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ABSTRACT. Let @ > 0 and 8 > 1. In the present work, the necessary and suffi-
cient conditions for the boundedness and compactness of the integral operator
of the form
» () f(y)uly)dy
Lopgf(z):= v(x)/ Y
oF 0 (x—y)t—e

from LP — L7, with locally integrable non-negative weight functions u and v,
in the case 0 < p,q < 00,p > max(1/a,1), provided v is non-increasing on
R* :=[0,00) are found.

, x>0,

1. INTRODUCTION

For 0 < p < oo we denote LP := LP(R") the set of all measurable functions such
that || f|l, :== (f~ |f(a:)\pd:v)1/p < 00. Let a > 0 and

e Inf~1(z wl)d
Lasf(@) = v(a) / (i)_f;;f@) y

If v(z) = u(x) = 1 and § = 1, the operator (1.1) coincides with the classical
Riemann—Liouville fractional operator ([1], § 9.9). We study the problem of
necessary and sufficient conditions for the inequality

1Lasflle < ClF s (1.2)

, x> 0. (1.1)
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to hold with a constant C' independent on f € LP which we assume to be least
possible. Boundedness and compactness criteria for the case 0 < f < 1 in [10]
was found. Also in [7] criteria for operators with power-logarithmic kernels were
studied. If @« = f = 1 the inequality (1.2) was completely characterized (see, for
instance, [11, 21]). The cases « > 1, =1 and « € (0,1), 8 = 1 were solved with
further generalizations in [13, 22, 23, 1, 12], [15, 19, 20, 18,9, 10] .

Throughout the paper uncertainties of the form 0 - oo are taken to be zeros.
The relations A < B and B > A means that A < ¢B, where the constant ¢
depends only on p, ¢, a, § and may be different in different places. If both A < B
and A > B, then we write A &~ B. Z stands for the set of all integers, xg is the
characteristic function of E. The symbol p/' := 1%, p # 1 denotes the conjugate
numbers of p, and the symbol [J marks the end of a proof.

2. PRELIMINARIES

Definition 2.1. Let k(x,y) > 0 be the kernel of the operator of the form

Kf(w) = (o) | "k, y)f@)uly)dy, 0<ec<z<d< oo

If there exists a constant D > 1 such that
D7 'k(z,y) < k(z,2) + k(z,9) < Dk(z,y), 0<c<y<z<z<d<oo, (2.1)
then we call a kernel k(x,y) from Oinarov’s class and denote k(z,y) € O [17].

Standard examples of a kernel k(x,y) > 0 satisfying (2.1) are

(i) k(z,y)=(z—y)* a=0,

(i) K(z,y) =W (1 +a —y),k(z,y) =W’ (2); 8 >0,
and their combinations. Let b : [¢,d] — [0,00) be a strictly increasing differen-
tiable function and let

Ky : Ly(b(c),b(d)) = Ly(c,d),
be an operator of the form

b(x)

Ko (z) = v(a) /b() Ko f@ul)dy, 0<c<z<d<oo,  (22)

where a non-negative kernel k(x,y) satisfies the following definition.
Definition 2.2. k(z,y) € O, if there exists a constant D > 1 such that

0<c<z<w<d<oo,

D'k(z,y) < k(x,b(2)) + k(z,y) < Dk(z,y). {0 <b(c) <y < b(z).

(2.3)

Now we consider the operator of the form

b(z)
Kf(2) = v(z) / R )iy (2.4)
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where the boundaries a(x), b(x) satisfy the following conditions:

(i) a(x) and b(x) are differentiable and strictly increasing on (0, 00);
(ii) a(0) =0b(0) =0, a(z) < b(z) for 0 < z < 00, a(co) = b(c0) = oco.

Definition 2.3. k(z,y) € O if there exists a constant D > 1 such that
D k(z,y) < k(z,b(2)) + k(z,y) < Dk(z,y), z<uxz, a(z) <y<bz). (2.5)

The following theorems are taken from [30]. Theorem 2.2 is closely related to
the results of [2, 3, 5], [25, 26, 28, 29].

Theorem 2.1. Let the operator K, be an operator given by (2.2) with a strictly
increasing differentiable function b(x) > 0 and k(x,y) € O,.
(a) If 1 <p < q< o0, then

| Kbl 2, 6(e) b(@) = Ly (ed) = Apo + Ab 1,

d Ya [ bty 1
Apg := sup ( / kq(:r,b(t))vq(fv)dx) ( / u? (y)dy> :
e<t<d \Jt b(e)

d 1/q b(t) / / 1/p
Ay = sup ( / w(x)dx) ( [ # e <y>dy) |
e<t<d \J b(c)

(b) If 1 < q <p < oo, then

where

| Kb | 2, (b(e) b)) = Ly (esd) = Boo + Bo1,

b(d) d rlar ot r/d r
By = (/ {/ k;q(x,t)vq(x)dx] {/ u? (y)dy} uP (t)dt) :
b(c) b= (t) b(c)

d d r/p b(t) , / r/p 1/r
By, = / [/ vq(x)dx] / kP (t, y)u? (y)dy vi(t)dt
c t b(c)

Theorem 2.2. For the operator defined by (2.4), we take a sequence of points
{&}r € Z C (0,00) such that

=1, &= (a"ob)"1), kez,
and put
M= a(€) = b(&-1), Dk =[Sk &kt1)s Ok = [Mhs 1), b € Z.
If 1 <p<q<oo, then
1Kl Ly, = A= Ao+ A,
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where

Ao = sup Ag(t)

t>0

. /g b(s) | v
= s s ([ o) ([ Cwe)
t>0 seb—1(a(t)),t] \Js ¢

(®)
A; = sup A(t)

t>0

. 1/q bs) / i
~ ap swp ( / mm) / W (s ) ()dy |
>0 selb=1(a(t)),t] s a

®)

Moreover, K is compact if and only if A < oo and limy_,q A;(t) = limy_,, A;(t)
0,:=0,1. If 1 <qg<p<oo, then

kEZ

a(err) [ paL() r/a
By = / / k(x, b(&))v(x)ldz
a(ér) &k
, 1/r

allks1) r/a ,
X / u? (y)dy uP (t)dt :
¢

Ekr1 t r/p
By = / (/ v(:z:)qda:>
&k &k
/ 1/r
a(€ky1) , , r/p /
X / K (&, p)u? (y)dy | i(t)dt »
a(t)

b(&k+1) Ek+1 r/q
B s = {/ (/ kq(w,t)'u(x)qu)
b(&k) b=1(t)
t r/qd 1r
X (/ up/(y)dy) up/(t)dt} ,
b(&x)

Skt1 t r/p ot) , /v v
B4 [ ([otarar) ([ o ) oot
3 &k b

(&x)

1/r
H]C”Lp‘)Lq ~ B = (Z [52,1 + BIZ,Q + Bl:,s + Bh}) 5

and the operator IC is compact if and only if B < co.
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In the proof of Theorem 3.1 below, we apply the Chebyshev inequality: if
F(z) > 0 is non-increasing and G(z ) >0 is non—decreasing on (a,b) C R, then

/a  F)C() 2)dz / Gla (2.6)

In the section 4, we need the followmg theorem from ([3], Theorem 5.8).

Theorem 2.3. Fach regular linear integral operator L acting from L, to L,
where 0 < g < p < oo andp > 1, is compact.

Observe, that every bounded integral operator with a non-negative kernel is
regular.

3. BOUNDEDNESS

Let 9 be the class of all measurable functions f: [0, 00) — [0, +00]. Without
a loss of generality we may and shall restrict the inequality (1.2) on f € .

Theorem 3.1. Let max(1,1) <p < g <oo, f>1. Let ve M and u € M* is
non-increasing on [0, 00).
I) If a + 8 > 2 then the inequality

(/OOO (La,ﬁf(iv))qu) v <C (/OOO f(;p)de) 1/1,’ femt, (31

holds if and only if A+ B < oo, where
Ao(a, ) = sup Ao(t)

t>0

1 ¢ 1/p’

/oo v(x)q(ln%)(ﬁ—l)qu /e /2 p,( \d v

= su u 3
t>10) ¢ $(1—oz)q 0 vyay

Ai(a, B) = supA;(t)

t>0

t /v
o v(x)qu> /e /2 (1) of
= su In —)B=DP P (y)d , (3.2
ap ([THEE) ([ ) e2)

A = Ao(Oé, ﬁ) + A1<OC, 6)7

Bo(a, 5) = Stgl(?BO(t)

/

t 1/q S p’ d 1/p
= sup sup </ v(z)!(z — S)(O‘JrﬁQ)qu) / L (ﬁ(_yl)) ly :
>0 se[f4] \Js sy

Bi(a,8) = sup Bi(t)

t>0

t 1/q s o 1/p
atB—2)y U \Y dy
= sup sup (/ U(x)qdl‘) (/ (s — y)( +6-2)p (5(—1))1;/ ) ’
t>0 st ¢ s t Y

[NES
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B := By(a, B) + Bi(a, B).

Moreover, C =~ A+ B.
II) If 1 < a+ B < 2 then the inequality (3.1) holds if and only if A+ D < oo,
where

ok+1 1/‘1 n , 1/]?/
v(s)?ds < / uP (s)ds)
D = Dy, = —_— —_ . (3.3
?CEIZ) ¥ ?clelzp te(QSl}g?c+1] <\/; 3(2—a—6)q> ok—1 S(ﬁ—l)p ( )
Moreover, C'~ A+ D.
Proof. (I) (a+ B > 2). We have
57N (E) fy)uly)dy e 1012 f(y)uly)dy
Losf(z) =v(z / Y + oz / y
pf(x) = v(z) ; (& —y)ie @ ], (z —y)t=e

= Lif(x) + Lof(x), feM'.

[SIE

If y € (0,5), then

We see that, for g > 1, (lm(g))ﬁ*1 satisfies (2.3). Since

2
ln<£) :1n<£>+1n<z> §1n<—x)+ln(z), 0<z<z0<y<z/2
Y z Y z Yy

and

SO

Therefore, the inequality (3.1) implies

(fooo S5 ( / g<ln<§>>ﬁ1f<y>u<y>azy>ngc> " ([ soras) "

(3.4)
for f € M+, with Cy < C and it follows from Theorem 2.1, that A ~ Cj. On the
other hand, if y € [3, z],then -1le¢ [0,1]. By using In(1+4~) =~ ~, (v € [0,1]),
we can write the following
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So, we obtain

T

Laf(@) % v(o) [

a+p-2 ()
(@ =)™ f(y) 5y,

N8

The kernel (z — y)*™#=2 for a + 8 > 2, satisfies (2.5). Therefore, the inequality
(3.1) implies

(/OOO o)’ (/x (z —y)* "2 f(y )%dy)%) v e (/OOO f(x)pdx> 1/p7

(3.5)

for f € M* ,with C; < C and it follows from Theorem 2.2, that B =~ C,. More-
over, (3.1), is equivalent to (3.4) and (3.5), so that C'~ A + B.
(II) (1 < v+ B < 2) Now we continue the proof of theorem for second case. We
have the same arguments to the proof of part (I) for Ly f(z). However, with the
condition on «, 3, operator Lyf(z) coincides with the Riemann—Liouville frac-
tional operator. The inequality (3.1) implies

(/Omvu)q ([f(x—y)“ﬁ—?f(y)%dy)q ) < (/ iz m) ,

2
(3.6)
for f € M*. Moreover, (3.1), is equivalent to (3.4) and (3.6), so that C' ~ A+ D.
We show, that Dy < D < C which implies C' ~ A+ D. To this end we construct
a new operator and apply the block-diagonal method. Put A, := (2%, 2**1] and

define
L $(e) = v(ehxan@) [ =) 210) Sy

) 4 weser g UY)
L £(2) 1= v(a)xa, (@) / (@ =02 1) 2y

2 —1
Ly = L()—{-Lk 7 ZLk 7 ) :ZLI(CZ)’ L=L1M 1 1@,
keZ keZ

Since the operators L(!) and L) are block-diagonal, then by ([27], Lemma 1) we
have for p < ¢

||L|| = ||LHLp_>Lq ~ sup ||LkHLp(Qkfl’2k+1}_>Lq(2k’2k:+1] =Isup ||LkH (37)
keZ kEZ

00 x q 1/q
( / o(z)? ( / <x—y>a+ﬁ—2f<y>%dy) dx>

0o 1/q
< ||Lf||q§(/0 <La,ﬁf<x>>qu) fem, (3.

and it trivially follows from the left side of (3.8), that Dy < ||L||. Fix k € Z and

put vy, :=vxa,. If 2 € Ay and y € [2871, 2) then x%y > %' Hence, the inequality

LSl zoian < NLallllfxize-r 200 llp,  f € M,

Observe, that
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implies the Hardy inequality

2k+1

1/q
ve(z)de ([ uy) .\
(/le - f(y)yg_l dy | dx L Ll X p2r=1 200

2k—1

for all f € M*. Then, applying ([30], Lemma 2.1), the lower bound ||L|| > D
follows for p < ¢ from (3.7). Hence, from the right hand side of (3.8) we obtain
D < |L|| « C. Thus, the lower bound C' > A+ D is proved.

The opposite estimate C' < A+ D will be established, if we show that ||L|| < D.
Denote

J = /;1 (x — y)“*’“f(y)%dy-

To this end we prove first that for x € Ay

1
1 » 1
7

1 v [ (Y w(t)Pdt]? ’ T u(y) dy 7
- P 20 @ bl o
J< s (/Qk_l f(y) /2k—1 t(ﬁ_l)p,} dy) (/2k_1 S ) (3.9)

Set
T u(t)P dt
h(CVaB) T _/le (x _ t)(2—a—ﬂ)p’t(5—1)7":| ’
and write
T % _% a+B— u(y)
1= [ {rwntasi} {a.s v @ -yt b ay

(applying Holder’s inequality)

- (/2:1 fly)h(a, 6);,0@);

xr u(y)pl . p,
- (/Qk_l (Qf - y>(27a76)ply(ﬁ*1)p’ h((]{7 /B) pdy)

(calculating the second factor)

A rornenia) ([ u(y)” dy
~ ( | swrnasy dy) ( = y)@_a_ﬁ)p,yw_l)p,> |

Let € Ay, y € (2871, ). Since

1
(x — t)@—a=A)p

is increasing with respect to t € (2871, y) and
ut)”
t(B=1)pr’
is decreasing, by Chebyshev’s inequality (2.6) and an elementary inequality,
b —a" =~ b (b—a), b>a>0,v>0,
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we find that

v u(t)? dt - 1 voou(t)P a [’ dt
9k—1 ([L’ — t)(Q—a—ﬂ)p't(ﬁ—l)p’ - Yy — 2k—1 k-1 t(ﬁ—l)pl o1 (I . t)(Q_OC—B)p/

1 k—1\1—(2—a—B)p/ 1—(2—a—B)p' Yoou(t)dt
~ ((:v — 2k —(z—y) > =

Yy — 9k—1

B 1 ou@)pdt] 1 voou(t)dt reA
- (LE — 2k_1)(2—a—5)p/ ok—1 t(ﬁ—l)p’ ~ 33(2_0‘_18)17/ k1 t(ﬁ—l)l’/ ! k-

So, (3.9) is proved. From the definition D we have

2 vk(s)9ds

1 1
TP dt]” g A
[Lk—l t(ﬁ—l)P’} <D [/x 3(2—a—5)q] ; re (2,27 (3.10)

Applying (3.9), Minkowskii’s inequality and (3.10) we write

/Ak v(z)? (/;1 (x — ?/)aw_zf(y)%dy)qu

w(@)t ([T ([ w@PdNT N\ ([T ) de
= /Ak g2 (/2k1 f(y) ok—1 t(6=1)p' dy gk—1 t(B=1)p dz

2 V() dt\
p
< ( [ (055
2k+1 T / s % %
vg ()1 u(t)P dt\ v
’ (/y wmasd (/Q e ) )

-
hSES]

ok+1 L ok+1

o Yot vp(z)edz |
o’ p
<P /Qk—l f(y) </2k—1 t(6=1)p' ) </y x(2—a—B)q dy
2k+1 »
< D / p
2k—1

and the upper bound ||L|| < D follows by Jensen’s inequality and the required
C < A+ D is proved. O

Theorem 3.2. Let p > max(1,1),0 < ¢ <p < oo and % := % —
and u € MT is monotone decreasing on [0, 00).
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I) If o+ 8 > 2 then the inequality (3.1) holds if and only if A +B < oo, where

ok T/q
Bk 0 {/ )q(x - 2k>(a+62)qu>
2k—1

/ 1/r

2 ( v uP (t)dt
y(ﬁ LB ’
2’€+1 T/p
By ( / qu)
2k

’ 1/r

2k B a+ﬁ 2)p ( )dy r/p
/ e v(t)?dt :

2k 2k+1

r/q
)q(x _ t)(aJrﬁ?)qu)

(/% E > zf;%if}”?
(

2k+1 ok+1 T/p
By 5( U(x)qu>

! 1/r
OH‘B qup< )dy> (t)th}

Bfl)p’
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1/r
B .= (Z (B};,o(m B) + By (o, B) + By o, B) + BZ,:&(%B))) .

keZ

Moreover, C' =~ A + B.
II) If 1 < a+ B < 2 then the inequality (3.1) holds if and only if A+ D < oo,

where

r/ / r/p
. 2t O A S T O AN
T Z ok 2 a— 6 s t(2—a—B)q ko1 tB=DP 5

keZ

(gﬂ)

Moreover, C' ~ A + D.

1/r

Proof. (I) (a+ B > 2) Arguing similarly to the proof of Theorem 3.1 part (I) and
using Theorems 2.1, 2.2, we can see our aim in this part.

(IT) (1 < a+ B < 2) Since L is a block-diagonal operator using ([27], Lemma 1),
we have

IL]] ~ (ZHM!) , 4 <P, (3.11)

keZ

and it is sufficient to show, that || L] < D. Let

_ Xxa(@) ! S P (t)dt
)= o [ [

Applying Holder’s inequality, we find

13
3

xr

L () edt " P (s)ds
(e | B

Q
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Changing the order of integration and integrating by parts, we have

2k+1

[ vriian= [ wiornyia

B S ) LA SouP (t)dt 7
S 2C@aBla | oy tBB-D
2 e@®)dt |7 (s)dsd
) deemme | G
e W a) 2’“1 £)4dt
B ok—1 gk tB=1P 2 a=f)q 3(/3 1)10
B ok+1 ( )th d s
o te=o=f)a 2k1t< )

B ok+1 ok+1 v (t)9dt 1» s (t)dt 5 v (s)ids

g s t(2—a=ha ok—1 ARy s(2—a=P)q
/ 2k+1 % s ’ 5

_ 7 wi(t)?dt WP (8)dt] 7 vg(s)0ds

a E Ap | /s t(2—a=F)q et tB=DP s(2—a—B)q

/
= Cpr,
q

Q3 °'=

2k+l

Thus, from (3.12)

Now we show, that

J q -k ’ a+pB—2 U(y) P »
k< Dy v(x)h(z) (z —y) fy)—=dy | dx
Ag 2k—1 Yy

2 o(2)th(z) T da b (s)ds >
— 1.
tSeuAIZ /t z(2—a=B)p </2k1 s(B=1)p’ ) <
Let t € Aj. We write

2 v(:p)qh(w)fgdx B 2 v(x)ldz
t @app ), zCadp

2k+1

LA

(]
3

97

(3.12)

(3.13)

Q[

T b)) T oe()edz | o (s)ds 1
% S | p@aPu| SG-0F | pEa-pe)

»Q\h

2 op(2)dz | * uP (s)ds
 Z@aha | SB-0

B 2 v(x)dx ’ S (t)dt
) eama | fu \ e 700w

s
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< t S (t)dt ﬁup'(s)ds _;_ r o (s)ds\
=\ o [ Sppn tB-1F s(B—1)p' —\y o1 sB=DY )

and (3.13) follows. Applying the arguments from the proof of Theorem 3.1 with
p = q we see, that

q -z ’ a+p—-2 U(y) g v
. U(Zlf) h(:l,‘) q . (ZL‘ — y) f(y)de dx < ||fX[2k—172k+1]||p.
k 2k—1
Thus, (3.12) brings

3
S

1Lk fllg < Dl X201 20411 -
Consequently, ||Li|| < Dy and by (3.11) ||L|| < D. O

4. COMPACTNESS

Theorem 4.1. Let max(2,1) < p < q < oo. Let v € M and u € M* s

o’

monotone decreasing on [0, 00).
I) If a+ B > 2 the operator Lo g from LP to L% is compact iff, A+ B < oo and

lim A;(t) = lim Ay(t) =0, i=0,1,
t—0 t—o00
lim B;(t) = lim B;(t) =0, i=0,1.
t—0 t—00

II) If 1 < a+ B < 2 the operator L,z from LP to L% is compact iff, A+ D < oo
and

k——o0 k—+o00

Proof. (I) (o + 8 > 2) Since in this case, we have Oinarov-kernel, therefore the
proof of compactness follows from representation of the operator by sum of a
compact operator and an operator with a small norm and using Theorems 2.1,
2.2.

(II) (1 < a+ B < 2) Necessity. Since the operator L, g is compact, then L, g is
bounded from L? to L? and it follows from Theorem 3.1 that A+ B < oo. We use
the well-known fact that a compact operator maps a weakly convergent sequence
into a strongly convergent one. Put

Xpo,z) (@) (In()) P~ DD~ (z)
5 / / 1/p ’

(s )= )y
Then | f;|l, = 1 and for any fixed g € L” we have by Hélder’s inequality that

/0°° fi(z)g(z)dz| < (/02 |9($)|p'dx> 1/p/ i

Therefore, f; — 0 is a weakly convergent sequence, and by the hypotheses, we
have

t>0.

fi(x) =

10 [ Lo folly = 0.
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However, using Oinarov-kernel condition
x = (In 2)7 fi(y)uly)dy ¢\
Lagf :(/ vqa:(/ £ )dx) > A(t).
Lo ftllq i (z) i =g 1(t)
Consequently, lim; .o A;(t) = 0. With the same argument with the sequence

Xpo31(@)u” ! (z)

(fo% ut’ (y)dy> ot ° 2

we obtain lim; 0 Ag(t) = 0. The second condition in (4.1) follows from the
compactness of the dual operator L, ; on applying similar observations. Let

u(x) \p'—1
_ x —
forlr) = 22 a@GETT ok ey ez

. W) 1/p’
<f2k—1<y(5y1) )P _1d2/>
Hence, || frs|l, = 1 and for any fixed g € L? we have by Hélder’s inequality that
2k+1 2k+1

‘/000 fri(x)g(x)dz /2k fra(x)g(z)dz| < </2k ,g(x”p’dx)l/p, N

when k — £o00. Therefore, fi,; — 0 weakly, and we have

fs(z) =

lim s L =0.
A s 1 Lasfrills

If v < 2571 then L, 5fr:(z) = 0, so for all z >t we write,

o0 t q 1/q
Sea(y)u(y)dy
astily = ("o [ A0 o
S ok+1 Uq(x) t up/ (y)dy qd$ 1/q
B t i1 (T — y)2—a—ByB-1)p'
ok+1 1/q ¢ ; 1/p/
v(z)dx u? (s)ds -
> . r(2—a—P)q o1 sB=DP ) € 2%, J-

Therefore,

sup  ||Lapgfeell > sup  Di(t).

te[2k 2k+1] te[2k,2k+1]

Consequently, limy_,4 o, Dr = 0. Sufficiency. We follow on applying similar argu-
ments from ([19], Theorem 3). Let 0 < a < b < oo and

Pof = xp0af, Quvf = Xpoo)f, Paf = Xap f-
Then

Logf=(Py+ Pu+Qp)Lapg(Py+ Py +Qu)f

- PaLoc,ﬁPaf + QbLa,BQbf + QbLa,BPabf + QaLa,BPaf + PabLa,BPabf‘
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We consider each operator from the sum separately and prove, that L, g is
compact as a limit of compact operators. For instance, let v, := vxo,q and
Uq = UX][0,q)- Then

)

z Inft(z wuy(y)d
P.LogP.f(x) = v(z) /0 ((;)_f;y))l_a(y) Y

and, applying Theorem 3.1, we see, that

HPaLa,ﬁPa”LpﬁLq < ( sup AO(t) + sup Al(t) + sup Dk)
0<t<a 0<t<a {k:2k<a}

Hence, by (4.1) and (4.2), we have,
il_r}(l] HPaLa,,BPaHLP—)Lq = 0.

Similarly, we find that
lim ||QyLa,sQb|| Lr—1a = 0,
b—o0

lim ||QbLa,/3Pab||LP—>Lq = 0,
b—o0

lim ||QaLa,BPa||LP—>Lq = 0.
a—0

To prove that Py,L, g Py is compact we suppose without a loss of generality, that
both factors on the right hand side of (3.2), (3.3) are finite, that is

< vi(x)dx
| S e 0.,

/2 ln(ﬁ_l)p/(f)up/(y)dy € (0, 00),
0 Y

and

o~

also
2k+1

v(s)%ds
/t @ a Py © (0,00),

[ o

k—1 S(Bil)pl

for all t € (0,00), k € Z. The kernel of the integral operator P,Lg, 5P is

Inf! (£)
ap(T,y) = U(x)X[a,b](w>Wu(y)X[a,m] () X[a,) (Y)-

Then

J = (/OOO (/OOO \goa,b(x,y”p/dy)q/p'dx) v
(ool 2y
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b 2 InB=DP (L) (4))dy \ /¥ 1/q
§(/ vq(gg)(/ ()1 (,) ) dx)
a 0 (SL’ -y (1=ap
b 2/2 InB=DP (2 ® ()du\ /P 1/q
(el [
a 0 (ZL‘ - y>( —p

b  InB=VP" (Vo () du\ 9P 1/q
—I—(/ vq(x)</ (y)l (y/) y) dx) :
a x/2 ($ - y)( —op

Hence, using instruction of the proof of Theorem 3.1,

b q( ) z/2 a/p’ 1/q
vz B-1p' (XN, v
J <L (/a x(la)q(/o In (y)u (y)dy dx
b 9(z) x p’( )d a/p' 1/q
vi(x uP (y)dy
+( /a 2B ( /x P y(ﬁl)p’) dx) < 00

By well-known result ([6], Chapter XI, Sec 3.2) it implies, that PuLagPu is

compact. Therefore, L, 3 is compact as a limit of compact operators. Il

. Let v € M* and

< |8

~—

Theorem 4.2. Let p > é,O <qg<p<o and% = é—
u € MT is monotone decreasing on [0,00). Then

I) If o+ > 2, the operator Ly, 5 : LP — L9, is compact if and only if A+B < oo.
II) If 1 < a+ B < 2, the operator Loz : LP — L9, is compact if and only if
A+D < oco.

1
p

Proof. (I) (a + 8 > 2) Tt follows from Theorems 2.1, 2.2, and applying Ando’s
theorem (see [11, 17] and [21]).

(IT) (1 < a+ B < 2) Necessity follows immediately from Theorem 3.2 and to
prove sufficiency we apply Ando’s theorem, its extension ([8], Theorem 5.5) and

Theorem 2.3 ( see also [11, 17]). O
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