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Abstract. In this paper, we show a complement of Ando–Hiai inequality: Let
A and B be positive invertible operators on a Hilbert space H and α ∈ [0, 1].
If A ]α B ≤ I, then

Ar ]α Br ≤ ‖(A ]α B)−1‖1−rI for all 0 < r ≤ 1,

where I is the identity operator and the symbol ‖ · ‖ stands for the operator
norm.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive (in
symbol: A ≥ 0) if (Ax, x) ≥ 0 for all x ∈ H. In particular, A > 0 means that A
is positive and invertible. For some scalars m and M , we write mI ≤ A ≤ MI
if m(x, x) ≤ (Ax, x) ≤ M(x, x) for all x ∈ H. The symbol ‖ · ‖ stands for the
operator norm. Let A and B be two positive operators on a Hilbert space H. For
each α ∈ [0, 1], the weighted geometric mean A ]α B of A and B in the sense of
Kubo–Ando [6] is defined by

A ]α B = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2

if A is invertible. In fact, the geometric mean A ] 1
2

B is a unique positive solution

of XA−1X = B.
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To study the Golden-Thompson inequality, Ando–Hiai in [1] developed the fol-
lowing inequality, which is called Ando–Hiai inequality: Let A and B be positive
invertible operators on a Hilbert space H and α ∈ [0, 1]. Then

A ]α B ≤ I =⇒ Ar ]α Br ≤ I for all r ≥ 1, (AH)

or equivalently

‖Ar ]α Br‖ ≤ ‖A ]α B‖r for all r ≥ 1.

Löwner–Heinz inequality asserts that A ≥ B ≥ 0 implies Ar ≥ Br for all
0 ≤ r ≤ 1. As compared with Löwner–Heinz inequality, Ando–Hiai inequality is
rephased as follows: For each α ∈ [0, 1](

Ar/2BrAr/2
)α ≤ Ar =⇒

(
A1/2BA1/2

)α ≤ A for all 0 < r ≤ 1. (1.1)

Now, Ando–Hiai inequality does not hold for 0 < r ≤ 1 in general. In fact, put
r = 1/2, α = 1/3 and

A =
1

5

(
2 −1
−1 3

)
and B =

1

25

(
45 + 14

√
5 −5− 7

√
5

−5− 7
√

5 50− 14
√

5

)
.

Then we have

A ] 1
3

B =
1

25

(
15 + 2

√
5 −5−

√
5

−5−
√

5 20− 2
√

5

)
≤ I

since σ(A ] 1
3

B) = {1, 0.4}. On the other hand, since

A
1
2 ] 1

3
B

1
2 =

(
0.866032 −0.187030
−0.187030 0.770683

)
and σ(A

1
2 ] 1

3
B

1
2 ) = {1.01137, 0.625347},

we have A
1
2 ] 1

3
B

1
2 6≤ I.

Thus, in [7], Nakamoto and Seo showed the following complement of Ando–Hiai
inequality (AH):

Theorem A. Let A and B be positive operators such that mI ≤ A, B ≤ MI
for some scalars 0 < m < M , h = M

m
and α ∈ [0, 1]. Then

A ]α B ≤ I =⇒ Ar ]α Br ≤ K(h2, α)−rI for all 0 < r ≤ 1,

where the generalized Kantorovich constant K(h, α) is defined by

K(h, p) =
hp − h

(p− 1)(h− 1)

(
p− 1

p

hp − 1

hp − h

)p

for all p ∈ R,

see [5, (2.79)].
We remark that K(h2, α)−r 6= 1 in the case of r = 1, though K(h2, α)−r = 1 in

the case of α = 0, 1 in Theorem A. Thereby, in this paper, we consider another
complement of Ando–Hiai inequality (AH) which differ from Theorem A.
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2. Main results

First of all, we state the main result:

Theorem 2.1. Let A and B be positive invertible operators and α ∈ [0, 1]. Then

A ]α B ≤ I =⇒ Ar ]α Br ≤ ‖A−1 ]α B−1‖1−rI for all 0 < r ≤ 1,

or equivalently

‖Ar ]α Br‖ ≤ ‖A−1 ]α B−1‖1−r‖A ]α B‖r for all 0 < r ≤ 1.

We remark that ‖A−1 ]α B−1‖1−r = 1 in the case of r = 1.
We need the following lemmas to give a proof of Theorem 2.1. Lemma 2.2 is

regarded as a reversal of Löwner–Heinz inequality:

Lemma 2.2. Let A and B be positive invertible operators. Then

A ≥ B =⇒ ‖A
p
2 B−pA

p
2‖Bp ≥ Ap for all 0 < p ≤ 1.

Proof. This lemma follows from Löwner–Heinz inequality. In fact, A ≥ B implies
Ap ≥ Bp for all 0 < p ≤ 1 and then

I ≥ A− p
2 BpA− p

2 ≥ ‖A
p
2 B−pA

p
2‖−1.

�

Lemma 2.3 ([3]). Let A be a positive invertible operator and B an invertible
operator. For each real numbers r

(BAB∗)r = BA
1
2 (A

1
2 B∗BA

1
2 )r−1A

1
2 B∗.

Proof of Theorem 2.1. If we put C = A− 1
2 BA− 1

2 , then the assumption implies
A−1 ≥ Cα. By Lemma 2.2 and 0 < 1− r < 1, we have

Ar = A
1
2 Ar−1A

1
2 ≤ ‖A

r−1
2 Cα(r−1)A

r−1
2 ‖A

1
2 Cα(1−r)A

1
2 .

On the other hand, it follows that A ≤ C−α implies Cα−1 ≤ (C
1
2 AC

1
2 )−1. By

Lemma 2.2, we have

‖(C
1
2 AC

1
2 )

r−1
2 C(α−1)(r−1)(C

1
2 AC

1
2 )

r−1
2 ‖C(α−1)(1−r) ≥ (C

1
2 AC

1
2 )r−1.

Furthermore, by Lemma 2.3, we have

Br = (A
1
2 CA

1
2 )r = A

1
2 C

1
2 (C

1
2 AC

1
2 )r−1C

1
2 A

1
2

≤ ‖(C
1
2 AC

1
2 )

r−1
2 C(α−1)(r−1)(C

1
2 AC

1
2 )

r−1
2 ‖A

1
2 C

1
2 C(α−1)(1−r)C

1
2 A

1
2 .

Hence, by Araki-Cordes inequality [2, Theorem IX.2.10], we have

‖(C
1
2 AC

1
2 )

r−1
2 C(α−1)(r−1)(C

1
2 AC

1
2 )

r−1
2 ‖ ≤ ‖(C

1
2 AC

1
2 )−

1
2 C1−α(C

1
2 AC

1
2 )−

1
2‖1−r
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since 0 < 1− r < 1. Let r(A) be the spectral radius of A. Then we have

‖(C
1
2 AC

1
2 )−

1
2 C1−α(C

1
2 AC

1
2 )−

1
2‖ = r((C

1
2 AC

1
2 )−

1
2 C1−α(C

1
2 AC

1
2 )−

1
2 )

= r((C− 1
2 AC− 1

2 )−1C1−α)

= r(A−1C−α)

= r(A− 1
2 C−αA− 1

2 )

≤ ‖A− 1
2 C−αA− 1

2‖.
Therefore, it follows that

Ar ]α Br

≤ ‖A
r−1
2 Cα(r−1)A

r−1
2 ‖1−α‖(C

1
2 AC

1
2 )

r−1
2 C(α−1)(r−1)(C

1
2 AC

1
2 )

r−1
2 ‖α

×
(
A

1
2 C(1−r)αA

1
2 ]α A

1
2 C(α−1)(1−r)+1A

1
2

)
≤ ‖A− 1

2 C−αA− 1
2‖(1−r)(1−α)‖(C

1
2 AC

1
2 )−

1
2 C1−α(C

1
2 AC

1
2 )−

1
2‖(1−r)α

× A
1
2 (C(1−r)α ]α C(α−1)(1−r)+1)A

1
2

= ‖A− 1
2 C−αA− 1

2‖1−rA ]α B ≤ ‖(A ]α B)−1‖1−rI

by C(1−r)α ]α C(α−1)(1−r)+1 = Cα and the assumption of A ]α B ≤ I. Hence the
proof is complete.

By Theorem 2.1, we immediately have the following corollary in the case of
r ≥ 1.

Corollary 2.4. Let A and B be positive invertible operators on H. Then

‖A−r ]α B−r‖1−r‖A ]α B‖r ≤ ‖Ar ]α Br‖ for all r ≥ 1.

Finally, Furuta [4] showed the following Knatorovich type operator inequality
in terms of the condition number: Let A and B be positive invertible operators.
Then

B ≤ A =⇒ Br ≤
(
‖B‖‖B−1‖

)r−1
Ar for all r ≥ 1. (2.1)

By Theorem 2.1, we have the following Kantorovich type inequality of (1.1)
which corresponds to (2.1):

Theorem 2.5. Let A and B be positive invertible operators and α ∈ [0, 1]. Then(
A

r
2 BrA

r
2

)α ≤ Ar =⇒
(
A

1
2 BA

1
2

)α

≤ ‖Ar ]α B−r‖1− 1
r A

for all r ≥ 1.
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