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BOUNDED STRUCTURES OF UNIFORMLY A-CONVEX
ALGEBRAS

MOHAMED OUDADESS1

Communicated by M. Abel

Abstract. We examine the uniqueness of the bounded structure of semisim-
ple and Mackey complete uniformly A-convex algebras. We also consider the
particular locally C∗-case and the uniform one.

1. Introduction

Numerous examples show that there is no a Johnson’s theorem type for locally
uniformly A-convex algebras; that is the uniqueness (up to an equivalence) of the
topological structure. However, there is a similar theorem for the von Neumann
bounded structure (the bound structure, in short; or also the bornology) of such
unital semi-simple and Mackey complete algebras. It is shown that the bounded
structure of a unital, semi-simple and Mackey complete locally uniformly A-
convex algebra is unique up to a bornological isomorphism (Proposition 4.1). We
also examine particular cases where the algebra has additional properties. Using
an Allan’s result, we show that if it moreover owns the C∗-property, then its
bounded structure is the one of a C∗ -algebra (Proposition 5.3). In case it is
uniform, a result of S.T. Bhatt ([2]; see also [1]) allows to obtain that it is the
one of a uniform Banach algebra (Proposition 6.1).
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2. Definitions

Let (E, τ) be a locally convex algebra (l.c.a.), with a separately continuous
multiplication, whose topology τ is given by a family (pλ)λ∈Λ of seminorms. The
algebra (E, τ) is said to be locally A-convex (l-A-c.a.; [4, 5]) if, for every x and
every λ, there is M(x, λ) > 0 such that

max [pλ(xy), pλ(yx)] ≤ M(x, λ)pλ(y);∀y ∈ E.

In the case of a single space norm, (E, ‖.‖) is called an A-normed algebra. If
M(x, λ) = M(x) depends only on x, we say that (E, τ) is a locally uniformly
A-convex algebra (l.u-A -c.a.; [5]). If it happens that, for every λ,

pλ(xy) ≤ pλ(x)pλ(y);∀x, y ∈ E,

then (E, τ) is named a locally m-convex algebra (l.m.c.a.; cf. [9, 10]). Recall also
that an l.c.a. has a continuous multiplication if, for every λ, there is λ

′
such that

pλ(xy) ≤ pλ′ (x)pλ′ (y);∀x, y ∈ E.

If (E, (pλ)λ) is a unital l-A-c.a., then it can be endowed with a stronger m-
convex topology M(τ) (cf. [11]), where τ is the topology on E. It is determined
by the family (qλ)λ∈Λ of seminorms given by

qλ(x) = sup{pλ(xu) : pλ(u) ≤ 1}.
If (E, (pλ)λ) is an l.u-A-c.a., then there is yet ([12, 13]) an algebra norm ‖.‖0

which induces a topology τ‖.‖0 stronger than M(τ). It is given by

‖x‖0 = sup{qλ(x) : λ}.
Following the terminology of [8, pp. 101-102], if E is an involutive algebra and

p a vector space seminorm on E, we say that p is a C∗-seminorm if p(x∗x) = [
p(x)]2, for every x. An involutive topological algebra whose topology is defined by
a (saturated) family of C∗-seminorms is called a C∗-convex algebra. A complete
C∗-convex algebra is called a locally C∗-algebra (by Inoue). A Fréchet C∗-convex
algebra is a metrizable C∗-convex algebra, that is equivalently a metrizable locally
C∗-algebra, or also a Fréchet locally C∗-algebra.

The bounded structure (bornology) of a locally convex space (l.c.s.) (E, τ) is
the collection Bτ of all the subsets B of E which are bounded in the sense of von
Neumann, that is B is absorbed by every neighborhood of the origin. If τ‖.‖ is
the topology induced by a norm ‖.‖, we write Bτ‖.‖. We say that an l.c.s. (E, τ)
is Mackey complete if its bounded structure Bτ admits a fundamental system B
of Banach discs that is, for every B in B, the vector space generated by B is a
Banach space when endowed with the gauge ‖.‖B of B.

If the topology of an l.c.s. is given by a family (pλ)λ∈Λ of seminorms, with Λ a
directed set, we will often, for simplicity, write only (pλ)λ, especially when there
is no risk of confusion.

An algebra, with an involution x −→ x∗ and a unit e, is said to be hermitian
if every hermitian element (i.e., x = x∗ ) has a real spectrum. It is said to be
symmetric if e + x∗x is invertible for every x.



STRUCTURES OF UNIFORMLY A-CONVEX ALGEBRAS 21

3. Examples

Here are different examples of l.u-A-c.a.’s.

Example 3.1. Let Ω be the first non countable ordinal and endow the set [0, Ω[
with the order topology. Consider E1 = C ([0, Ω[) the complex algebra of contin-
uous functions, on [0, Ω[, endowed with the topology of uniform convergence on
compacta. It is a commutative complete l.m.c.a. with identity and continuous
involution. It is not a Q-algebra but it is an l.u-A-c.a..

Example 3.2. Let E2 = Cb (R) be the algebra of complex continuous bounded
functions on the real field R with the usual pointwise operations and the complex
conjugation as an involution. Denote by C+

0 (R) the srictly positive elements of
Cb (R). Consider the family {pϕ : ϕ ∈ C+

0 (R)} of seminorms given by

pϕ(f) = sup {f(x)ϕ(x) : x ∈ R}; f ∈ Cb (R) .

They determine a locally convex topology β. The space (Cb (R) , β) is a complete
locally convex ∗ -algebra. It is not an l.m.c.a. ([4]), nor a Q-algebra. But it is an
l.u -A-c.a. with a continuous multiplication.

Example 3.3. Let E3 = C ([0, 1]) be the algebra of complex valued continuous
functions on the segment [0, 1]. A vector space norm p is defined on this algebra
by

p(f) = sup { |f(x)ϕ(x)| : x ∈ [0, 1] }; f ∈ C ([0, 1]) .

where

ϕ(x) =

{
x, 0 ≤ x ≤ 1

2
1− x, 1

2
≤ x ≤ 1

Then (C ([0, 1]) , p) is not complete nor an l.m.c.a.. It is a pseudo-complete l.u-
A-c.a..

Example 3.4. Here is a similar example where the family of seminorms is not
a singleton. Let E4 = L∞ [0, 1] be the complex algebra of essentially bounded
measurable functions endowed with the Lω -topology given by the Lp-norms,

p > 1 i.e., ‖f‖p = (
∫ 1

0
|f(t)| dt)

1
p . It becomes a metrizable locally ∗-algebra. It is

neither complete, nor an l.m.c.a. nor a Q-algebra. It is an l.u-A-c.a. .

Example 3.5. In [14], it is given an example of an l.u-A-c.a. the multiplication
of which is not (jointly) continuous.

4. Comparison of bounded structures.

It is known (Johnson’s theorem) that, in a semisimple algebra, there is -up
to an equivalence- a unique Banach algebra norm. The same for commutative
Fréchet m-convex algebras ([3]). Numerous examples show that without com-
pleteness or metrizability, these results do not remain valid. The uniqueness of
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bounded structures -up to an equivalence- require also particular conditions. In
the uniformly A-convex case, we do have the following.

Proposition 4.1. Let E be a complex unital algebra such that (E, τ) and (E, τ
′
)

are l.u-A-c.a.’s.

(i) If Bτ = Bτ
′
, then ‖.‖0 is equivalent to ‖.‖

′

0.
(ii) If E is semisimple and both of (E, τ) and (E, τ

′
) are M-complete, then

Bτ = Bτ
′
.

Proof. (i) Since τ (resp. τ
′
) is coarser than τ‖.‖ (resp. τ‖.‖′ ), the unit balls of ‖.‖0

and ‖.‖
′

0 are bounded for τ and τ
′

respectively. But Bτ = Bτ
′
. Thus the unit

ball of each norm is bounded for the other. Whence the equivalence.
(ii) Since (E, τ) and (E, τ

′
) are M -complete, one has Bτ = Bτ‖.‖0

and Bτ
′
=

Bτ
‖.‖′0

, with (E, ‖.‖0) and (E, ‖.‖
′

0) Banach algebras (cf. [12] or [13]). But E is

semisimple, hence ‖.‖0 and ‖.‖
′

0 are equivalent (Johnson’s theorem). Therefore
Bτ

′
= Bτ

‖.‖′0
= Bτ‖.‖0

= Bτ. �

Remark 4.2. The converse is not true in (i) of the previous proposition. Take,
for example, the algebra C ([0, 1]) endowed with the single seminorm ‖.‖1 i.e.,

‖f‖1 =
∫ 1

0
|f(t)| dt, and by the topology induced by the Arens algbra Lω [0, 1]

i.e., ∩Lp [0, 1] with the topology given by the family of seminorms (‖.‖p)p, where

‖f‖p = (
∫ 1

0
|f(t)| dt)

1
p and p = 1, 2, .... The associated norm to both topologies is

‖.‖∞.

Remark 4.3. A locally C∗-algebra is always semisimple. So in the case of such
algebras, semisimplicity is superfluous in the previous proposition. Actually one
can say more in that situation. As an illustration, take Example 3.1 and Example
3.4 above. We examine the general case in the next section.

5. Locally C∗-algebras.

Now we consider the involutive case. First observe that if an l.u-A-c.a. (E, τ)
is endowed with a continuous involution, then one may suppose that the topology
is given by a family (pλ)λ of seminorms such that

(1) max [pλ(xy), pλ(yx)] ≤ M(x)pλ(y);∀y ∈ E.
(2) pλ(x

∗) = pλ(x).

Indeed, if (rλ)λ is a family of seminorms defining λ and satisfying (1), then put
pλ(x) = max(rλ(x), rλ(x

∗)).
Moreover, one has ‖x∗‖0 = ‖x‖0. But if τ is given by pλ’s satisfying the C∗-

equality, it is not clear wether or not ‖.‖0 inherits this property. The following
result is an answer to this question. To proceed, we need to specify a structure
result ([15, Theorem 2.1]) according to the particular situation we deal with.

Proposition 5.1. Let (E, (pλ)λ) be an involutive M-complete l.c.a. . If the semi-
norms satisfy the C∗-equality i.e., pλ(x

∗x) = p2
λ(x), for every x, then (E, (pλ)λ) is

a bornological inductive limit of Fréchet locally C∗-algebras; hence it is hermitian.
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Hints. By a result of Sebestyèn ([16]), the pλ’s are submultilicative. Take (Bi)i a
basis of the bounded structure of E . For Bi and every λ, put pλ(Bi) = sup{pλ(x) :
x ∈ Bi} and Λi

n = {λ ∈ Λ : pλ(Bi) < n}. One has Λ = ∪{Λi
n : n = 1, 2, ...}.

Now, for every n, put qi
n(x) = sup{pλ(x) : λ ∈ Λi

n} and Ei = {x : qi
n(x) < ∞; n =

1, 2, ...}. Then (Ei, (q
i
n)n) is a Fréchet l.m.c.a.. Moreover the seminorms satisfy

the C∗ -equality. The algebras (Ei, (q
i
n)n) are the locally C∗-algebras looked for.

The hermiticity follows immediately. �

Remark 5.2. Hermiticity can also be obtained by a result of A. Mallios (see the
proof of Proposition 6.1 below).

Proposition 5.3. Let (E, (pλ)λ) be an involutive M-complete l.u-A -c.a., the
topology of which can be given by seminorms satisfying the C∗-equality. Then

(i) If E is commutative (not necessairily unital), then (E, (pλ)λ) is a bornolog-
ical inductive limit of C∗ -algebras.

(ii) If E is unital (not necessairily commutative), then its bounded structure
is the one of a C∗ -algebra.

Proof. (i) The Ei’s in Proposition 5.1 are also l.u-A-c.a.’s, hence every element is
bounded. They are then Q-algebras ([10, Proposition 13.6]). Being a locally C∗-
algebra with the Q -property, every Ei is actually a C∗ -algebra (See [8, Section
8, Chap. II] for a full discussion about the latter result) .

(ii) One checks that (E, ‖.‖0) is with a continuous involution. It is then her-
mitian, by the previous proposition. Moreover, its closed unit ball is the geatest
member of the family of self-adjoint closed and idempotent discs containing the
unit element. Hence, by an Allan’s result (cf. [2, Lemma (i)]), it is a C∗-algebra
for an equivalent norm. So it is semisimple. Conclude by (ii) of Proposition
4.1. �

Remark 5.4. The converse is not always true in the previous proposition. Take
e.g., the algebra Cb (R) of Example 3.2.

Remark 5.5. The C∗-property is not necessary in (i) of Proposition 5.3. Let X be
a non compact, locally compact and metrizable space such that X = ∪Kn where
(Kn)n is an exhaustive sequence of compact subsets of X. Take the complex al-
gebra K(X) of continuous functions with compact support and En = K(X, Kn)
the subalgebra of functions with support in Kn. It is known that K(X) is alge-
braically the inductive limit of the En’s. Take the strict inductive limit topology
τ of the C∗ -algebra norms ‖.‖n, where ‖.‖n is the supremum norm on En. Then
(E, τ) is a l.m.c.a. which is also an l.u-A-c.a. with a continuous involution. It can
not be a locally C∗-algebra for it is a Q-algebra and so it should be a C∗-algebra
(cf. [8, Corollary 8.2, p. 111]). But then E = En0 , for some n0; which is not the
case.

Remark 5.6. The uniform convexity is not necessary in (i) of Proposition 5.3.
Take e.g., the unitizaton K1(X) of K(X) in the previous remark, endowed with
the usual topology. It is a locally C∗-algebra which is not an l.u-A- c.a.. However
the conclusion of the assertion in question holds.

Remark 5.7. For the importance of the unit element, see [7].
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We provide a criterion to check that a locally C∗-algebra is an l.u -A-c.a..
Actually completeness is not necessary in the hypotheses.

Proposition 5.8. A locally C∗-algebra (E, (pλ)λ) every element of which is bounded
is an l.u-A-c.a..

Proof. It is known that there is a greatest self-adjoint closed bounded and idempo-
tent disc B0, containing the unit, in (E, (pλ)λ). By hypothesis, one has E = EB0

the algebra generated by B0. Also the gauge ‖.‖B0
defines a topology stronger

than the initial one. So

∀λ, ∃kλ ≥ 1 : pλ(x) ≤ kλ ‖x‖B0
,∀x.

But then

∀λ, pλ(xy) ≤ ‖x‖B0
kλpλ(y);∀x, y ∈ E.

The topology is also given by the family of seminorms (kλpλ)λ,k≥1for which

∀x, ∃M(x) = ‖x‖B0
: kpλ(xy) ≤ ‖x‖B0

kpλ(y);∀y ∈ E.

�

The examples in Section 3 concern only commutative algebras. Here is a non
commutative algebra to which the previous proposition applies. First, we recall
the construction of the matrix algebra (Mallios) as quoted in [8, pp. 109-110].
Let (E, (pλ)λ) be a unital locally C∗-algebra and take the unital complex algebra
of n× n matrices with entries in E

Mn(E) := {x ≡ (xij) : (xij) ∈ E; i, j = 1, ..., n}.
Algebraic operations and involution in Mn(E) are defined as in the case of com-
plex matrices. Consider M ≡ En the finitely generated free (left) E-module
associated with E, i.e.,

M = {m = Σn
1miei : mi ∈ E and ei := (δij)1≤j≤n ∈ En,

with δii = e, the identity element of E, and δij = 0 for i 6= j}.
Endow M with the family of the following seminorms

p̃λ(m) := Σn
1pλ(mi),∀m ∈ M, ∀λ.

It becomes a locally convex E-module. Now, to each x ∈ Mn(E) is associated a
continous E-linear operator Tx, on M , given by

Tx(m) := (Σn
1x1imi, ..., Σ

n
1xnimi) ∈ M ; m ∈ M .

Finally, for each λ, put

qλ(x) := sup{p̃λ(Tx(m)) : p̃λ(m) ≤ 1}, x ∈ M .

Then the family (qλ)λ of seminorms makes Mn(E) a unital locally C∗-algebra.
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Example 5.9. Let E be a unital commutative locally C∗-algebra every element
of which is bounded, and Mn(E) the associated Matrix algebra (as above) . The
latter is a unital non commutative locally C∗-algebra. Moreover every element
is bounded. Indeed, take x ≡ (xij) with xij ∈ E and i, j = 1, ..., n. Each xij

is absorbed by an idempotent bounded disc Bij. But one can take an α > 0
such that xij ∈ αBij, for every i and every j. Now, since E is commutative the
idempotent hull of {Bij}ij is bounded.

Remark 5.10. If the locally C∗-algebra E in Example 5.9 is not commutative, the
arguments used there are no more valid. So we do not know, in that case, if every
element of Mn(E) is still bounded.

The arguments in Proposition 5.3 suggested the following result which seems
to have some interest for its own.

Proposition 5.11. Let E be a complex algebra such that (E, τ) is a locally C∗

-algebra and (E, ‖.‖) is a normed space. If Bτ = Bτ‖.‖, then (E, ‖.‖) is (up to an

isomorphism) a C∗-algebra.

Proof. Without loss of generality, we consider the unital case. Since (E, τ) is
complete and Bτ = Bτ‖.‖ , the space (E, ‖.‖) is a Banach space. Now, the mul-
tiplication and the involution are bounded with respect to the norm. Hence
(E, ‖.‖) is (up to an isomorphism) a Banach algebra. Also, since (E, τ) is a lo-
cally C∗-algebra, the involutive algebra E is symmetric. Now take the subset
B = {x ∈ E : pλ(x) ≤ 1;∀λ}. It is the geatest member of the family of self-
adjoint closed and idempotent discs containing the unit element. Hence, by an
Allan’s result (cf. [2, Lemma (i)]), it is a C∗-algebra for an equivalent norm. �

6. Uniform algebras.

Let (E, τ) be an l.u-A-c.a. which is also uniform that is its topology can be
given by two families (pλ)λ and (ri) of seminorms such that

(1) max [pλ(xy), pλ(yx)] ≤ M(x)pλ(y);∀y ∈ E.
(2) ri(x

2) = r2
i (x);∀x ∈ E.

One considers the canonical norm ‖.‖0 associated to (pλ)λ. It is not granted
that it is uniform i.e., square preserving. However, we will see that this is true
up to an equivalence.

Proposition 6.1. Let (E, τ) be a unital M-complete l.u-A-c.a.. If its topology can
be given by a family of square preserving seminorms, then its bounded structure
is the one of a uniform Banach algebra.

Proof. By a result of H.V. Dedania ([6]), each ri is submultiplicative. Thus (E, τ)
is an l.m.c.a.. It is then semi-simple (cf. [9, Lemma 5.1., p. 275]). So Proposition
4.1 appplies. Now Bτ = Bτ‖.‖0

. But then B1 = {x : ‖x‖0 ≤ 1} is the greatest

closed bounded and idempotent disc, containing the unit, of (E, ‖.‖0). Hence it
is a uniform algebra for an equivalent norm, by a result of S.T. Bhatt ([2, Lemma
(ii)]). �
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Remark 6.2. The converse is not always true in the previous proposition. Take
e.g., the algebra Cb (R) of Example 3.2.

Now here is the analogue of Proposition 5.8, in the context of this section.

Remark 6.3. A unital uniform l.m.c.a. every element of which is bounded is an
l.u-A- c.a..

Proof. It is known that there is a greatest closed bounded and idempotent disc
B0, containing the unit, in (E, (pλ)λ). By hypothesis, one has E = EB0 the
algebra generated by B0. Also the gauge ‖.‖B0

defines a topology stronger than
the initial one. So

∀λ, ∃kλ ≥ 1 : pλ(x) ≤ kλ ‖x‖B0
,∀x.

But then
∀λ, pλ(xy) ≤ ‖x‖B0

kλpλ(y);∀x, y ∈ E.

The topology is also given by the family of seminorms (kλpλ)λ,k≥1for which

∀x, ∃M(x) = ‖x‖B0
: kpλ(xy) ≤ ‖x‖B0

kpλ(y);∀y ∈ E.

�

The analogue of Proposition 5.11 is the following.

Proposition 6.4. Let E be a unital complex algebra such that (E, τ) is a uniform
locally m-convex algebra and (E, ‖.‖) is a normed space. If Bτ = Bτ‖.‖

, then

(E, ‖.‖) is (up to an isomorphism) a uniform Banach algebra.

Proof. Since (E, τ) is complete and Bτ = Bτ‖.‖
, the space (E, ‖.‖) is a Banach

space. Now, the multiplication is bounded with respect to the norm. Hence
(E, ‖.‖) is (up to an isomorphism) a Banach algebra. Also, since (E, τ) is uniform
it is semisimple (cf. [9, Lemma 5.1., p. 275]) and the subset B = {x ∈ E :
pλ(x) ≤ 1;∀λ} is the geatest member of the family of closed and idempotent
discs containing the unit element. Hence it is a uniform algebra for an equivalent
norm, by a result of S.T. Bhatt ([2, Lemma (ii)]). �
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