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COMPLETE MONOTONICITY OF A FUNCTION INVOLVING
THE RATIO OF GAMMA FUNCTIONS AND APPLICATIONS
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Abstract. In the paper, necessary and sufficient conditions are presented for
a function involving a ratio of gamma functions to be logarithmically com-
pletely monotonic. This extends and generalizes the main result of Guo and
Qi [Taiwanese J. Math. 7 (2003), no. 2, 239–247] and others. As applications,
several inequalities involving the volume of the unit ball in Rn are derived,
which refine, generalize and extend some known inequalities.

1. Introduction

Recall from [4, 25] that a positive real-valued function f(x) is said to be loga-
rithmically completely monotonic on an interval I ⊆ R if it has derivatives of all
orders on I and its logarithm ln f satisfies

0 ≤ (−1)k[ln f(x)](k) <∞

for k ∈ N = {1, 2, . . . } on I. For more properties of this class of functions, please
refer to [6].

It is general knowledge that the classical Euler gamma function Γ(x) may be
defined for x > 0 by

Γ(x) =

∫ ∞

0

tx−1e−t d t.
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The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)
Γ(x)

, is called the psi or

digamma function and the ψ(k)(x) for k ∈ N are called the polygamma functions.
It is well known that these functions are fundamental and that they have much
extensive applications in mathematical sciences.

In [15, Theorem 2], the following monotonicity was established: The function

[Γ(x+ y + 1)/Γ(y + 1)]1/x

x+ y + 1
(1.1)

is decreasing with respect to x ≥ 1 for fixed y ≥ 0. Consequently, for positive
real numbers x ≥ 1 and y ≥ 0, we have

x+ y + 1

x+ y + 2
≤ [Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
. (1.2)

In [26], the function (1.1) was proved to be logarithmically completely mono-
tonic with respect to x ∈ (0,∞) for y ≥ 0 and so is its reciprocal for−1 < y ≤ −1

2
.

Consequently, the inequality (1.2) is valid for (x, y) ∈ (0,∞)×[0,∞) and reversed
for (x, y) ∈ (0,∞)×

(
−1,−1

2

]
.

For (x, y) ∈ (0,∞)× [0,∞) and α ∈ [0,∞), the function

[Γ(x+ y + 1)/Γ(y + 1)]1/x

(x+ y + 1)α
(1.3)

was proved in [44] to be strictly increasing (or decreasing, respectively) with
respect to the single variable x ∈ (0,∞) if and only if 0 ≤ α ≤ 1

2
(or α ≥ 1,

respectively), to be strictly increasing with respect to y on [0,∞) if and only
if 0 ≤ α ≤ 1 and to be logarithmically concave with respect to the 2-variable
(x, y) ∈ (0,∞)× (0,∞) if 0 ≤ α ≤ 1

4
.

For given y ∈ (−1,∞) and α ∈ (−∞,∞), let

hα,y(x) =


1

(x+ y + 1)α

[
Γ(x+ y + 1)

Γ(y + 1)

]1/x

, x ∈ (−y − 1,∞) \ {0};

1

(y + 1)α
exp[ψ(y + 1)], x = 0.

(1.4)

It is clear that the ranges of x, y and α in the function hα,y(x) extend the
corresponding ones in the functions (1.1) and (1.3) which were ever discussed
in [15, 26, 44].

The aim of this paper is to present necessary and sufficient conditions such that
the function (1.4) or its reciprocal are logarithmically completely monotonic.

Our main results may be stated as follows.

Theorem 1.1. For y > −1, we have the following statements:

(1) the function (1.4) is logarithmically completely monotonic with respect to
x ∈ (−y − 1,∞) if and only if α ≥ max

{
1, 1

y+1

}
;

(2) if α ≤ min
{
1, 1

2(y+1)

}
, the reciprocal of the function (1.4) is logarithmically

completely monotonic with respect to x ∈ (−y − 1,∞);
(3) a necessary condition for the reciprocal of the function (1.4) to be logarith-

mically completely monotonic with respect to x ∈ (−y − 1,∞) is α ≤ 1.
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As a ready consequence of monotonic results in Theorem 1.1, the following
double inequality may be derived.

Theorem 1.2. For t > 0, y + 1 > 0 and x+ y + 1 > 0, the double inequality(
x+ y + 1

x+ y + t+ 1

)a

<
[Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + t+ 1)/Γ(y + 1)]1/(x+t)

<

(
x+ y + 1

x+ y + t+ 1

)b

(1.5)

holds if a ≥ max
{
1, 1

y+1

}
and b ≤ min

{
1, 1

2(y+1)

}
.

In order to show the applicability of Theorem 1.2, we derive the following
double inequalities involving the n-dimensional volume

Ωn =
πn/2

Γ(1 + n/2)

of the unit ball Bn in Rn.

Theorem 1.3. For n ∈ N, we have√
n+ 2

n+ 4
<

Ω
1/(n+2)
n+2

Ω
1/n
n

< 4

√
n+ 2

n+ 4
, (1.6)

1

π2/(n−2)n

√
n+ 2

n+ 4
<

Ω
1/n
n+2

Ω
1/(n−2)
n

<
1

π2/(n−2)n

8

√
n+ 2

n+ 4
, (1.7)√

n+ 2

n+ 3
<

Ω
1/(n+1)
n+1

Ω
1/n
n

< 4

√
n+ 2

n+ 3
. (1.8)

In the final section, we will give several remarks about these three theorems.

2. A Lemma

In order to prove our main results, the following lemma is needed.

Lemma 2.1 ([19, p. 107, Lemma 3]). For x ∈ (0,∞) and k ∈ N, we have

lnx− 1

x
< ψ(x) < lnx− 1

2x
(2.1)

and
(k − 1)!

xk
+

k!

2xk+1
< (−1)k+1ψ(k)(x) <

(k − 1)!

xk
+

k!

xk+1
. (2.2)

Remark 2.2. We remark that some minor errors in the proof of Lemma 2.1 were
corrected in [14, p. 1212, Lemma 2.2]. The inequalities in Lemma 2.1 have been
proved, derived, used and applied in several papers such as [11, p. 131], [17,
Lemma 1], [18, p. 223, Lemma 2.3], [20, p. 853], [23, p. 55, Theorem 5.11], [26,
p. 1625], [31, p. 79], and [37, p. 2155, Lemma 3].
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3. Proofs of theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1.1. For x 6= 0, taking the logarithm of hα,y(x) gives

lnhα,y(x) =
ln Γ(x+ y + 1)− ln Γ(y + 1)

x
− α ln(x+ y + 1).

A direct differentiation yields

[lnhα,y(x)]
(k) =

k!

xk+1

k∑
i=0

(−1)k−ixiψ(i−1)(x+ y + 1)

i!

− (−1)kk! ln Γ(y + 1)

xk+1
− (−1)k−1(k − 1)!α

(x+ y + 1)k
(3.1)

for k ∈ N, where ψ(−1)(x + y + 1) and ψ(0)(x + y + 1) stand for ln Γ(x + y + 1)
and ψ(x+ y + 1) respectively. Furthermore, a simple calculation gives{

xk+1[lnhα,y(x)]
(k)

}′
= (−1)k−1xk

[
(−1)k−1ψ(k)(x+ y + 1)

− (k − 1)!α

(x+ y + 1)k
− k!(y + 1)α

(x+ y + 1)k+1

]
.

Utilizing (2.2) in the above equation leads to

(k − 1)!(1− α)

(x+ y + 1)k
+
k![1/2− (y + 1)α]

(x+ y + 1)k+1
≤ (−1)k−1

xk
{
xk+1[lnhα,y(x)]

(k)
}′

≤ (k − 1)!(1− α)

(x+ y + 1)k
+
k![1− (y + 1)α]

(x+ y + 1)k+1

for k ∈ N, x 6= 0, y ∈ (−1,∞) and α ∈ (−∞,∞). Therefore,

(−1)k−1

xk
{
xk+1[lnhα,y(x)]

(k)
}′{≤ 0, if α ≥ 1 and α ≥ 1

y+1

≥ 0, if α ≤ 1 and α ≤ 1
2(y+1)

(3.2)

for k ∈ N, y > −1 and x 6= 0. For x > 0, the equation (3.2) means{
x2k[lnhα,y(x)]

(2k−1)
}′{≤ 0, if α ≥ 1 and α ≥ 1

y+1

≥ 0, if α ≤ 1 and α ≤ 1
2(y+1)

and {
x2k+1[lnhα,y(x)]

(2k)
}′{≥ 0, if α ≥ 1 and α ≥ 1

y+1

≤ 0, if α ≤ 1 and α ≤ 1
2(y+1)

for k ∈ N. From (3.1), it is easy to see that

lim
x→0

{
xk+1[lnhα,y(x)]

(k)
}

= 0 (3.3)

for k ∈ N and any given y > −1. As a result,

[lnhα,y(x)]
(2k−1)

{
< 0, if α ≥ 1 and α ≥ 1

y+1

> 0, if α ≤ 1 and α ≤ 1
2(y+1)

(3.4)
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and

[lnhα,y(x)]
(2k)

{
> 0, if α ≥ 1 and α ≥ 1

y+1

< 0, if α ≤ 1 and α ≤ 1
2(y+1)

(3.5)

for k ∈ N and x ∈ (0,∞), that is,

(−1)k[lnhα,y(x)]
(k)

{
> 0, if α ≥ 1 and α ≥ 1

y+1

< 0, if α ≤ 1 and α ≤ 1
2(y+1)

(3.6)

for k ∈ N and x ∈ (0,∞). Hence, the function (1.4) is logarithmically completely
monotonic with respect to x on (0,∞) if α ≥ 1 and α ≥ 1

y+1
and so is the

reciprocal of the function (1.4) if either 0 < α ≤ 1 and α ≤ 1
2(y+1)

or α ≤ 0 and
y > −1.

If x ∈ (−y − 1, 0), the equation (3.2) means{
xk+1[lnhα,y(x)]

(k)
}′{≥ 0, if α ≥ 1 and α ≥ 1

y+1

≤ 0, if α ≤ 1 and α ≤ 1
2(y+1)

for k ∈ N. By virtue of (3.3), it follows that

xk+1[lnhα,y(x)]
(k)

{
≤ 0, if α ≥ 1 and α ≥ 1

y+1

≥ 0, if α ≤ 1 and α ≤ 1
2(y+1)

for k ∈ N, which is equivalent to the fact that the equations (3.4) and (3.5)
hold for x ∈ (−y − 1, 0). As a result, the equation (3.6) is valid for k ∈ N and
x ∈ (−y − 1, 0). Therefore, the function hα,y(x) has the same logarithmically
complete monotonicity properties on (−y − 1, 0) as on (0,∞).

Conversely, if hα,y(x) is logarithmically completely monotonic on (−y− 1,∞),
then [lnhα,y(x)]

′ < 0 on (−y − 1,∞), which can be simplified as

α ≥ (x+ y + 1)

[
1

x2

1∑
i=0

(−1)1−ixiψ(i−1)(x+ y + 1)

i!
+

ln Γ(y + 1)

x2

]
(3.7)

=
1

x2
[(x+ y + 1) ln Γ(y + 1)− (y + 1)(x+ y + 1)ψ(x+ y + 1)

+ (x+ y + 1)2ψ(x+ y + 1)− (x+ y + 1) ln Γ(x+ y + 1)]
(3.8)

=
x+ y + 1

x

[
xψ(x+ y + 1)− ln Γ(x+ y + 1)

x
+

ln Γ(y + 1)

x

]
. (3.9)

From (2.1), it is easy to see that

lim
x→0+

[
x2ψ(x)

]
= 0. (3.10)

It is common knowledge that

Γ(x+ 1) = xΓ(x) (3.11)

for x > 0. Taking the logarithm on both sides of (3.11), rearranging and taking
limit lead to

lim
x→0+

[x ln Γ(x)] = lim
x→0+

[x ln Γ(x+ 1)]− lim
x→0+

(x lnx) = 0. (3.12)
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Taking logarithmic derivatives on both sides of (3.11) yields

ψ(x+ 1) =
1

x
+ ψ(x)

for x > 0 and so

lim
x→0+

[xψ(x)] = −1 + lim
x→0+

[xψ(x+ 1)] = −1. (3.13)

Thus, by utilizing (3.10), (3.12) and (3.13), it is revealed that the limit of the
function (3.8) as x → (−y − 1)+, that is, as x + y + 1 → 0+, equals 1

y+1
. By

L’Hôspital’s rule and the double inequality (2.2) for k = 1, we have

lim
x→∞

xψ(x+ y + 1)− ln Γ(x+ y + 1)

x
= lim

x→∞
[xψ′(x+ y + 1)] = 1.

Hence, the limit of the function (3.9) as x→∞ equals 1. In a word, a necessary
condition for hα,y(x) to be logarithmically completely monotonic is α ≥ 1 and
α ≥ 1

y+1
.

If the reciprocal of hα,y(x) is logarithmically completely monotonic, then the
inequality (3.7) is reversed. Since the limit of the function (3.9) equals 1 as
x → ∞, as showed above, then the necessary condition α ≤ 1 is obtained. The
proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. This follows from the monotonicity properties established
in Theorem 1.1. �

Proof of Theorem 1.3. Letting t = 1, y = 0 and x = n
2

for n ∈ N in (1.5) reveals
that

n+ 2

n+ 4
<

[Γ(n/2 + 1)]2/n

[Γ((n+ 2)/2 + 1)]2/(n+2)
<

√
n+ 2

n+ 4

which is equivalent to the inequality (1.6).
If taking y = 1, t = 1 and x = n

2
−1 for n ∈ N in (1.5), then the inequality (1.7)

follows.
Replacing t by 1

2
, y by 0 and x by n

2
in (1.5) and simplifying result in (1.8). �

4. Remarks

After proving our theorems, we give several remarks about them.

Remark 4.1. Theorem 1.1 extends and generalizes the logarithmically complete
monotonicity of the function (1.1) established in [26] and a part of the results
in [44].

Remark 4.2. The inequality (1.5) generalizes and extends the inequality (1.2) and
the main results in [14, 43]: For x+ y > 0 and y + 1 > 0 the inequality

[Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
<

(
x+ y

x+ y + 1

)1/2

is valid if x > 1 and reversed if x < 1 and that the power 1
2

is the best possible.
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Remark 4.3. When n > 2, the inequality (1.8) refines the following double in-
equality in [2, Theorem 1]:

2√
π

Ω
n/(n+1)
n+1 ≤ Ωn <

√
eΩ

n/(n+1)
n+1 , n ∈ N.

For more information on inequalities for the volume of the unit ball Bn in Rn,
please refer to [3, 7, 8, 12, 33], Section 7.5 in [23, pp. 72–73] and related references
therein.

Remark 4.4. Theorem 1.1 may be restated as follows: For y ∈ (0,∞) and α ∈
(−∞,∞), the function

Hy(x) =


[Γ(x+ y)/Γ(y)]1/x

(x+ y)α
, x ∈ (−y,∞) \ {0}

eψ(y)

yα
, x = 0

is logarithmically completely monotonic with respect to x ∈ (−y,∞) if and only
if α ≥ max

{
1, 1

y

}
and so is its reciprocal if α ≤ min

{
1, 1

2y

}
and only if α ≤ 1.

Remark 4.5. We conjecture that when y > −1
2

the condition α ≤ 1
2(y+1)

is also

necessary for the reciprocal of the function (1.4) to be logarithmically completely
monotonic with respect to x ∈ (−y − 1,∞). In other words, the necessary and
sufficient condition for the reciprocal of the function (1.4) to be logarithmically
completely monotonic with respect to x ∈ (−y − 1,∞) is α ≤ min

{
1, 1

2(y+1)

}
.

Remark 4.6. For more information on the history, background, motivations and
recent developments of the topic in this paper, please refer to [1, 5, 9, 15, 16, 24,
26, 29, 36, 39, 40] and related references therein.

Remark 4.7. In passing, we survey the history of the notion “logarithmically com-
pletely monotonic function”. By searching for the term “logarithmically com-
pletely monotonic function” in the database MathSciNet, it is found that this
phrase was probably first used in [4], but without an explicit definition. There-
after, it seems to have not been used by the mathematical community. In early
2004, this terminology was again used in [28] (the preprint of [25, 32]) and it was
immediately referenced in [10] and [35] (the preprint of [34]). In [28, Theorem 4],
it was proved that a logarithmically completely monotonic function f(x) on I
must be completely monotonic (i.e., the inequality

0 ≤ (−1)kf (k)(x) <∞

holds for all k ≥ 0 on I), but not conversely. This result was announced while
revising [25]. This conclusion and its proofs were presented once and again
in [6] and [38] (the preprint of [13]). More importantly, in the paper [6], the
logarithmically completely monotonic functions on (0,∞) were characterized as
the infinitely divisible completely monotonic functions studied in [21] and all
Stieltjes transforms were proved to be logarithmically completely monotonic on
(0,∞). For information on the completely monotonic functions, please refer
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to [22, Chapter XIII] and [42, Chapter IV], especially to the recently published
monograph [41].

Remark 4.8. This paper is a main part and a slightly modified version of the
preprint [30]. Another part was rearranged as [27].

Acknowledgements. The authors appreciate anonymous referees for their
helpful and valuable comments on this paper. The first author was partially sup-
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