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ABSTRACT. The well-known Mathieu series

Su) =Y e (0> 0)

can be transformed into the form

1 & - 1 < G%(n,r
L O
n=1

(F) 2 24 QW(n,r)

where G(n,r) and Q(n,r) denote the Geometric and Quadratic mean of n € N
and r > 0. This connection leads us to the idea to introduce and research
the so—called Quotient mean series as a be a generalizations of Mathieu’s and
Mathieu—type series. We give an integral representation of such series and their
alternating variant, together with associated inequalities. Also, special cases
of quotient mean series, involving Bessel function of the first kind, have been
studied in detail.

1. INTRODUCTION AND PREPARATION

In his work on the solid state physics Traite de Physique Mathématique, VI-
VII: Théory de Elasticité des Corps Solides (Part 2) in 1890. Emile Leonard
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88 B. DRASCIC BAN

Mathieu (1835.-1890.) defined the following series

Su) =Y pras (7> 0)

n=1

which we call the Mathieu series. This kind of series have their application in
solid state physics, in mathematical models that describe the vibrations of planar
figures, in boundary problems of biharmonic equations on rectangular domain
[10, page. 258] and on two dimensional elastostatic problems [2].

The alternating variant of Mathieu series

Sul) = S s (> 0)

is considered in connection with a ODJ whose solution is the Butzer—Flocke-
Hauss Q—function, see [1, &].

Recently, the series Sy(r) and its various generalizations became the topic
of interest of numerous mathematicians such as Acu, Alzer, Cerone, Dicu, Ele-
zovi¢, Lampret, Lenard, Gavrea, Guo, Hoorfar, Pogany, Qi, Srivastava, Tomovski,
Trencevski, following the pioneering work of Berg, Diananda, Emersleben and
Makai among others. By investigating Mathieu series we mean deriving integral
representations and sharp bilateral bounds, together with their application in nu-
merical analysis, mathematical physics, number theory, special functions and so
on.

It is straightforward to see that Sy, (r) can be rewritten into

Y

1 & nr 1 <= G%(n,r
Su(r) = o Z —\/_ = (n.7)
n=1

2 1 2
Gln.r) =vir,  Qnr) =y

are the well known Geometric and Quadratic mean of n € N and r > 0, respec-
tively. This transformation leads as to study a series such that consists from
quotients of power means so, that in deriving its closed integral representations
we take the same mathematical tools as for Mathieu series in earlier papers, e.g.
the Laplace-integral form of the Dirichlet series [1]

) 00 At (@)
Di(z) = Zane*’\”‘” = 91:/ ezt< Z an> dt, (1.1)
n=1 0

n=1

where

mentioning that throughout the article [A] stands for the integer part of A; the
Gamma-—function formula

a"°T(s) = /000 e s ldy (R{s} > 0)
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and the Euler—-Maclaurin summation formula written in the form [9]

l

I
Z an:/k(a(x)+{x}a'(x))dxz/ 0, a(z)dz. (1.2)

n=k+1 k

The alternating variant of (1.2) reads as follows

m

Z (—1) " a; = / ola(r)dr — 2/ 0120 (x)d.
! 2

j=1+1 !

Here
i =1 {ql’} qc {‘1 1}
v 83:’ 2’ .

Let us recall that for a positive vector a = (a1,...,a,) € R}, r € R\{0}, the
equal weights mean of order r one defines as [(]

1
M a) = (—**) |
n
We will need in the sequel its well-known properties

lim M"(a) = /a1 - an, = Glay, ..., ay), MP(a) = Q(n,a).

r—0+

Now we define the series

. oo (M[s}(n, 1))t - (n® + rs)t/s
Sy(ri,re) = Z —?q] = gp/a—t/s Z e y 7
(My"(n,1r2))P n=1 (n +13)

(T17T27p7QJt7S > O) :

5532(7“1,7“2) = Z(—l)”_l—( ;;

Here, and in what follows, S, 4, gp,q we call quotient mean series and alternating
quotient mean series, respectively.

Remark 1.1. The series S5 (r1,73) converges for p —t > 1, namely

»q
Spa(ri,m2) ~ C(p— 1),

Similarly, S5 (r1,72) converges for p > ¢ since

~ o0 (_1)n—1
7t JR—
Sya(ri,ra) ~n(p —t) = Z ot
n=1
The main topic of our interest is to derive an integral representation of such
series and to give related bounding inequalities, making use of the derived integral

expressions.
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2. INTEGRAL REPRESENTATIONS FOR S;;é AND S;;fl
First, we give an integral representation for S;:g.

Theorem 2.1. Let ry,79,p,q,t,5s >0, p—t > 1. Then the quotient mean series
possesses the closed integral expression

[ul/q w +r t/s
SSt(Tl,Tz _ op/a— t/sP // D )dwdu.

(u+ rg)p/att

Proof. We start by transforming S5 with the help of the Gamma function for-
mula obtaining

op/a—t/s X2

Ty 20+ [ et
n=1

0

op/q—t/s /00 . > .
- pPlap—rae (n 4 )t/s —n%e | Q.
I'(p/q) Jo 2 !

n=1

SSt(T17T2)

All considered sums are convergent by assumption, so the exchange of summation
and integration order is legitimate. The inner sum is now a Dirichlet series

[e.9]

’an(;p) = Z(ns + T’f)t/se_”m.

n=1
By Laplace—integral formula, we get

[u/1)

Dya(x) = x/ooo e Z (n® +75)* | du. (2.1)

n=1

Applying the Euler—-Maclaurin summation formula to the inner sum we get

/9]

t/ ] s\t/s
A, = Z (n® +1r])"° = /o 0y (w4 r$)"®) dw (2.2)

n=1

Putting back (2.2) into (2.1), we have

0o [ul/4]
Dya(r) = SE/ e " (/ 0 ((w* 4 75)"7*) dw) du
0 0

o plul/q]
= SE/ / e~ vy, ((w' +75)"*) dwdu.
0 Jo

Consequently
[ul/9]

op/q—t/s
SSt(’T’l,TQ / / / xp/qe u+r2)x0 ((ws‘i‘rf)t/S) dwdudz

T(p/q)

Qp/q t/s [ul/9] .
/ / / </ xp/qe(””?)xdx) 0w ((w* +79)"*) dwdu.
p q
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The inner integral is equal to I'(p/q + 1) (u + rq)_l_p/q therefore

op/a— t/SF p/q+ [ul/q] D w +rs)t/s
Sga(r.a) = / / =)
I'(p/q) (u+173)

’LLI/ S
— 9p/a- t/sP / /[ Yo, w i )t/ ) dwdu.

(u+ ri)p/att

O

For the alternating variant of quotient mean series the proving procedure is
the copy of the proof used in the previous theorem. The only exception is the
alternating Dirichlet series such that appears in the integrand. Since [u'/9] = 0 for
0 < wu < 1, the integration domain of all first integrals in integral representation
becomes [1,00).

Theorem 2.2. Let ry,79,p,q,t,s > 0, p > t. The alternating quotient mean
series possesses the integral representation

2p/q t/s [ul/4) al U) 4o t/s
SSt(rl,rg) </ / ") dwdu
7”2

+ u)p/at1

2[5 [ul/9]] 01/2 w4 rs)/s
— 2/ / ( 1) ) dwdu | .
(r3 + w)p/att

3. BOUNDING INEQUALITIES

3.1. Bilateral inequality for Sz:;. From the definition of the operator 0, it is
obvious that

a(z) +d (z) < va(z) = a(z) + {z}d'(z) < a(z) + d (z),

where f- =min{f,0}; f, =max{f,0}. Then we have
a(r) < 0za(x) < a(z) + d'(z) a monotone increasing, (3.1)
a(z) + d'(z) < vza(z) < a(z) a monotone decreasing,.

Since in our case a(z) increases, we use (3.1) to derive inequalities for S37.

Theorem 3.1. Let K € Ny ={2,3,...}, t = ks > 0 and

> a{—i— 1 KS}
maxs«q s _—
9 1 k-1

Then we have
E;i](rh T2) < S (Tl,TQ) < R (Tl, TQ)

where
1/s,—t/s _
1 ) SsT,,1 s
Est( ) 2p/q—t/sp /oo [U /q]ri 2F1< 1+ 1/8 - [u /q] > 1
1,72 q ) (u + rs)t/s t,

2p/q—t/sp 00 ([ul/q]s+rs)t/s rt
R”r,r —/ 1du+£‘”r,r
M) =T T e el
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with ¢~ '+t~ < s71
Proof. By (3.1) we have
(w* + 1) <0y ((w +79)7°) < (w* + )" + (W +1])7)

i.e.

/]

Lo < / 0y ((w + 7)) dw < Z, + (M9 +75)"° — 1t
0
where
/]
e / (w* +79)"*dw.
0

Now, we have

/el
T,=ri" / (1+ 2*)*dz
0

[ul/9)/r t
— r’i“/ Z ( /8) 2*"dx
0 n=0 n
g (1) (Lt
—=\n sn—+1

> t/s(t/s—1)---(t/s —n ul/a] fr)sn
eSS/ =D s =) ()

sn—+1 n!

n=0

Since

t/s(t/s—=1)---(t/s—n+1)=(=1)"(=t/s)(=t/s+1)---(—t/s+n—1)
= (=Dn(=t/8)n

and
1 1Ys(ls+1)---(I/s+n—1) _ (1/s),

sn+1 (1/s+1)(1/s+2)--(L/s+n)  (1/s+1),

where (a), stands for the Pochhammer symbol or shifted factorial, we obtain

1/a) = (—t/8)n(1/8)n w9 [r)*)"
T, =[u /le 1//(9“L (=( n!]/ )

n=

_ 1/q1,.t 1/57 —t/S ‘ _ .—s[,,1/q s>
= [u ]T12F1( 14 1/s r w9,
where 5 F7 denotes the familiar Gauflian hypergeometric function.

One of the upper parameters in the hypergeometric function in Z is negative,
t/s = k € N, say. This means that (— /-i)n = 0 for all addends with indices n > k.
So

1/s, — ot 1/ 51 1/q1s
Fi( V5 | =) = P (= )
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where P,._1(-) is a polynomial of degree deg(P) = x — 1. Now we conclude:

[ul/9]
[ut/9)rt P — rfs[ul/q]s) < / 0, ((w° + 'rf)t/s) dw
0
< ([ul/q] +r )t/s rt+ [ul/q]rf 735_1( — rfs[ul/q]s).

It remains to test the convergence of the integrals in R3! (r1,73) and L3 (11, 72).
But, it is easy to see that R}% (r1,72) converges for

1 1\ 1
—<(1-2)=.
q K/ §

0o ul/q P,i, _ 7,—5 ul/q s
L5 (11, 7)< const. / [P (= 17 °[ut/)%) |
Pyq . (u n r;)n

where the behaviour of J(u) is critical for u large. Since

J(u) ~ ul/q (us/q)nflun _ u(l—i—(/@—l)s)/q—/i (U N OO),

For L3 (r1,72) we have

du = const./ J(u)du,
1

for the convergence of the integral L3 (r1,72) we need to have
14+ (k—1)s
q

such that, in conjunction with (??) gives the condition:

—Kk< -1,

k—1 k—1 }
ks (k—1)s+1
This finishes the proof. 0

1
0<—<min{
q

3.2. Bilateral inequality for g;:é.
Theorem 3.2. For p/q > t/s we have
,CSt(’f’l,’l“g) < S (7”1,7“2) < R (7'1,’/“2)

where

Qp/q t/s p [w!/4] t/s
ESt(rl,rg) <// (w? +17) — = _dwdu

o[ [ul/]] 7“2 + u)p/qﬂ

B / (2L + )\ 2t
o (rgtu)plett rg+1

Qp/q t/s [ut/4] (w® + 754/
R ——~ —dwd
pq(T1,7‘2) </ /[ Liy1/4)] (rd + w)p/at1 !

1/q]s t/s op/a—t/syt
[,
0

(rd + w)p/att Ty + 1
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Proof. Let us denote
[u /9] 2(3u/]
L = / oL (w + r)t*)dw, Iy = 2/ OL2((w? + 7)) dw.
0 0
By the definition of 9, and 0./% we have

[t/ ful/]
[ erde <noc [T e edu (e o
0 0

[5[w!/9]] (5 [u!/9]]
/ (w® 4 r$)*dw< I )s </ (w® + ) *dw
0 0

@Gl )

Since these bounds are positive, we can integrate them on R™ with respect to the
measure (r§ 4+ u)7?/97 du, that is

[ul/q +r )t/s 00 T
1 1
//‘ %+uMHW“§[ 07 et

[ul/9] t/s 1/q s\t/s oo t
< (w® + i)™ + (u ] i) dwdu — #du
(rd + w)p/atl L (rd + u)p/att
)"+ (
(rd +u

u/ S S S S
//[ ’ UJ +T1 o/ [ul ] +T1)t/ dwdu — Tiq

)
ry + uplatt p(ry +1)’
2[ [“l/q” )t/s ) Il
__ vz
/ / r2+u>m+1d oo | G e

2[ [ul/4]] U) +r )t/s (28[ [ l/q]]s _i_,’ﬁf)t/s dwd 3] r:i du
(7'2 + u)P/qul wduw — 1 (rg + u)P/Q+1
A 1/q]] w + 7"1)t/5 + (23[§[u1/q“ +r )t/s Ti q
(r§ +u)rlatt p(ri+1)
Combining these two bounds we obtain the desired result, remarking that the
integrals involved in Es * and Rs ! converge when t/s —p/q—1 < —1,1ie. p/q>
t/s. O

4. QUOTIENT MEAN SERIES SUCH THAT CONTAIN BESSEL FUNCTION OF THE
FIRST KIND

In the well known formula collection by Gradshteyn and Ryzhik we can find
the following formula [3, eq. 6.623-1]:

e , (28)"T(v +3) B 2'T(v + 3)
/0 e J,(Br)r"dr = ﬁ(a2+52)uil/2 - (az_,_ﬁz)wrl/z' JT <.

Putting
= (1 - N)n?, % = An? 4 rd,
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for some A € (0, 1), we get
i O e X+ L)

(a2 +52)u+1/2 - <(1 B )\)nq 1 g —l—'r’g)”q/Q - (nq +rg)u+1/2

)\y/2[(nq + 1TQ)1/q]uq/2 B )\y/2 (M[q}(n’)\fl/%b))l/qm
[(ng + rd)Vaja+3) 255 (Mflad(, 1)) 10D

Now
)\1//21"(V+ %) (M[q}(n’ A_l/qrg))yq/Q

/ VI (A ¥ ) de = 2]
0

2%”\/} (M[q} (n,Tg))q(VJrl/z)

)

l.e.
(M[Q](n )\—1/«1702))1111/2 21—%\/7_1_ -
7 = —v/(1=A)ndz q v
(M1 (n, r5)) "1 _WHH%)/O ’ A

Summing up these terms over n € N we conclude

Theorem 4.1. Let q,r,v >0, ¢(1 —%) > 1,0 < X < 1. Then we have

1—v

ge7 ATV ) = 22— (Z —v(A=Nnte g (\/)\nq+rq:p)) x’dx(4.1)

a,q(v+3) AT (v —|—

Now we will derive upper bounds for the quotient mean series (4.1). Obviously

1-v )
S0t O] < e [ (Ze—wl—»m
0 n=1

0,q9(v+3) M2 (v + %)
L(VAng +rix) D x’da;

So, to obtain an upper bound it remains to estimate J,(-). Consider two Landau’s

bounds [5]:

X

|, (z)| < By~ /3, By, := V2 sup (Ai(z)) (4.2)
reRT
and
| T ()] < Cpla|~?, Cp = sup z'/*(Jo(x)),
zeRT

where Ai(x) is the Airy function

Ai(z) = g\/g (J_(I/g) <2 (%)3/2) + s ( (3)3/2>) ,

and take the different kind of bound by Olenko [7, Theorem 1]

3 2
sup V|, (z)| < BL\/VI/B + V‘f}?, + i; —dy  (v>0). (4.3)

x>0
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Here «; is the smallest pozitive zero of the Airy function Ai(z) and By, is the first
Landau constant.
Using the first Landau’s bound, we get:

Theorem 4.2. It holds holds true

ve 22" \/TBLT(v +2)
Stz (\TVe < 4.4
q’q(V+%)( )| < N2(v—2/q+1)(1 = XN)FD2T (v + 1/2)p1/3] (44)
forall0 < X < 1, q>3+ , v > —1.

Proof. With the help of (4.2) we get

q’% —1/(1 2 \/_BL ﬁnq/ T v
S%Q(V'i‘%)()\ T, 7“)‘ < )\V/QF(U+ 1/2 1/1/3/ (Z ) x¥dx. (45)

The sum in the integral is a Dirichlet series which, via Laplace integral formula,
becomes

iemnw% _ x/oo ot Z 1| ar
n=1 0

n: (1-M\)1/2na/2<t
o / e~ [2/9(1 — A)~Ydt
0

= :U/ e~ 211 — X\)~Y9)dt.
-

Rewriting all these expressions in (4.5), we deduce:

vq

vy 23" /7B 2/
q, 2 —1/(1 L l/+1 —xt -
Seatvayy A7) < 2T (v + 1/2) 1/3/ / [ A)”q] drde

— 2%\/EBL /'OO t2/q / xl/Jr :L"tda: dt
WD (v 4 1/2)01/3 Jiox L(1— AV 0

2% /BT (v +2) /°° [t2/9(1 — \)~Y/9] iy
= /\V/2F(V + 1/2),/1/3 VX tr+2 .

Since ¢ > 2/(3 + v) and

/°° [t¥/9(1 — \)~V/q] 1 /°° dt
dt < —
Y 2 (L= VI=X tv=2/at2

1 1 1
T (=N v —2/g+1 (1= A2t
1

T W —2/q+ (1 = Az %

the inequality (4.4) is not redundant, therefore the integral converges. So the
result. OJ

By the second Landau’s estimate we
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Theorem 4.3. For a special case of quotient mean series the following inequality
holds true

qug L ()\*1/(]7,.’ ,r,) < QT\/ECLF(V + 5/3)
0,9(v+3) A2 (v + 1/2)
t2/q
fo w5 00) 00
tu+5/3 2

where 0 < A <1, v > —2/3.

Proof. Using (77) we get

el - zl_Tu\/ECL > > e And/? 1
972 1/q 5

The sum in the integral is a Dirichlet series which, via Laplace integral formula
and Euler—Maclaurin summation formula, becomes

[t2/a(1-3)~V/q]

Ze VISAntPr (g pay=1/6 l‘/ e Z (A2 4 r?)=1/6 ) dy
0 n=1

o [£2/2(1—-x)~1/4]
= x/ e_”/ 0w (A 4 r9)~/6)dwdt.
0 0

Putting all back to (4.6), we have

l/q,r r ‘ \/_CL
= )\V/2F(u—|— 1/2)

t2/q
o [e.9] 44:44T7E
X / a:”+2/‘(7 e_”/{<1 A>OUJ(()\?U + )~V dwdtda
[t2/q 1-X) 1/q]
Au/zr (v + 1/2 / / (X %) 1/6)

X (/ 2 tie xtdx) dwdt
0

t2/q
2 2 \/_CL I/—|— 5/3 / fo =y /q /\wq +Tq) 1/6)dw
MR (v +1/2) tu+5/3

SPT (-
a,q(v+3)

dt.

It is easy to show that the righthandside integral converges for v > —2/3, and
since [t¥9(1 — \)~Y4 = 0 for 0 < t2/9(1 — \)71/7 < 1, we integrate from /1 — A
over t. O
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Theorem 4.4. For a special case of quotient mean series the following inequality
holds true

1-v
Sq 2 ()\_1/‘17",7‘) S 272 ﬁdO
2.4(v+3) A2 (v + 1/2)

/ / ] (o 1) ") gt
(1- )\ t

Proof. Making use of (4.3), we get:
2’| J,(VAnd + riz)| = x”_1/2x1/2‘Jy(()\nq + Tq)l')) < gr12

that is

b
(And 4 ra)l/2’

V1= ni/2g

doe”
@72 —1/q 0 v—q/2
Spatoryy W10 < /\V/2F y+1/2 / Z Ot payiz &4

_ 23" /7 dy / ) i b v emaig,
)\V/QP(V n 1/2) 0 ot (Anq + rq>1/2 .
(4.7)

The inner Dirichlet series we apply the Laplace integral formula (1.1), which gives
us

0 Txnal? 00 [t2/a(1-X\)~1/q]
e—_ —xt q q\—1/2
;(WM)W,_I/O e > e

We write the sum in the integrand by Euler-Maclaurin summation formula

X VI 2z oo p[tP/a(1-2)71/a] 1/2
S e M, (Aw? + r?) "2 dwdt. (4.8
> G | (O + )2 dwdt. (43)

Putting (4.8) in (4.7) results with

9,5 71/q
‘Sqq(wr AT )| < )\”/2F(V+ 1/2)

+2/4
el e B RS v
X/ / / a-»! }xe—mtaw(()\wq_|_rq)_1/2)dwdtdl’
0o Jo Jo

2% md,
W2 (v 1/2)

Py </ i)
0

t2/q

(- *)l/q 1/2\,—2
(Mw? + 7)) 2 dwdt
)\V/2FV+1/2 /1A1/2/ w+7”) ) wdat,

we finish the proof. O
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