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Abstract. We derive an equivalent definition for the gap between two com-
plemented submodules of a Hilbert C∗-module which is same as the one for
closed subspaces of a Banach space. This gives an alternative way of defining
gap between two regular operators. We give an alternative proof of the latter
result. We also derive the McIntosh formula for computing the gap between
two regular operators between Hilbert C∗-modules which is analogous to that
of unbounded operators between Hilbert spaces.

1. Introduction

In this article we give an alternative definition for the gap between two com-
plemented submodules of a Hilbert C∗-module using the distance concept as in
the case of closed subspaces of a Banach space. We also derive the McIntosh
formula for computing the gap of regular operators between Hilbert C∗-modules.
The gap between two closed subspaces of a Hilbert space can be defined as the
norm of the difference of the orthogonal projections onto these subspaces. The
same notion can be applied to the graphs of operators to define the gap between
two operators. This definition, as it involves projections is not applicable for
closed subspaces of a Banach space. In this case it can be defined in terms of the
distance between a point and a subspace [1, 9].

Restricted to the scalars, the gap between two complex numbers is the chordal
distance between the corresponding images on the Riemann sphere centered at
(0, 0, 1

2
) with radius 1

2
. This fact can be observed from the McIntosh formula (see
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[11] or [17]). Various gap concepts are useful in determining different properties
of subspaces and operators (see [2, 4, 9, 17] for details). The McIntosh formula
for the gap between two unbounded operators was discussed by Kulkarni and
Ramesh in [11]. The Horn-Li-Merino formula for computing the gap between two
unbounded operators between Hilbert spaces is discussed in [19].

Recently Sharifi [21], defined a metric equivalent to the gap metric for regular
operators between Hilbert C∗-modules and discussed applications to Fredholm
operators.

We organize the paper as follows: In section 2, we introduce notations and
basic concepts about Hilbert C∗-modules and regular operators on Hilbert C∗-
modules. In Section 3, we deduce the McIntosh formula for the gap between two
regular operators and deduce an equivalent definition as in the case of subspaces
of Hilbert spaces ([1, 9]).

In this article we extend the results of [11] to the case of unbounded regular
operators between Hilbert C∗-modules.

2. Notations and Preliminaries

In this section we present definitions, notations and results that are frequently
used in this article to prove main results. We assume that all C∗-algebras to be
complex. For the theory of C∗-algebras we refer to [8, 16]. Here we present basics
of Hilbert C∗-modules which can be found in [13, 14].

Definition 2.1. [13, page 2] Let A be a C∗-algebra. A pre-Hilbert A-module E
is a complex linear space, which is a right A-module, compatible with that of the
linear space structure (i.e., λ(xa) = (λx)a = x(λa), for all λ ∈ C, a ∈ A, x ∈
E) equipped with an A-valued inner product, that is the map 〈·, ·〉 : E ×E → A
satisfying:

(i) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉 for all x, y, z ∈ E, λ ∈ C
(ii) 〈x, ya〉 = 〈x, y〉a, for all x, y ∈ E, a ∈ A
(iii) 〈x, y〉∗ = 〈y, x〉, for all x, y ∈ E
(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

For a pre-Hilbert A-module, the Cauchy-Schwarz inequality

〈y, x〉〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉, for all x, y ∈ E,

holds and using this we can show that

‖x‖ := ‖〈x, x〉‖
1
2 , for all x ∈ E, (2.1)

defines a norm on E. A Hilbert A-module is a pre-Hilbert A-module E which is
complete with respect to the norm given by (2.1). Through out we consider only
Hilbert C∗-modules in our article.

Hilbert C∗-modules possess the properties of both Hilbert spaces as well as
C∗-algebras. The failure of the projection theorem, the parallelogram law and
the Riesz representation theorem makes these objects complicated compared to
Hilbert spaces. Hilbert C∗-modules plays an important role in operator algebras,
operator K-theory, and the theory of operator spaces (see for example [13, 15]
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for details). This subject is growing very rapidly and refer the reader to consult
the website [5] for more details.

Let E and F be Hilbert A-modules. A map t : E → F is said to be A-linear
if t(xa) = t(x)a for all x ∈ E and for all a ∈ A and is said to be adjointable if
there exists an operator t∗ : F → E with the property that

〈x, ty〉 = 〈t∗x, y〉, for all x ∈ F, y ∈ E.
We denote the set of all adjointable bounded maps between E and F by Ba(E,F ).
In case, E = F , we denote Ba(E,F ) by Ba(E). Note that Ba(E) is a C∗-algebra.
If t : E → F is A-linear, the range and the null space of t are denoted by ran(t)
and ker(t) respectively.

We denote the identity operator on a HilbertA-module by 1 and the underlying
Hilbert C∗-module can be understood without any confusion. Let c ∈ A. Then

c =
c+ c∗

2
− i(c− c

∗

2i
). Here Re(c) :=

c+ c∗

2
and Im(c) :=

c− c∗

2i
are self-adjoint

elements of A and are called as the real and imaginary parts of c respectively.
Let E be a Hilbert A-module and x, y ∈ E. We say x is orthogonal to y if
〈x, y〉 = 0 and denote it by x⊥y. If F is a submodule of E, its orthogonal com-
plement is F⊥ := {x ∈ E : x⊥y, for all y ∈ F}. If F1 and F2 are two submodules
of E such that F1 ∩ F2 = {0}, then F1 + F2 is called the direct sum of F1 and
F2 and is denoted by F1 ⊕ F2. The direct sum is said to be orthogonal if F1⊥F2.
A closed submodule F is said to be topologically complemented if there exists a
submodule G ⊂ E such that E = F ⊕ G. A closed submodule F is said to be
complemented or orthogonally complemented if E = F ⊕ F⊥. The orthogonal
projection onto a complemented submodule N of E is denoted by pN . Note that
in this case ran(p)⊥ = ran(1 − p) = ker(p) and E = ran(p) ⊕ ran(1 − p) ([13,
Chapter 3]). For any complemented submodule M of E, we denote the distance
between x ∈ E and M by d(x,M) and SM : = {x ∈M : ‖x‖ = 1}, the unit
sphere of M .

For most of the material in this section we refer to [12, 13, 18]. Throughout we
denote the Hilbert A-modules by E and F . Let t : D(t) ⊆ E → F be A-linear,
where D(t) ⊆ E is the domain of t. If D(t) is a dense submodule of E, then t is
called densely defined. For such an operator we define a submodule

D(t∗) := {y ∈ F : ∃ z ∈ E with 〈tx, y〉 = 〈x, z〉 for all x ∈ D(t)}. (2.2)

For y ∈ D(t∗), the element z in (2.2) is unique and we define z = t∗y. This
defines an A-linear map t∗ : D(t∗)→ E satisfying

〈tx, y〉 = 〈x, t∗y〉 for all x ∈ D(t), y ∈ D(t∗).

The graph of t is defined by G(t) := {(x, tx) : x ∈ D(t)} ⊆ E ⊕ F . The graph
of the zero operator is G(0) = {(x, 0) : x ∈ D(0)}. Note that {(0, 0)} is a graph
an operator s if and only if s = 0 and D(s) = {0}.

If G(t) is a closed submodule, then t is called a closed operator [13]. The closed
graph theorem asserts that everywhere defined closed operator is bounded [20].
The map t∗ if exists, is always closed whether t is closed or not.

If s and t are A-linear maps such that D(s) ⊆ D(t) and tx = sx for all
x ∈ D(s), then s is called the restriction of t and t is called an extension of s. If
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s is a restriction of t, then we denote this by s ⊆ t. If t ⊆ t∗, then t is said to
be symmetric and self-adjoint if t = t∗. We say t to be positive if t = t∗ and its
spectrum σ(t) is a subset of [0,∞). If t1, t2 are self-adjoint A-linear maps such
that t1 − t2 ≥ 0, then we write this by t1 ≥ t2.

If E and F are Hilbert A-modules, then E ⊕ F is a Hilbert A-module with
respect to the inner product given by

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉, for all xi ∈ E, yi ∈ F, i = 1, 2.

The induced norm is given by ‖(x, y)‖ = ‖〈x, x〉+ 〈y, y〉‖ 1
2 for all (x, y) ∈ E ⊕F .

Definition 2.2. [13, Chapter 9] Let t : D(t)(⊆ E)→ F be a A-linear map. Then
t is said to be regular if

(1) t is densely defined and closed
(2) t∗ is densely defined
(3) ran(1 + t∗t) is dense in E.

We denote the set of all regular operators between E and F by R(E,F ). In
case E = F , R(E,F ) = R(E). The operator v : E ⊕ F → F ⊕ E given by
v(x, y) = (−y, x) for all x ∈ E, y ∈ F is a unitary operator and if t ∈ R(E,F ),
then E ⊕ F = G(t)⊕ v(G(t∗)) [13, Theorem 9.3].

Proposition 2.3. [21, 13] For t ∈ R(E,F ), let Qt := (1 + t∗t)
−1
2 and Ft := tQt.

Then

(1) Qt ∈ Ba(E), 0 ≤ Qt ≤ 1 and ran(Qt) = D(t)
(2) Ft ∈ Ba(E,F ), F ∗t = Ft∗ and ‖Ft‖ ≤ 1
(3) ‖Ft‖ < 1 if and only if t ∈ Ba(E,F ).

The operator Ft is called the bounded transform or z-transform of t.

3. McIntosh formula

Recall that if M and N are closed subspaces of a Hilbert space H and p, q :
H → H are orthogonal projections with R(p) = M and R(q) = N , then the gap
between M and N is defined to be θ(M,N) = ‖p− q‖. It can be shown that [1,
page 70],

θ(M,N) = max {θ0(M,N), θ0(N,M)},

where θ0(M,N) =

{
sup {d(x,N) : x ∈ SM} if M 6= {0},
0, if M = {0}.

The latter definition is useful to define the gap between two closed subspaces of a
Banach space where as the former one is not as it involves orthogonal projections.
We prove that these two definitions are equivalent in the setting of Hilbert C∗-
modules.

If t ∈ R(E,F ), then G(t) is complemented in E ⊕ F [13, Chapter 9]. Let
s ∈ R(E,F ), p = pG(t) and q = pG(s). Then θ(t, s) := ‖p − q‖ is called the gap
between t and s. The gap between t and 0 is called the gap of t and is denoted
by θ(t). In this section we prove a formula for computing the gap between two
regular operators, which is due to McIntosh in the case of m× n matrices. This
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formula for the case of bounded operators was proved by Nakamoto in [17] and
this is further generalized to the case of unbounded closed operators in Hilbert
spaces by Kulkarni and the author in [11].

Proposition 3.1. Let E be a Hilbert A-module and p1, p2 : E → E be orthogonal
projections. Then

‖p1p2‖ = sup

{
‖〈x, y〉‖
‖x‖ ‖y‖

: 0 6= p1x = x, 0 6= y = p2y

}
.

Proof. First note that if t ∈ Ba(E,F ), then

‖t‖ = sup
{‖〈y, tx〉‖
‖x‖ ‖y‖

: 0 6= x ∈ E, 0 6= y ∈ F
}
.

This result follows from the observation: If x ∈ E, then

‖x‖ = sup {‖〈x, y〉‖ : y ∈ SE}.
By this observation, we have

‖p1p2‖ = sup
{‖〈y, p1p2x〉‖
‖x‖ ‖y‖

: 0 6= x ∈ E, 0 6= y ∈ E
}

= sup
{‖〈p1y, p2x〉‖
‖x‖ ‖y‖

: 0 6= x ∈ E, 0 6= y ∈ E
}

≤ sup
{‖〈p1y, p2x〉‖
‖p2x‖ ‖p1y‖

: 0 6= x ∈ E, 0 6= y ∈ E
}

= sup
{‖〈z, w〉‖
‖z‖ ‖w‖

: 0 6= z = p1z, 0 6= w = p2w
}
.

On other hand,

‖〈p1y, p2x〉‖ = ‖〈p21y, p22x〉‖
= ‖〈p1y, p1p2p2x〉‖
≤ ‖p1p2‖‖p2x‖‖p1y‖.

This shows that sup
{‖〈x, y〉‖
‖x‖ ‖y‖

: 0 6= p1x = x, 0 6= y = p2y
}
≤ ‖p1p2‖. �

Lemma 3.2. [3, lemma 1.1] Let p, p2 ∈ Ba(E) be orthogonal projections. Then

‖p1 − p2‖ = max {‖p1(1− p2)‖, ‖p2(1− p1)‖}.

Theorem 3.3. Let M,N be complemented submodules of E. Then

θ(M,N) = max
{

sup
x∈SM

d(x,N), sup
y∈SN

d(y,M)
}
.

Here we assume that SL = {0} if L = {0}.

Proof. Let p1 = pM , p2 = pN and x ∈M . First we show that

d(x,N) = ‖(1− p2)p1x‖.
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Let y ∈ E. Then we have

〈x− p2y, x− p2y〉 = 〈x− p2x+ p2(x− y), x− p2x+ p2(x− y)〉
= 〈x− p2x, x− p2x〉+ 〈p2(x− y), p2(x− y)

≥ 〈x− p2x, x− p2x〉.

Hence ‖(1−p2)p1x‖ = ‖x−p2x‖ ≤ ‖x−p2y‖ for each y ∈ E. So ‖(1−p2)p1x‖ ≤
d(x,N).

On the other hand, d(x,N) ≤ ‖x − p2x‖ ≤ ‖(1 − p2)p1x‖. Thus d(x,N) =
‖(1− p2)p1x‖.

Now consider

sup
x∈SM

d(x,N) = sup
x∈SM

‖(1− p2)p1x‖ ≤ sup
w∈SE

‖(1− p2)p1w‖

= ‖(1− p2)p1‖
= ‖p1(1− p2)‖.

On the other hand let z ∈ SM . Then z = p1x for some 0 6= x ∈ E. So
d(z,N) = ‖(1− p2)z‖. Thus

sup
z∈SM

d(z,N) = sup
x∈E

‖(1− p2)p1x‖
‖p1x‖

≥ sup
x∈E

‖(1− p2)p1x‖
‖x‖

= ‖(1− p2)p1‖.

Similarly, we can show that sup
y∈SN

d(y,M) = ‖(1− p1)p2‖. �

Theorem 3.4. Let s, t ∈ R(E,F ). Then

θ(s, t) = max
{
θ0(G(t), G(s)), θ0(G(s), G(t))

}
,

where θ0(M,N) =

{
sup {d(x,N) : x ∈ SM} if M 6= {0},
0, if M = {0}.

Proof. We know that G(t) and G(s) are complemented submodules of E ⊕ F .
Now applying Theorem 3.3, we get the conclusion. �

Theorem 3.5 (McIntosh formula). Let s, t ∈ R(E,F ). Then

θ(s, t) = max
{
‖FtQs −Qt∗Fs‖, ‖FsQt −Qs∗Ft‖

}
.

Proof. Let p = pG(t) and q = pG(s). First, we calculate ‖p(1 − q)‖ with the
help of Proposition 3.1. Note that 1 − q is an orthogonal projection onto the
submodule {(−t∗y, y) : y ∈ D(t∗)}. This can be seen from the facts that G(t) is
complemented in E ⊕ F and G(t)⊥ = v(G(t∗)), where v : E ⊕ F → F ⊕ E given
by v(x, y) = (−y, x) for all x ∈ E, y ∈ F is a unitary map. Hence by Proposition
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3.1,

‖p(1− q)‖ = sup

{
‖〈z, w〉‖
‖z‖ ‖w‖

: 0 6= z = pz, 0 6= w = (1− q)w
}

= sup

{
‖〈(x, sx), (−t∗y, y)〉‖
‖(x, sx)‖ ‖(−t∗y, y)‖

: 0 6= x ∈ D(s), 0 6= y ∈ D(t∗)

}
= sup

{
‖〈x,−t∗y〉+ 〈sx, y〉‖
‖(x, sx)‖ ‖(−t∗y, y)‖

: 0 6= x ∈ D(s), 0 6= y ∈ D(t∗)

}
.

The operators Qs : E → D(s) and Qt∗ : F → D(t∗) are bijective. Hence there
exists unique 0 6= u ∈ E and unique 0 6= v ∈ F such that x = Qsu and y = Qt∗v.
It can be verified easily that ‖(x, sx)‖2 = ‖u‖2 and ‖(−t∗y, y)‖2 = ‖v‖2. Hence

‖p(1− q)‖ = sup
0 6=u∈E, 06=v∈F

{
‖〈(Qsu,−t∗Qt∗v)〉+ 〈Fsu,Qt∗v〉‖

‖u‖ ‖v‖

}
= sup

06=u∈E, 0 6=v∈F

{
‖〈(Qsu,−F ∗t v)〉+ 〈Fsu,Qt∗v〉‖

‖u‖ ‖v‖

}
= sup

06=u∈E, 0 6=v∈F

{
‖〈(FtQsu,−v)〉+ 〈Qt∗Fsu, v〉‖

‖u‖ ‖v‖

}
= sup

06=u∈E, 0 6=v∈F

{
‖〈
(
Qt∗Fs − FtQs

)
u, v〉‖

‖u‖ ‖v‖

}
= ‖Qt∗Fs − FtQs‖
= ‖FtQs −Qt∗Fs‖.

With a similar computation, we can conclude that ‖q(1− p)‖ = ‖Qs∗Ft−FsQt‖.
Now the theorem follows from Lemma 3.2. �

Corollary 3.6. Let t ∈ R(E,F ). Then t ∈ Ba(E,F ) if and only if θ(t) < 1.

Proof. By Theorem 3.5, θ(t) = ‖Ft‖. By Proposition 2.3, t ∈ Ba(E,F ) if and
only if ‖Ft‖ < 1. �

Remark 3.7. If s, t ∈ R(E,F ) are such that D(t) = D(s), then

θ(s, t) = max {‖Qs∗(s− t)Qt‖, ‖Qt∗(s− t)Qs‖} ,

which is a formula obtained by Nakamoto in [17] for bounded operators between
Hilbert spaces. Using the result tQt = Qt∗t on D(t) [7, remark 2.2], we have

FtQs −Qt∗Fs = tQtQs −Qt∗sQs

= Qt∗tQs −Qt∗sQs

= Qt∗(t− s)Qs.

A similar argument holds in the case of FsQt −Qs∗Ft.

Remark 3.8. If s, t ∈ R(E,F ) are both self-adjoint, then

θ(s, t) = ‖FtQs −QtFs‖.
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To see this, suppose that s = s∗ and t = t∗. Now by Theorem 3.5, it follows that
θ(s, t) = max {‖FtQs −QtFs‖, ‖FsQt −QsFt‖}. But FsQt − QsFt = −(FtQs −
QtFs)

∗ and hence ‖FtQs −QtFs‖ = ‖FsQt −QsFt‖.

Corollary 3.9. Let s ∈ R(E,F ) and t ∈ Ba(E,F ). Then

θ(s+ t, s) ≤ ‖t‖.

Proof. Follows from Theorem 3.5 and from Nakamoto’s formula since ‖Qx‖ ≤ 1
for any regular operator x. �

Theorem 3.10. Let s, t ∈ Ba(E,F ). Then

θ(s, t) ≤ ‖s− t‖ ≤ (1 + ‖t‖2)
1
2 (1 + ‖s‖2)

1
2 θ(s, t).

Proof. The first inequality follows from the fact that ‖Qr‖ ≤ 1 for any r ∈
Ba(E,F ).

Let p = pG(t) and q = pG(s). Note that

‖s− t‖ =
∥∥∥(1 + ss∗)

1
2Qs∗(s− t)Qt(1 + t∗t)

1
2

∥∥∥
≤ (1 + ‖t‖2)

1
2 (1 + ‖s‖2)

1
2 ‖Qs∗(s− t)Qt‖.

Similarly, we can show that ‖s − t‖ ≤ (1 + ‖t‖2) 1
2 (1 + ‖s‖2) 1

2 ‖Qt∗(s − t)Qs‖.
Now the result follows from Remark 3.7. �

We give an alternative proof of Theorem 3.4 using the McIntosh formula. We
need the following lemma in our proof.

Proposition 3.11. Let s, t ∈ R(E,F ). Let x ∈ D(t) and w = (x, tx). Then we
have d(w,G(s)) = ‖Qs∗tx− Fsx‖.

Proof. By definition,

d(w,G(s))2

= inf
y∈D(s)

{
‖〈x− y, x− y〉+ 〈tx− sy, tx− sy〉‖

}
= inf

y∈D(s)

{
‖〈x, x〉+ 〈tx, tx〉+ 〈y, y〉+ 〈sy, sy〉 − 2Re

(
〈x, y〉+ 〈tx, sy〉

)
‖
}

= inf
y∈D(s)

{
‖〈x, x〉+ 〈tx, tx〉+ 〈(1 + s∗s)

1
2y, (1 + s∗s)

1
2y〉 − 2Re

(
〈x, y〉+ 〈tx, sy〉

)
‖
}
.

Let y = Qsz. Then

d(w,G(s))2 = inf
z∈E

{
‖〈x, x〉+ 〈tx, tx〉+ 〈z, z〉 − 2Re

(
〈x,Qsz〉+ 〈tx, Fsz〉

)
‖
}

= inf
z∈E

{
‖〈x, x〉+ 〈tx, tx〉+ 〈z, z〉 − 2Re

(
〈x,Qsz〉+ 〈F ∗s tx, z〉

)
‖
}

= inf
z∈E

{
‖〈x, x〉+ 〈tx, tx〉+ 〈z, z〉 − 2Re

(
〈(Qs + Fs∗t)x, z〉

)
‖
}
.
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Let A = Qs + Fs∗t, a = 〈x, x〉 + 〈tx, tx〉 − 〈Ax,Ax〉 and b = 〈z − Ax, z − Ax〉.
Then

d(w,G(s))2 = inf
b∈A
{‖a+ b‖}.

Since b ≥ 0, it follows that d(w,G(s))2 ≤ ‖a‖. Next we show that a ≥ 0. To do
this consider

a = 〈x, x〉+ 〈tx, tx〉 − 〈(Qs + Fs∗t)x, (Qs + Fs∗t)x〉
)

= 〈x, x〉+ 〈tx, tx〉 − 〈Qsx,Qsx〉 − 〈Qsx, Fs∗tx〉 − 〈Fs∗tx,Qsx〉 − 〈Fs∗tx, Fs∗tx〉
= 〈x, x〉+ 〈tx, tx〉 − 〈Q2

sx, x〉 − 〈FsQsx, tx〉 − 〈tx, FsQsx〉 − 〈Fs∗tx, Fs∗tx〉
= 〈Fsx, Fsx〉+ 〈Qs∗tx,Qs∗tx〉 − 2Re

(
〈Fsx,Qs∗tx〉

)
= 〈Fsx, Fsx〉+ 〈Qs∗tx,Qs∗tx〉 − 2Re

(
〈Qs∗tx, Fsx〉

)
= 〈Qs∗tx− Fsx,Qs∗tx− Fsx〉 ≥ 0.

Since 0 ≤ a ≤ a + b, we have ‖a‖ ≤ ‖a + b‖ and hence ‖a‖ ≤ d(w,G(s))2, con-

cluding d(w,G(s))2 = ‖a‖. Hence d(w,G(s)) = ‖〈Qs∗tx−Fsx,Qs∗tx−Fsx〉‖
1
2 =

‖Qs∗tx− Fsx‖.
�

Remark 3.12. Using Theorem 3.3 and Proposition 3.11 we can get an alternative
proof of Theorem 3.5.
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