C3

A2 C2B3

]
= r

[
A3

A2

]
, r

[
C3 A3D2

B3 B2

]
= r

[
B3 B2

]
,

r(N1) = r

[
A1

A4

]
+ r

[
B4 B1 0
D4 0 B2

]
, r(N2) = r

A4 C4

A1 0
0 A2

+ r
[
B4 B1

]
,

r(N3) = r


A4 C4

A1 0
0 A2

0 A3

+ r

[
B4 B1 0 0
D4 0 B3 B2

]
, r(N4) = r

[
B4 B1 0
D4 0 B2

]
+ r

A4 C4

A1 0
0 A2

 .

In this case, the general solution of (1.5) can be expressed as

X = A†1C1 + LA1U1, (3.1)

Y = D1B
†
1 + U2RB1 , (3.2)

Z = A†2C2 + LA2D2B
†
2 + LA2A

†
5C5B

†
5RB2 + LA2LA5U3RB2 + LA2U4RB5RB2 ,
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U1 = A†6(E2 − C6U3D6 − C7U4D7)− A†7W2B6 + LA6W1, (3.3)

U2 = RA6(E2 − C6U3D6 − C7U4D7)B
†
6 + A6A

†
6W2 + W3RB6 , (3.4)

U3 = A†EB† − A†CM †EB† − A†SC†EN †DB† − A†SV4RNDB† + LAV1 + V2RB,
(3.5)

U4 = M †ED† + S†SC†EN † + LMLSV3 + LMV4RN + V5RD, (3.6)

where V1, V2, V3, V4, V5,W1,W2,W3 are arbitrary matrices over H with appropriate
sizes.

Proof. (b) ⇐⇒ (c) : It follows from Lemma 2.2, Lemma 2.3, Lemma 2.4 and
Lemma 2.5 that

RAi
Ci = 0⇐⇒ r

[
Ai Ci

]
= r(Ai), DiLBi

= 0⇐⇒ r

[
Bi

Di

]
= r(Bi), i = 1, 2,

RA5C5 = 0⇐⇒ r

[
A3 C3

A2 C2B3

]
= r

[
A3

A2

]
,

C5LB5 = 0⇐⇒ r

[
C3 A3D2

B3 B2

]
= r

[
B3 B2

]
,

RAE = MM †E ⇐⇒ r

[
E2 C7 C6 A6

B6 0 0 0

]
= r

[
C7 C6 A6

]
+ r(B6)

⇐⇒ r

[
E2 A4LA1 C4LA2

RB1B4 0 0

]
= r

[
E2 A4LA1 C4LA2

]
+ r(RB1B4)

⇐⇒ r(N2) = r

A4 C4

A1 0
0 A2

+ r
[
B4 B1

]
,

ELB = EN †N ⇐⇒ r


E2 A6

D6 0
D7 0
B6 0

 = r

D6

D7

B6

+ r(A6)

⇐⇒ r

 E2 A4LA1

RB1B4 0
RB2D4 0

 = r

[
RB1B4

RB2D4

]
+ r(A4LA1)

⇐⇒ r(N1) = r

[
A1

A4

]
+ r

[
B4 B1 0
D4 0 B2

]
,

RAELD = 0⇐⇒ r

E2 C6 A6

B6 0 0
D7 0 0

 = r
[
C6 A6

]
+ r

[
D7

B6

]
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⇐⇒ r

 E2 A4LA1 C4LA2LA5

RB1B4 0 0
RB5RB2D4 0 0

 = r
[
A4LA1 C4LA2LA5

]
+

[
RB1B4

RB5RB2D4

]

⇐⇒ r(N3) = r


A4 C4

A1 0
0 A2

0 A3

+ r

[
B4 B1 0 0
D4 0 B3 B2

]
,

RCELB = 0⇐⇒ r

E2 C7 A6

B6 0 0
D6 0 0

 = r
[
C7 A6

]
+ r

[
D6

B6

]

⇐⇒ r

 E2 A4LA1 C4LA2

RB1B4 0 0
RB2D4 0 0

 = r
[
A4LA1 C4LA2

]
+ r

[
RB1B4

RB2D4

]

⇐⇒ r(M4) = r

A4 C5

A1 0
0 A3

+ r

[
B4 B1 0
D4 0 B2

]
.

(a) =⇒ (c) : Suppose that (X0, Y0, Z0) is a solution of (1.5). It follows from
Lemma 2.3, Lemma 2.4 and Lemma 2.5 that

r
[
Ai Ci

]
= r(Ai),

[
Di

Bi

]
= r(Bi), i = 1, 2, A2D2 = C2B2,

r

[
A3 C3

A2 C2B3

]
= r

[
A3

A2

]
, r

[
C3 A3D2

B3 B2

]
= r

[
B3 B2

]
.

Applying

A1X0 = C1, Y0B1 = D1, A2Z0 = C2, Z0B2 = D2, A3Z0B3 = C3

and elementary matrix operations, we obtain
I −Y0 −C4Z0 0
0 I 0 0
0 0 I 0
0 0 0 I

N1


I 0 0 0
−X0 I 0 0

0 0 I 0
0 0 0 I

 =


0 A4 0 0
B4 0 B1 0
D4 0 0 B2

0 A1 0 0

 ,


I −Y0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

N2


I 0 0 0
−X0 I 0 0
−Z0D4 0 I 0

0 0 0 I

 =


0 A4 C4 0
B4 0 0 B1

0 A1 0 0
0 0 A2 0

 ,
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
I −Y0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 A3Z0 0 I 0
0 0 0 0 0 I

N3



I 0 0 0 0 0
−X0 I 0 0 0 0

−Z0D4 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


=


0 A4 C4 0 0 0
B4 0 0 B1 0 0
D4 0 0 0 B3 B2

0 A1 0 0 0 0
0 0 A3 0 0 0
0 0 A2 0 0 0

 ,


I −Y0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

N4


I 0 0 0
−X0 I 0 0
−Z0D4 0 I 0

0 0 0 I

 =


0 A4 C4 0 0
B4 0 0 B1 0
D4 0 0 0 B2

0 A1 0 0 0
0 0 A2 0 0

 .

(c) =⇒ (a): Suppose that the equalities in (c) hold. It follows from Lemma
2.3, Lemma 2.4 and Lemma 2.5 that the equations in

A1X = C1, Y B1 = D1, A2Z = C2, ZB2 = D2, A3ZB3 = C3.

are consistent, respectively. On the other hand, by Theorem 2.7, we obtain that

min
X∈J1,Y ∈J2,Z∈J3

r (E1 − A4X − Y B4 − C4ZD4) = 0.

Hence, the system (1.5) has a solution.
(a)⇐⇒ (b): We separate the equations in system (1.5) into two groups

A1X = C1, Y B1 = D1, A2Z = C2, ZB2 = D2, A3ZB3 = C3, (3.7)

A4X + Y B4 + C4ZD4 = E1. (3.8)

It follows from Lemma 2.3, Lemma 2.4 and Lemma 2.5 that matrix equations in
(3.7) are consistent, respectively, if and only if

RAi
Ci = 0, DiLBi

= 0, i = 1, 2, RA5C5 = 0, C5LB5 = 0, A2D2 = C2B2.

And the general solutions to these matrix equations in (3.7) can be expressed as

X = A†1C1 + LA1U1, (3.9)

Y = D1B
†
1 + U2RB1 , (3.10)

Z = A†2C2 + LA2D2B
†
2 + LA2A

†
5C5B

†
5RB2 + LA2LA5U3RB2 + LA2U4RB5RB2 ,

(3.11)

Substituting (3.9)-(3.11) into (3.8) gives

A6U1 + U2B6 + C6U3D6 + C7U4D7 = E2. (3.12)

Hence, the system (1.5) is consistent if and only if the matrix equations in (3.7)
and (3.12) are consistent, respectively. By Lemma 2.1, we know that the matrix
equation (3.12) is consistent if and only if

RAE = MM †E, ELB = EN †N, RAELD = 0, RCELB = 0.

We know by Lemma 2.1 that the general solutions of equation (3.12) can be
expressed as (3.3)-(3.6). �
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In Theorem 3.1, let A2, B2, C2 and D2 vanish. We can obtain the general
solution to the following system A1X = C1, Y B1 = D1,

A2ZB2 = C2

A3X + Y B3 + C3ZD3 = E1.
(3.13)

Corollary 3.2. Let A1, B1, C1, D1, A2, B2, C2, A3, B3, C3, D3, E1 and N1 −N6 be
given. Set

A4 = A3LA1 , B4 = RB1B3, C4 = C3LA2 , D4 = RB2D3,

E4 = E1 − A3A
†
1C1 −D1B

†
1B3 − C3A

†
2C2B

†
2D3,

A = RA4C4, B = D3LB4 , C = RA4C3, D = D4LB4 ,

E = RA4E4LB4 ,M = RAC,N = DLB, S = CLM .

Then the following statements are equivalent:
(a) System (3.13) is consistent.
(b)

RA2C2 = 0, D2LB2 = 0, RA5C5 = 0, C5LB5 = 0, A2D2 = C2B2,

RAE = MM †E, ELB = EN †N, RAELD = 0, RCELB = 0.

(c)

r
[
Ai Ci

]
= r(Ai), r

[
Bi

Di

]
= r(Bi), i = 1, 2,

r


E1 A3 D1

B3 0 B1

D3 0 0
C1 A1 0

 = r

[
A1

A3

]
+ r

[
B3 B1

D3 0

]
,

r

E1 A3 C3 D1

B3 0 0 B1

C1 A1 0 0

 = r

[
A3 C3

A1 0

]
+ r

[
B3 B1

]
,

r


E1 A3 C3 D1 0
B3 0 0 B1 0
D3 0 0 0 B2

C1 A1 0 0 0
0 0 A2 0 −C2

 = r

A3 C3

A1 0
0 A2

+ r

[
B3 B1 0
D3 0 B2

]
,

r


E1 A3 C3 D1

B3 0 0 B1

D3 0 0 0
C1 A1 0 0

 = r

[
A1 0
A3 C3

]
+ r

[
B3 B1

D3 0

]
.
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In this case, the general solution of (3.13) can be expressed as

X = A†1C1 + LA1U1, Y = D1B
†
1 + U2RB1 , Z = A†2C2B

†
2 + LA2U3 + U4RB2 ,

U1 = A†4(E4 − C4U3D3 − C3U4D4)− A†4W2B4 + LA4W1,

U2 = RA4(E4 − C4U3D3 − C3U4D4)B
†
4 + A4A

†
4W2 + W3RB4 ,

U3 = A†EB† − A†CM †EB† − A†SC†EN †DB† − A†SV4RNDB† + LAV1 + V2RB,

U4 = M †ED† + S†SC†EN † + LMLSV3 + LMV4RN + V5RD,

where V1, V2, V3, V4, V5,W1,W2,W3 are arbitrary matrices over H with appropriate
sizes.

In Theorem 3.1, let A1, B1, C1, D1, A4 and B4 vanish. We can derive the general
solution to the following system

A2Z = C2, ZB2 = D2, A3ZB3 = C3, C4ZD4 = E1. (3.14)

Corollary 3.3. Let A2, B2, C2, D2, A3, B3, C3, C4, D4 and E1 be given. Set

A5 = A3LA2 , B5 = RB2B3, C5 = C3 − A3(A
†
2C2 + LA2D2B

†
2)B3,

A = C4LA2LA5 , B = RB2D4, C = C4LA2 , D = RB5RB2D4,

E = E1 − C4(A
†
2C2 + LA2D2B

†
2 + LA2A

†
5C5B

†
5RB2)D4,

M = RAC,N = DLB, S = CLM .

Then the following statements are equivalent:
(a) System (3.14) is consistent.
(b)

RAi
Ci = 0, DiLBi

= 0, i = 1, 2, RA5C5 = 0, C5LB5 = 0, A2D2 = C2B2,

RAE = MM †E, ELB = EN †N, RAELD = 0, RCELB = 0.

(c)

r
[
A2 C2

]
= r(A2),

[
D2

B2

]
= r(B2), A2D2 = C2B2,

r

[
A3 C3

A2 C2B3

]
= r

[
A3

A2

]
, r

[
C3 A3D2

B3 B2

]
= r

[
B3 B2

]
,

r

[
E1 C4

C2D4 A2

]
= r

[
C4

A2

]
, r

[
E1 C4D2

D4 B2

]
= r

[
B2 D4

]
,

r


E1 C4 0 0
D4 0 B3 B2

0 A3 0 0
0 A2 0 0

 = r

C4

A3

A2

+ r
[
B3 D4 B2

]
,
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r

E1 C4 0
D4 0 B2

0 A2 0

 = r

[
C4

A2

]
+ r

[
D4 B2

]
.

In this case, the general solution to (3.14) can be expressed as

Z = A†2C2 + LA2D2B
†
2 + LA2A

†
5C5B

†
5RB2 + LA2LA5U3RB2 + LA2U4RB5RB2 ,

U3 = A†EB† − A†CM †EB† − A†SC†EN †DB† − A†SV4RNDB† + LAV1 + V2RB,

U4 = M †ED† + S†SC†EN † + LMLSV3 + LMV4RN + V5RD,

where V1, V2, V3, V4, V5 are arbitrary matrices over H with appropriate sizes.

Remark 3.4. Our expression of the general solution to system (3.14) is different
from the expression in [27].

4. Conclusions

In this paper we have given the extremal ranks of the matrix function (1.6)
subject to (1.7), which extend the known results in [20] and [22]. We have derived
some solvable conditions for the existence of the general solution to system (1.5),
and proved that (3.1)-(3.6) are solutions of system (1.5) when the solvability
conditions are met. Using the results on (1.5), we have established some necessary
and sufficient conditions for the existence of the general solution to (3.13) and
(3.14), respectively. The expressions of such solutions to (3.13) and (3.14) have
also been given, respectively. There is no doubt that most of the results in this
paper can be extended to the corresponding system for linear operators on a
Hilbert space or elements in a ring with involution.
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