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WEYL TYPE THEOREM AND SPECTRUM FOR
(p, k)-QUASIPOSINORMAL OPERATORS
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Communicated by J. A. Ball

Abstract. Let T be a (p, k)-quasiposinormal operator on a complex Hilbert
space H, i.e T ∗k(c2(T ∗T )p − (TT ∗)p)T k ≥ 0 for a positive integer 0 < p ≤ 1,
some c > 0 and a positive integer k. In this paper, we prove that the spectral
mapping theorem for Weyl spectrum holds for (p, k) - quasiposinormal opera-
tors. We show that the Weyl type theorems holds for (p, k)- quasiposinormal.
We prove that if T ∗ is (p, k)-quasiposinormal, then generalized a-Weyl’s the-
orem holds for T . Also we prove that σjp(T ) − {0} = σap(T ) − {0} holds for
(p, k)-quasiposinormal operator.

1. Introduction and preliminaries

Let B(H) denote the algebra of all bounded linear operators acting on an
infinite dimensional separable Hilbert space H. For a positive operators A and
B, write A ≥ B if A− B ≥ 0. If A and B are invertible and positive operators,
it is well known that A ≥ B implies that log A ≥ log B. However [2], log
A ≥log B does not necessarily imply A ≥ B. A result due to Ando [6] states
that for invertible positive operators A and B, log A ≥ log B if and only if
Ar ≥ (A

r
2BrA

r
2 )

1
2 for all r ≥ 0. For an operator T , let U |T | denote the polar

decomposition of T , where U is a partially isometric operator, |T | is a positive
square root of T ∗T and ker (T ) = ker (U) = ker (|T |), where ker (S) denotes the
kernel of operator S.
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An operator T ∈ B(H) is positive, T ≥ 0, if (Tx, x) ≥ 0 for all x ∈ H, and
posinormal if there exists a positive λ ∈ B(H) such that TT ∗ = T ∗λT . Here λ
is called interrupter of T . In other words, an operator T is called posinormal if
TT ∗ ≤ c2T ∗T , where T ∗ is the adjoint of T and c > 0 [15]. An operator T is said
to be heminormal if T is hyponormal and T ∗T commutes with TT ∗. An operator
T is said to be p-posinormal if (TT ∗)p ≤ c2(T ∗T )p for some c > 0. It is clear
that 1-posinormal is posinormal. An operator T is said to be p-hyponormal, for
p ∈ (0, 1), if (T ∗T )p ≥ (TT ∗)p. An 1-hyponormal operator is hyponormal which
has been studied by many authors and it is known that hyponormal operators
have many interesting properties similar to those of normal operators [30]. Furuta
et al [19], have characterized class A operator as follows. An operator T belongs

to class A if and only if (T ∗|T |T )
1
2 ≥ T ∗T .

An operator T is called normal if T ∗T = TT ∗ and (p, k)-quasihyponormal if

T ∗
k
((T ∗T )p − (TT ∗)p)T k ≥ 0 (0 < p ≤ 1, k ∈ N). In this paper, we inves-

tigate (p, k)-quasiposinormal operator T , i.e., T ∗
k
(c2(T ∗T )p − (TT ∗)p)T k ≥ 0

(0 < p ≤ 1, k ∈ N and c > 0). Aluthge [1], Gupta [11], S.C. Arora and P.
Arora [3] introduced p - hyponormal, p-quasihyponormal and k-quasihyponormal
operators, respectively.

Aluthge [1] studied p-hyponormal operators for 0 < p ≤ 1. In particular he

defined the operator T̃ = |T | 12U |T | 12 which is called the Aluthge transformation

and the operator
˜̃
T = |T̃ | 12 Ũ |T̃ | 12 , where T̃ = Ũ |T̃ | is the polar decomposition of

T̃ . An operator T is said to be w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|. Then we have
p-hyponormal ⊂ p-posinormal ⊂ (p, k)-quasiposinormal,

p-hyponormal ⊂ p -quasihyponormal ⊂
(p, k) - quasihyponormal ⊂ (p, k)-quasiposinormal

and

hyponormal ⊂ k-quasihyponormal ⊂ (p, k)-quasihyponormal
⊂ (p, k) - quasiposinormal

for a positive integer k and a positive number 0 < p ≤ 1.
If T ∈ B(H), we shall write N(T ) and R(T ) for the null space and the range of

T , respectively. Also, let σ(T ) and σa(T ) denote the spectrum and the approxi-
mate point spectrum of T , respectively. An operator T is called Fredholm if R(T )
is closed, α(T ) = dim N(T ) < ∞ and β(T ) = dim H/R(T ) < ∞. Moreover if
i(T ) = α(T ) − β(T ) = 0, then T is called Weyl. The essential spectrum σe(T )
and the Weyl σW (T ) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm}
and

σW (T ) = {λ ∈ C : T − λ is not Weyl},
respectively. It is known that σe(T ) ⊂ σW (T ) ⊂ σe(T )∪ acc σ(T ) where we write
acc K for the set of all accumulation points of K ⊂ C. If we write iso K = K\
acc K, then we let
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π00(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λ) <∞}.
We say that Weyl’s theorem holds for T if

σ(T )\σW (T ) = π00(T ).
Let σp(T ) denote the point spectrum of T , i.e., the set of its eigenvalues. Let

σjp(T ) denote the joint point spectrum of T . We note that λ ∈ σjp(T ) if and only

if there exists a non-zero vector x such that Tx = λx, T ∗x = λx. It is evident
that σjp(T ) ⊂ σp(T ). It is well known that, if T is normal, then σjp(T ) = σp(T ).
Let T = U |T | be the polar decomposition of T and λ = |λ|eiθ be a complex
number, |λ| > 0, |eiθ| = 1. Then λ ∈ σjp(T ) if and only if there exists a non-zero
vector x such that Ux = eiθ, |T |x = |λ|x. Let σap(T ) denote the approximate
point spectrum of T , i.e., the set of all complex numbers λ which satisfy the
following condition: there exists a sequence {xn} of unit vectors in H such that
limn‖(T − λ)xn‖ = 0. It is evident that σp(T ) ⊂ σap(T ). Let σjap(T ) be the joint
approximate point spectrum of T , i.e., the set of all complex numbers λ which
satisfy the following conditions: there exists a sequence {xn} of unit vectors
such that limn→∞‖(T − λ)xn‖ = limn→∞‖(T ∗ − λ)xn‖ = 0. It is evident that
σjap(T ) ⊂ σap(T ) for all T ∈ B(H). It is well known that, for a normal operator
T , σjap(T ) = σap(T ) = σ(T ).

In [29], Weyl proved that Weyl’s theorem holds for hermitian operators. Weyl’s
theorem has been extended from hermitian operators to hyponormal operators
[13], algebraically hyponormal operators [21], p-hyponormal operators [12] and al-
gebraically p-hyponormal operators [17]. More generally, M. Berkani investigated
generalized Weyl’s theorem which extends Weyl’s theorem, and proved that gen-
eralized Weyl’s theorem holds for hyponormal operators [7, 8, 9]. In a recent
paper [25] the author showed that generalized Weyl’s theorem holds for (p, k) -
quasihyponormal operators. Recently, X. Cao, M. Guo and B. Meng [10] proved
Weyl type theorem holds for p-hyponormal operators. In this paper, we prove
that Weyl type theorems hold for (p, k)-quasiposinormal operators. Especially
we prove that if T ∗ is (p, k)-quasiposinormal, then generalized a-Weyl’s theorem
holds for T .

2. Weyl’s Theorem for (p, k)- quasiposinormal operators

Mi Young Lee and Sang Hun Lee [22] have introduced (p, k)- quasiposinormal
operators and have proved many interesting properties of it.

Lemma 2.1. ([22], [28]) (1) Let T be (p, k)-quasiposinormal. Then

T =

(
T1 T2
0 T3

)
on H = ran(T k) ⊕ ker(T ∗k), where T1 is p-posinormal, T k3 = 0 and σ(T ) =
σ(T1) ∪ {0}.
(2) If Y ⊂ H is an invariant subspace of T , then the restriction T |Y is also
(p, k)-quasiposinormal operator.

Lemma 2.2. [28] Let T ∈ B(H) be a (p, k)-quasiposinormal operator for c > 0
and a positive integer k. If λ 6= 0 and (T − λ)x = 0 for some x ∈ H, then
(T − λ)∗x = 0.
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Lemma 2.3. Let T ∈ B(H) be a (p, k)-quasiposinormal operator for c > 0. Then
T has Bishop’s property (β), i.e., if fn(z) is analytic on D and (T − z)fn(z) →
0 uniformly on each compact subset of D, then fn(z) → 0 uniformly on each
compact subset of D. Hence T has the single valued extension property.

Proof. Let fn(z) be analytic on D and (T − z)fn(z) → 0 uniformly on each
compact subset of D. Then(

T1 − z T2
0 T3 − z

)(
fn1(z)
fn2(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
→ 0

Since T k3 = 0, T3 has (β) and fn2(z) → 0. Hence (T1 − z)fn1(z) → 0. Since T1
has (β) by [16], (T1 − z)fn1(z)→ 0. Thus fn1(z)→ 0 and fn(z)→ 0. �

Proposition 2.4. Weyl’s theorem holds for (p, k)-quasiposinormal operator T
for c > 0, i.e., σ(T )\σW (T ) = π00(T ).

Proof. Let λ ∈ σ(T )\σW (T ). Then T − λ is Weyl and not invertible. If λ is an
interior point of σ(T ), there exists an open set G such that λ ∈ G ⊂ σ(T )\σW (T ).
Hence dim N(T − µ) > 0 for all µ ∈ G and T does not have the single valued
extension property by [18, Theorem 9]. This is a contradiction. Hence λ is a
boundary point of σ(T ), and hence an isolated point of σ(T ) by [14, Theorem XI
6.8]. Thus λ ∈ π00(T ).

Let λ ∈ π00(T ) and Eλ be the Riesz idempotent for λ of T . Then 0 <
dim N(T − λ) <∞,

T = T |EλH ⊕ T |(I−Eλ)H
and

σ(T |EλH) = {λ}, σ(T |(I−Eλ)H) = σ(T )\{λ}.
We remark T |EλH is (p, k)-quasiposinormal by Lemma 2.1.
If λ 6= 0, then T |EλH = {λ} by [28]. Hence EλH ⊂ N(T − λ) and Eλ is of

finite rank. Since (T − λ)|(I−Eλ)H is invertible, T − λ = 0|EλH ⊕ (T − λ)|(I−Eλ)H
is Weyl. Hence λ ∈ σ(T )\σW (T ).

If λ = 0, then (T |E0H)k = 0 by [28]. Hence E0H ⊂ N(T k) and
dim E0H ≤ dim N(T k) ≤ k dim N(T ) <∞

Then T |EλH is compact. Since T |(I−E0) is invertible, λ ∈ σ(T )\σW (T ) by [14,
Proposition XI 6.9]. �

Theorem 2.5. If T ia an n-multicyclic (p, k)-quasiposinormal operator, then the

restriction T1 of T on ran(T k) is also an n-multicyclic operator.

Proof. Let T =

(
T1 T2
0 T3

)
on H = ran(T k) ⊕ ker(T ∗k). Since σ(T1) ⊂ σ(T )

by Lemma 2.1, R(σ(T )) ⊂ R(σ(T1)). By hypothesis there exist n vectors,
x1, · · · , xn ∈ H, such that

H =
∨
{g(T )xi | i = 1, 2, · · · , n and g ∈ R(σ(T ))}
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Now let Yi = T kxi, i = 1, 2, · · · , n. Then we have the following∨
{g(T1)Yi | i = 1, 2, · · · , n, g ∈ R(σ(T1))}

⊃
∨
{g(T1)Yi | i = 1, 2, · · · , n, g ∈ R(σ(T ))}

=
∨
{g(T )T kxi | i = 1, 2, · · · , n, g ∈ R(σ(T ))}

=
∨
{T kg(T )xi | i = 1, 2, · · · , n, g ∈ R(σ(T ))}

= ran(T k)

and Y1, · · · , Yn are n-multicyclic vectors of T1.
�

Lemma 2.6 ([23],Theorem 6). For a given operators A,B,C ∈ B(H) there is

equality σW (A) ∪ σW (B) = σW (Mc ∪ G), where Mc =

(
A C
0 B

)
and G is the

union of certain of the holes in σW (Mc) which happen to be subsets of σW (A) ∩
σW (B).

The following theorem shows that the spectral mapping theorem for Weyl spec-
trum holds for (p, k)-quasiposinormal operators.

Theorem 2.7. If T is a (p, k)- quasiposinormal operator, then f(σW (T )) =
σW (f(T )) for any analytic function f on a neighborhood of σ(T ).

Proof. We need only to prove that σW (p(T )) = p(σW (T )) for any polynomial p.

Since T has the matrix representation T =

(
T1 T2
0 T3

)
, where T1 is p-posinormal

and T k3 = 0, and the spectral mapping theorem for Weyl spectrum holds for p
-posinormal operator, it follows that

σW (p(T )) = σW (p(T1)) ∪ σW (p(T3))

= p(σW (T1)) ∪ p(σW (T3))

= p(σW (T1) ∪ σW (T3))

= p(σW (T ))

�

It was known [23] if A and B are isoloid and if Weyl’s theorem holds for A and
B then

Weyls theorem holds for

(
A 0
0 B

)
⇔ σW

(
A C
0 B

)
= σW (A) ∪ σW (B).

We know that the “spectral picture” [26] of the operatorT ∈ B(H), denote by
SP(T), which consists of the set σe(T ), the collection of holes and pseudoholes in
σe(T ), and the indices associated with these holes and pseudoholes.

In general, Weyl’s theorem does not hold for operator matrix

(
A C
0 B

)
even

though Weyl’s theorem holds for

(
A 0
0 B

)
. W.Y. Lee showed the following
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Lemma (see [24]).

Lemma 2.8. If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds then for every C ∈ B(H),

Weyls theorem holds for

(
A 0
0 B

)
⇔ σW

(
A C
0 B

)
.

The following corollary follows from the above Lemma.

Corollary 2.9. Weyl’s theorem holds for every (p, k)-quasiposinormal operator.

Proof. Let T ∈ B(H) be a (p, k)-quasiposinormal operator. Then by Lemma 2.1
T has the following matrix representation:

T =

(
T1 T2
0 T3

)
on H = ran(T k) ⊕ ker(T ∗k), where T1 is p-posinormal, T3

is nilpotent operator. Therefore Weyl’s theorem holds for

(
T1 0
0 T3

)
because

Weyl’s theorem holds for p-posinormal operator and nilpotent operator and both
p-posinormal operator and nilpotent operator are isoloid. Hence by Lemma 2.8

Weyl’s theorem holds for

(
T1 T2
0 T3

)
because SP (T3) has no pseudoholes. �

3. Generalized a-Weyl’s theorem

More generally, Berkani investigated B-Fredholm theory as follows [4, 7, 8, 9].
An operator T is called B-Fredholm if there exists n ∈ N such that R(T n) is
closed and the induced operator

T[n] : R(T n) 3 x→ Tx ∈ R(T n)
is Fredholm, i.e., R(T[n]) = R(T n+1) is closed, α(T[n]) = dim N(T[n]) < ∞ and
β(T[n]) = dim R(T n)/R(T[n]) <∞. Similarly, a B-Fredholm operator T is called
B-Weyl if ind(T[n]) = 0. The following results is due to Berkani and Sarih [9].

Proposition 3.1. Let T ∈ B(H).
(1) If R(T n) is closed and T[n] is Fredholm, then R(Tm) is closed and T[m] is
Fredholm for every m ≥ n. Moreover, ind T[m] = ind T[n] = ind T .
(2) An operator T is B-Fredholm (B-Weyl) if and only if there exist T-invariant
subspaces M and N such that T = T |M⊕T |N where T |M is Fredholm (Weyl) and
T |N is nilpotent.

The B-Weyl spectrum σBW (T ) is defined by
σBW (T ) = {λ ∈ C : T − λ is not B-Weyl} ⊂ σW (T ).

We say that generalized Weyl’s theorem holds for T if
σ(T )\σBW (T ) = E(T )

where E(T ) denotes the set of all isolated points of the spectrum which are
eigenvalues (no restriction on multiplicity). Note that, if the generalized Weyl’s
theorem holds for T , then so does Weyl’s theorem [8]. Recently in [7] M. Berkani
and A. Arroud showed that if T is hyponormal, then generalized Weyl’s theorem
holds for T .
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Proposition 3.2. Generalized Weyl’s theorem holds for (p, k)-quasiposinormal
operator T .

Proof. Let λ ∈ σ(T )\σBW (T ). Then T − λ is B-Weyl and not invertible. Then
T − λ = (T − λ)|M ⊕ (T − λ)|N

where (T −λ)|M is Weyl and (T −λ)|N is nilpotent by Proposition 3.1. The case
M = {0} or N = {0} is easy, so we may assume M 6= {0} and N 6= {0}.

First we assume λ ∈ σ(T |M). In this case T |M is (p, k)-quasiposinormal by
Lemma 2.1 and

λ ∈ σ(T |M)\σW (T |M) = π00(T |M)
by Proposition 2.4. Hence λ is an isolated point of σ(T |M) and an eigenvalue of
T |M . Hence λ is an eigenvalue of T . On the other hand (T − λ)|N is nilpotent,
so λ is an isolated point of σ(T ). Hence λ ∈ E(T ).

Secondly we assume λ /∈ σ(T |M). In this case, (T − λ)|N is nilpotent, and λ is
an eigenvalue of T |N and T . Since (T − λ)|M is invertible, λ is an isolated point
of σ(T ). Hence λ ∈ E(T ).

Conversely, let λ ∈ E(T ). Since λ is an isolated point of σ(T ),
T − λ = (T − λ)|EλH ⊕ (T − λ)|(I−Eλ)H

where Eλ denotes the Riesz idempotent for λ of T . Then (T − λ)|EλH is (p, k) -
quasiposinormal by Lemma 2.1 and σ(T |EλH) = λ.

If λ 6= 0, T |EλH = {λ} by [28]. Hence
T − λ = 0|EλH ⊕ (T − λ)|(I−Eλ)H

Since (T − λ)|(I−Eλ)H is invertible, T − λ is B-Weyl by Proposition 3.1. Hence
λ ∈ σ(T )\σBW (T ).

If λ = 0, then (T |EλH)k = 0 by [28]. Hence λ ∈ σ(T )\σBW (T ) by Proposition
3.1. �

Theorem 3.3. If T ∗ is (p, k)-quasiposinormal, then Weyl’s theorem holds for T .

Proof. Proposition 3.2 implies that
σ(T ∗)\σBW (T ∗) = E(T ∗)

It is obvious that

(σ(T ∗)\σBW (T ∗))∗, = σ(T )\σBW (T )
hence we have to prove

(E(T ∗)∗) = E(T ).
Let λ∗ ∈ E(T ∗). Then λ is an isolated point of σ(T ). Let Fλ∗ be the Riesz

idempotent for λ∗ of T ∗. If λ∗ 6= 0, then Fλ∗ is self-adjoint,
{0} 6= Fλ∗H = N((T − λ)∗) = N(T − λ)

by [28]. Hence λ ∈ E(T ). If λ∗ = 0, then T ∗|F0 is (p, k) - quasiposinormal by

Lemma 2.1 and (T ∗|F0H)k = 0 by [28]. Hence T ∗
k
F0 = 0. Let E0 = F ∗0 be

the Riesz idempotent for 0 of T . Then T kE0 = (T ∗
k
F0)
∗ = 0. Hence T |E0H is

nilpotent. Thus λ = 0 ∈ E(T ).
Conversely, let λ ∈ E(T ). Then λ∗ is an isolated point of σ(T ∗). Let Fλ∗ be

the Riesz idempotent for λ∗ of T ∗. If λ 6= 0, then Fλ∗ is self-adjoint and
{0} 6= Fλ∗H = N((T − λ)∗) = N(T − λ)

by [28]. Hence λ∗ ∈ E(T ∗). Let λ = 0. Since T ∗|F0H is (p, k)-quasiposinormal
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and σ(T ∗|F0H) = {0}, we have (T ∗|F0H)k = 0 by [28]. This implies that T ∗|F0H
is nilpotent. Thus λ∗ = 0 ∈ E(T ∗). �

Next we investigate a-Weyl’s theorem [4].
We define T ∈ SF−+ if R(T ) is closed, dim N(T ) <∞ and ind T ≤ 0. Let πa00(T )
denote the set of all isolated points λ of σa(T ) with 0 < dim ker(T − λ) < ∞.
Let σSF−

+
(T ) = {λ|T − λ /∈ SF−+ } ⊂ σW (T ).

We say that a-Weyl’s theorem holds for T if
σa(T )\σSF−

+
(T ) = πa00(T ).

Rakocevic [27, Corollary 2.5] proved that if a-Weyl’s theorem holds for T , then
Weyl’s theorem holds for T .

Theorem 3.4. If T ∗ is (p, k)-quasiposinormal, then a-Weyl’s theorem holds for
T .

Proof. Since T ∗ has the single valued extension property by Lemma 2.3, we have
σ(T ) = σa(T ) and π00(T ) = πa00(T ) [4, Corollary 2.45].

Let λ ∈ σa(T )\σSF−
+

(T ). If λ is an interior point of σa(T ), then there exists an

open set G such that λ ∈ G ⊂ σa(T )\σSF−
+

(T ). Since T ∗ has the single valued

extension property, ind (T − µ)∗ ≤ 0 for all µ ∈ C by [4, Corollary 3.19]. Let
µ ∈ G. Then T − µ ∈ SF−+ and ind (T − µ) = 0. On the other hand, R(T − µ)
is closed, T − µ is not invertible and 0 < dim N(T − µ) < ∞. Hence 0 < dim
N((T −µ)∗) <∞ and T ∗ does not have a single valued extension property by [18,
Theorem 9]. This is a contradiction. Hence we may assume that λ is a boundary
point of σ(T ). Since T −λ ∈ SF−+ , λ is an isolated point of σ(T ) by [14, Theorem
XI 6.8]. Thus λ ∈ π00(T ) = πa00(T ).

Conversely, λ ∈ πa00(T ) = π00(T ). Then λ∗ is an isolated point of σ(T ∗). Let
Fλ∗ be the Riesz idempotent for λ∗ of T ∗. If λ∗ 6= 0, then Fλ∗ is self-adjoint and

Fλ∗H = N((T − λ)∗) = N(T − λ)
by [28]. Since dim N(T − λ) <∞, Fλ∗ is compact. We decompose

(T − λ)∗ = 0|Fλ∗H ⊕ (T − λ)∗|(I−Fλ∗ )H
Then (T − λ)∗|(I−Fλ∗ )H is invertible and

T − λ = 0|Fλ∗H ⊕ (T − λ)|(I−Fλ∗ )H
Hence R(T − λ) = (I − Fλ∗)H is closed and ind (T − λ) = 0. Thus λ ∈

σa(T )\σSF−
+

(T ).

If λ∗ = 0, then
T ∗

k |F0H = (T ∗|F0H)k = 0

by [28]. Since E0 = F ∗0 is the Riesz idempotent for 0 of T and T kE0 = (T ∗
k
F0)
∗ =

0, we have E0H ⊂ N(T k). Then
dim E0H ≤ dim N(T k) ≤ k dim N(T ) <∞.

This implies E0 is compact. We decompose
T = T |E0H ⊕ T |(I−E0)H.

Since T |(I−E0)H is invertible, R(T ) = R(T |E0H)⊕ (I −E0)H is closed, N(T ) ⊂
E0H and ind T = 0. Thus 0 ∈ σa(T )\σSF−

+
(T ). �

Next we investigate generalized a-Weyl’s theorem [4].
We define T ∈ SBF−+ if there exists a positive integer n such that R(T n) is closed,
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T[n] : R(T n) 3 x→ Tx ∈ R(T n) is upper semi-Fredholm (i.e., R(T[n]) = R(T n+1)
is closed, dim N(T[n]) = dim N(T ) ∩ R(T n) <∞) and 0 ≥ ind T[n](=ind T ) [9].
We define σSBF−

+
(T ) = {λ|T −λ /∈ SBF−+ } ⊂ σSF−

+
(T ). Let Ea(T ) denote the set

of all isolated points λ of σa(T ) with 0 < dim ker(T −λ). We say that generalized
a-Weyl’s theorem holds for T if

σa(T )\σSBF−
+

(T ) = Ea(T ).

Berkani and Koliha [8] proved that if generalized a-Weyl’s theorem holds for
T , then a-Weyl’s theorem holds for T .

Theorem 3.5. If T ∗ is (p, k)-quasiposinormal, then generalized a-Weyl’s theorem
holds for T .

Proof. Since T ∗ has the single valued extension property by Lemma 2.3, we have
σ(T ) = σa(T ), π00(T ) = πa00(T ) and E(T ) = Ea(T ) [4, Corollary 2.45].

Let λ0 ∈ σa(T )\σSBF−
+

(T ). If λ0 is an interior point of σa(T ), then there

exists an open set G such that λ0 ∈ G ⊂ σa(T )\σSF−
+

(T ). Let λ ∈ G. Then

T − λ ∈ SBF−+ i.e., there exists a positive integer n such that R((T − λ)n) is
closed, dim N(Tn − λ) < ∞ and ind (T − λ) = ind (Tn − λ) ≤ 0. Then there
exists a positive number ε such that if 0 < |λ − µ| < ε then T − µ is upper
semi-Fredholm, ind (T − µ) = ind (T − λ) ≤ 0 and µ ∈ G by [9, Theorem 3.1].
Since T ∗ has a single valued extension property, ind (T −µ)∗ ≤ 0 by [4, Corollary
3.19]. Hence ind (T −µ) = 0. If 0 = dim N(T −µ), then T −µ is invertible. This
is a contradiction. Hence 0 < dim N(T −µ) <∞, and 0 <dim N((T −µ)∗) <∞.
Then T ∗ does not have the single valued extension property by [18]. This is a
contradiction.

Hence we may assume that λ0 is a boundary point of σ(T ). Since T − λ0 ∈
SBF−+ , T − λ0 is topologically uniform descent by [9, Proposition 2.5], and λ0 is
an isolated point of σ(T ) by [20, Corollary 4.9]. We decompose

T − λ0 = (T − λ0)|M ⊕ (T − λ0)|N
where (T − λ0)|N is nilpotent and (T − λ0)|M is semi-Fredholm by [9, Theorem
2.6]. If N = {0}, then

λ0 ∈ σa(T )\σSF−
+

(T ) = πa00(T ) = π00(T ) ⊂ E(T ) = Ea(T )

by Theorem 3.4. If N 6= {0}, then λ0 is an eigen value of T |N as T |N is nilpotent.
Hence λ0 ∈ E(T ) = Ea(T ). Thus σa(T )\σSBF−

+
(T ) ⊂ Ea(T ).

The converse inclusion is clear because

Ea(T ) = E(T )

⊂ π00(T )

= πa00(T )

= σa(T )\σSF−
+

(T )

⊂ σa(T )\σSBF−
+

(T )

by Theorem 3.4. �
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Remark 3.6. (1) If f(z) is an analytic function on σ(T ), then generalized a-Weyl’s
theorem holds for T . (The proof is similar to [10, Theorem 3.3]).
(2) Generalized a-Weyl’s theorem does not hold for (p, k) - quasiposinormal oper-
ator T as seen in [5, Example 2.13]. However if ker T ⊂ ker T ∗, then generalized
a-Weyl’s theorem hold for T . (The proof is similar by [28]).

4. Spectra of (p, k)-quasiposinormal operators

Corollary 4.1. If T is (p, k)-quasiposinormal operator, then σjp(T ) − {0} =
σp(T )− {0}.

Proof. This follows from Lemma 2.2. �

Theorem 4.2. If T is (p, k)-quasiposinormal operator, then σjp(T ) − {0} =
σap(T )− {0}.

Proof. Let ψ be the representation of Berberian. First, we show that ψ(T ) is
(p, k)-quasiposinormal.
(ψ(T ))∗k[c2(ψ(T )∗ψ(T ))p − (ψ(T )ψ(T )∗)p](ψ(T ))k

= ψ(T ∗k)[c2(ψ(T ∗)ψ(T ))p − (ψ(T )ψ(T ∗))p]ψ(T k)
= ψ(T ∗k)[c2(ψ(T ∗T ))p − (ψ(TT ∗))p]ψ(T k)
= ψ[T ∗k(c2(T ∗T )p − (TT ∗)p)T k]

But T is (p, k)-quasiposinormal operator, then T ∗k(c2(T ∗T )p− (TT ∗)p)T k ≥ 0.
So, ψ[T ∗k(c2(T ∗T )p − (TT ∗)p)T k] ≥ 0.

Thus ψ(T ) is (p, k)-quasiposinormal operator. Now,

σa(T )− {0} = σa(ψ(T ))− {0}
= σp(ψ(T ))− {0}
= σjp(ψ(T ))− {0} (by Corollary 4.1)

= σjap(T )− {0}

�

Corollary 4.3. If T is an invertible (p, k)-quasiposinormal, then
σjap(T ) = σap(T )

Definition 4.4. [14, Exercise 2, Pg. 349] The compression spectrum of T , de-
noted by σc(T ) is

σc(T ) = {λ ∈ C : λ ∈ σp(T ∗)}

Corollary 4.5. If T is an (p, k)-quasiposinormal, then
σ(T )− {0} = σc(T )− {0}

Proof. Note that, for any operator T ∈ B(H) the equality σ(T )− {0} = σp(T ) ∪
σc(T )−{0} holds. If T is (p, k)-quasiposinormal, then Corollary 4.1 implies that
σjap(T ) − {0} = σp(T ) − {0} ⊆ σc(T ) − {0}. Since σp(T

∗) ⊂ σap(T
∗), the result

follows. �
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