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INVERTIBILITY CHARACTERIZATION OF WIENER-HOPF
PLUS HANKEL OPERATORS VIA ODD ASYMMETRIC

FACTORIZATIONS
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Abstract. The invertibility of Wiener-Hopf plus Hankel operators with es-
sentially bounded Fourier symbols is characterized via certain factorization
properties of the Fourier symbols. In addition, a Fredholm criterion for these
operators is also obtained and the dimensions of the kernel and cokernel are
described.

1. Introduction

The main goal of the present work is to obtain invertibility and Fredholm criteria
for Wiener-Hopf plus Hankel operators acting between L2 Lebesgue spaces on
the half-line. To be more precise, the main operators in study have therefore the
form:

WHϕ := Wϕ +Hϕ = r+F−1ϕF(I + J) : L2
+(R)→ L2(R+) , (1.1)

where

Wϕ := r+F−1ϕF : L2
+(R)→ L2(R+) ,

Hϕ := r+F−1ϕFJ : L2
+(R)→ L2(R+) . (1.2)

Here L2(R) and L2(R+) denote the Banach spaces of complex-valued Lebesgue
measurable functions ϕ, for which |ϕ|2 is integrable on R and R+, respectively. In
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addition, L2
+(R) denotes the subspace of L2(R) formed by all functions supported

in the closure of R+ = (0,+∞), r+ is the restriction operator from L2(R) into
L2(R+), F denotes the Fourier transformation, J is the reflection operator given
by the rule Jϕ(x) = ϕ̃(x) = ϕ(−x), x ∈ R and ϕ ∈ L∞(R) is the so-called Fourier
symbol.

We would like to point out that in recent times algebraic combinations of
Wiener-Hopf and Hankel operators have been receiving an increased attention in
view of their invertibility and Fredholm properties. Part of this interest comes
from certain applications where such combinations of operators arise. Examples
of recent results within this context can be found e.g. in [1, 7, 8, 9, 10]. Some of
these works propose certain asymmetric factorization concepts which are helpful
to look for in view of the invertibility properties of corresponding operators with
symmetries. In coherence to these developments, in the present paper we propose
an odd asymmetric factorization concept which will be crucial to find an invert-
ibility and Fredholm characterization for Wiener-Hopf plus Hankel operators with
essentially bounded Fourier symbols.

It should be mentioned that several partial results about Fredholm characteris-
tics and invertibility of Wiener-Hopf plus Hankel operators are presently known.
Namely, for such operators with continuous or piecewise continuous Fourier sym-
bols corresponding Fredholm characterizations are known for some time now. In
addition, for Fourier symbols in the algebra of semi-almost periodic functions,
conditions which ensure the Fredholm property (or the lateral invertibility) of
the corresponding Wiener-Hopf plus Hankel operators were recently described in
[4, 5, 11, 13] (e.g., upon certain mean values of the representatives at infinity
of their Fourier symbols). Also for unitary and sectorial Fourier symbols, an
invertibility criterion of Wiener-Hopf plus Hankel operators can be found in [3].

Still concerned with the context of the present work, it should be also mentioned
that a factorization theory for the class of Toeplitz plus Hankel operators was pro-
posed in [2]. Such factorization theory leads to invertibility and Fredholm criteria
for Toeplitz plus Hankel operators with the same symbols. Thus, by using some
known operator identities, it is possible to derive from [2] a corresponding criteria
for Wiener-Hopf minus Hankel operators. However, the situation of Wiener-Hopf
plus Hankel operators considered in the present paper is different, and cannot
simply be taken from the results of [2]. The reason for this is structural since
e.g. we can exhibit for the same Fourier symbols Wiener-Hopf plus Hankel opera-
tors which are Fredholm and corresponding Wiener-Hopf minus Hankel operators
which are not Fredholm (and vice-versa); the same can be seen for the invert-
ibility property, etc. In addition, we would also like to point out that the work
[12] is engaged with a factorization theory exactly for Wiener-Hopf plus Hankel
operators but with almost periodic Fourier symbols.

The paper is organized in the following way. In the next section some auxiliary
operators and identities are recalled. The new concepts of weak odd asymmetric
factorization and (strong) odd asymmetric factorization are introduced in Sec-
tion 3, as well as the main statement of the present work about the invertibility
of Wiener-Hopf plus Hankel operators with essentially bounded Fourier symbols
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(Theorem 3.4). Section 4 is devoted to the analysis of some auxiliary results
which will be used in Section 5 where the proof of Theorem 3.4 is performed.
Finally, a Fredholm criterion for WHϕ is obtained in Section 6 together with a
description of the dimensions of its kernel and cokernel.

2. Basic notation and identities

Taking profit of the notations (1.1)–(1.2), we start by recalling a basic formula
from the theory of Wiener-Hopf-Hankel operators which will be used in the next
sections:

WHϕψ = WHϕ `0WHψ +Hϕ `0WH eψ−ψ , (2.1)

where `0 : L2(R+)→ L2
+(R) denotes the zero extension operator.

We will now present some additional operators (and notation) which will be
useful in what follows. We will use the operator W 0

ϕ of convolution with symbol

ϕ (acting between L2(R) spaces), i.e.,

W 0
ϕ = F−1ϕF : L2(R)→ L2(R) .

The Cauchy singular integral operator SR on L2(R) is defined by:

(SRf)(x) =
1

πi

∫
R

f(s)

s− x
ds , x ∈ R ,

where the integral is understood in the principal value sense. The Riesz projection
is given by the following formula

PR =
1

2
(I + SR) ,

and we will also be dealing with the complementary projection QR = I−PR. The
analogues of these operators for the unit circle Γ will also be used. Namely, the
Cauchy singular integral operator on the unit circle SΓ, the Riesz projection for
the unit circle PΓ and its complementary projection QΓ (which are defined in an
analogous way).

The Toeplitz operator is given by the following formula:

Tφ = PΓL(φ)PΓ : H2
+(Γ)→ H2

+(Γ) ,

where L(φ) is simply the multiplication operator defined on L2(Γ). The notation
Hp
±(X) (1 ≤ p ≤ ∞) stands for the usual Hardy spaces on X. The Hankel

operator for the unit circle is given by:

Hφ = PΓL(φ)JΓPΓ : H2
+(Γ)→ H2

+(Γ) ,

where JΓ : L2(Γ)→ L2(Γ) is a Carleman shift operator, which acts by the rule:

(JΓf)(t) =
1

t
f

(
1

t

)
.

Hence, the Toeplitz minus Hankel operator is defined by:

Tφ −Hφ = PΓL(φ)(I − JΓ)PΓ : H2
+(Γ)→ H2

+(Γ) .

In case a function f is defined on the unit circle, the previous notation f̃ will have

now the meaning f̃(t) := f(t−1), t ∈ Γ. As usual, on the unit circle Γ, we say
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that a function f is even if f̃ = f and f is said to be an odd function if f̃ = −f .
These definitions justify the use of the same tilde notation in both settings Γ and
R.

3. Odd factorizations on the real line and main invertibility
result

We start this section by introducing a definition that will be later on completed by
a corresponding stronger version which will have a central role in our invertibility
and Fredholm criteria for the Wiener-Hopf plus Hankel operators. Thus, at the
end of the present section it will be already possible to state the main invertibility
criterion for WHϕ (cf. (1.1)).

Definition 3.1. A function ϕ ∈ GL∞(R) is said to admit a weak odd asymmetric
factorization in L2(R) if it admits a representation

ϕ(x) = ϕ−(x)

(
x− i
x+ i

)m

ϕo(x) , x ∈ R , (3.1)

such that m ∈ Z, and

(i)
x

(x− i)2ϕ− ∈ H
2
−(R) ,

1

(x− i)2ϕ
−1
− ∈ H2

−(R) ,

(ii)
1

x2 + 1
ϕo ∈ L2

odd(R) ,
|x|

x2 + 1
ϕ−1
o ∈ L2

odd(R) .

Here L2
odd(X) stands for the class of odd functions from the space L2(X). The

integer m is called the index of the weak odd asymmetric factorization (3.1) in
L2(R).

Let us note that we have the uniqueness (up to a constant) of such type of
factorizations. This last property is given in exact terms in the next theorem.

Theorem 3.2. Assume that ϕ ∈ GL∞(R) admits two weak odd asymmetric fac-
torizations in L2(R):

ϕ(x) = ϕ
(1)
− (x)

(
x− i
x+ i

)κ1

ϕ(1)
o (x) = ϕ

(2)
− (x)

(
x− i
x+ i

)κ2

ϕ(2)
o (x), x ∈ R .

Then, we necessarily have κ1 = κ2, ϕ
(1)
− = Cϕ

(2)
− and ϕo = C−1ϕ

(2)
o , for some

constant C ∈ C \ {0}.

Proof. Let ϕ admit two weak odd asymmetric factorizations:

ϕ(x) = ϕ
(1)
− (x)

(
x− i
x+ i

)κ1

ϕ(1)
o (x) = ϕ

(2)
− (x)

(
x− i
x+ i

)κ2

ϕ(2)
o (x) , x ∈ R (3.2)

(where ϕ
(1)
− , ϕ

(2)
− and ϕ

(1)
o , ϕ

(2)
o have the corresponding properties of (i) and (ii)

in Definition 3.1). From (3.2) we immediately have that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1

(
x− i
x+ i

)κ1−κ2

= ϕ(2)
o (x)(ϕ(1)

o (x))−1 , x ∈ R. (3.3)
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We can assume without lost of generality that κ := κ1 − κ2 ≤ 0, since otherwise
we would consider

ϕ
(2)
− (x)(ϕ

(1)
− (x))−1

(
x− i
x+ i

)κ2−κ1

= ϕ(1)
o (x)(ϕ(2)

o (x))−1 , x ∈ R

instead of (3.3) (and from this last identity we are able to take the same conclusion
and therefore proceed with the proof in a similar way).

Let us now consider the following auxiliary function:

ψ(x) :=
x

(x− i)4 ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 ∈ H1

−(R) . (3.4)

A direct computation yields that

ψ̃(x) :=
−x

(x+ i)4 ϕ̃−
(1)(x)(ϕ̃−

(2)(x))−1 ∈ H1
+(R) . (3.5)

The right hand side of (3.3) is an even function (since it is a product of two odd
functions). Hence, from (3.3), we immediately obtain that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1

(
x− i
x+ i

)2κ

= ϕ̃−
(1)(x)(ϕ̃−

(2)(x))−1 .

This identity together with (3.4) and (3.5), lead to the conclusion that

ψ(x)

(
x− i
x+ i

)2κ+4

= −ψ̃(x) . (3.6)

Due to the inclusions in (3.4) and (3.5), if 2κ + 4 ≤ 0 then from (3.6) we im-
mediately obtain that ψ = 0 is identically zero and hence we would have a
contradiction. This means that it only remains the possibilities of κ = −1 and
κ = 0.

Let us analyze the case where κ = −1. In the present case, (3.6) is reduced to
the form

(x− i)2ψ(x) = −(x+ i)2ψ̃(x) .

Hence, using (3.4)–(3.5), we have a contradiction which shows that κ cannot be
equal to −1.

Thus, the only possibility which is left for κ is to be equal to zero. Therefore,
in such a case, κ1 = κ2. In this case we will have that

ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 = ϕ̃−

(1)(x)(ϕ̃−
(2)(x))−1 .

Consequently, ϕ
(1)
− (x)(ϕ

(2)
− (x))−1 = C for a constant C ∈ C \ {0}. Thus ϕ

(1)
− =

Cϕ
(2)
− and ϕ

(1)
o = C−1ϕ

(2)
o . �

The following definition may be viewed as a strong version of the previous
introduced weak factorization and will play a crucial role in the main theorem
below.
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Definition 3.3. A function ϕ ∈ GL∞(R) is said to admit an odd asymmetric
factorization in L2(R) if it admits a representation

ϕ(x) = ϕ−(x)

(
x− i
x+ i

)m

ϕo(x) , x ∈ R , (3.7)

such that m ∈ Z, and

(i)
x

(x− i)2
ϕ− ∈ H2

−(R) ,
1

(x− i)2
ϕ−1
− ∈ H2

−(R) ,

(ii)
1

(x2 + 1)
ϕo ∈ L2

odd(R) ,
|x|

(x2 + 1)
ϕ−1
o ∈ L2

odd(R) ,

(iii) the linear operator S := W 0
ϕ−1
o

(I − J)`0Wϕ−1
−

: L2(R)→ L2
even(R) is

bounded.

The integer m is called the index of the odd asymmetric factorization (3.7) in
L2(R).

We are now in a position to state the main result about the invertibility of our
Wiener-Hopf plus Hankel operators with L∞ symbols.

Theorem 3.4. Let ϕ ∈ GL∞(R). The operator WHϕ is invertible if and only if
ϕ admits an odd asymmetric factorization in L2(R) with index m = 0.

The proof of this theorem will be given in Section 5.

4. Odd factorizations on the unit circle

In the present section we will introduce some auxiliary notions which will be
useful to work out some conclusions in the unit circle setting.

Definition 4.1. A function φ ∈ GL∞(Γ) is said to admit a weak odd asymmetric
factorization in L2(Γ) if it admits a representation

φ(t) = φ−(t)tkφo(t) , t ∈ Γ ,

such that k ∈ Z and

(i) (1 + t−1)φ− ∈ H2
−(Γ) , (1− t−1)φ−1

− ∈ H2
−(Γ) ,

(ii) |1− t|φo ∈ L2
odd(Γ) , |1 + t|φ−1

o ∈ L2
odd(Γ) .

The integer k is called the index of an asymmetric factorization in L2(Γ).

Now we will present a theorem about the uniqueness of a weak odd asymmetric
factorization in L2(Γ).

Theorem 4.2. Assume that φ admits two weak odd asymmetric factorizations in
L2(Γ):

φ(t) = φ
(1)
− (t)tk1φ(1)

o (t) = φ
(2)
− (t)tk2φ(2)

o (t), t ∈ Γ . (4.1)

Then k1 = k2, φ
(1)
− = Cφ

(2)
− , φ

(1)
o = C−1φ

(2)
o with C ∈ C \ {0}.
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Proof. Without lost of generality, we can assume that m = k1 − k2 ≤ 0. From
(4.1) we have that

(φ
(2)
− )−1φ

(1)
− tm = φ(2)

o (φ(1)
o )−1. (4.2)

Take ψ = (1 − t−2)(φ
(2)
− )−1φ

(1)
− . Obviously, we have that ψ ∈ H1

−(Γ). Formula
(4.2) leads to

(1− t−2)−1ψ(t)tm = φ(2)
o (t)(φ(1)

o (t))−1 ,

where the right hand side is an even function (since it is a product of two odd
functions). Therefore,

(1− t−2)−1ψ(t)tm = (1− t2)−1ψ(t−1)t−m ,

and from here we have:

ψ(t)t2m+2 = −ψ(t−1).

If we assume that m ≤ −1 we would obtain that ψ = 0 (by observing the Fourier
coefficients of ψ), which is a contradiction. Hencem = 0. In this case we have that

ψ(t) = C(1− t−2) with C 6= 0. Finally, from here we have: k1 = k2, φ
(1)
− = Cφ

(2)
− ,

and φ
(1)
o = C−1φ

(2)
o . �

Consider the following complementary projections:

PJΓ
:=

I + JΓ

2
: L2(Γ)→ L2(Γ), QJΓ

:= I − PJΓ
.

These projections decompose L2(Γ) into the direct sum: L2(Γ) = ImPJΓ
⊕ImQJΓ

.
Let R stand for the linear space of all trigonometric polynomials. A natural

strong version of the Definition 4.1 is given next.

Definition 4.3. A function φ ∈ GL∞(Γ) is said to admit an odd asymmetric
factorization in L2(Γ) if it admits a representation

φ(t) = φ−(t)tkφo(t), t ∈ Γ, (4.3)

such that k ∈ Z and

(i) (1 + t−1)φ− ∈ H2
−(Γ), (1− t−1)φ−1

− ∈ H2
−(Γ) ,

(ii) |1− t|φo ∈ L2
odd(Γ), |1 + t|φ−1

o ∈ L2
odd(Γ) ,

(iii) the linear operator E = L(φ−1
o )(I + JΓ)PΓL(φ−1

− ) acting from

X1 := {(1− t−1)f(t) : f ∈ R} into X2 := {(1 + t−1)φ−1
o (t)f(t) : f ∈ R,

f(t) = f(t−1)} extends to a linear bounded operator Ẽ acting from

L2(Γ) into ImQJΓ
.

Accordingly as before, also in here k is called the index of the odd asymmetric
factorization in L2(Γ).

Taking into account that X1 is a dense subset of L2(Γ), an equivalent formu-
lation of the condition (iii) is evidently the following:

(iii∗) the operator E is a bounded operator on L2(Γ).
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We observe that Definition 4.3 is related with Definition 3.3 in the sense that a
function φ : Γ→ C admits an odd asymmetric factorization in L2(Γ) if and only
if the function ϕ(x) := φ

(
x−i
x+i

)
, x ∈ R, admits an odd asymmetric factorization

in L2(R). To present such a relation in an explicit way, let us consider the useful
operator B0 given by

(B0ϕ)(t) = ϕ

(
i
1 + t

1− t

)
, t ∈ Γ .

Obviously B0 : L∞(R) → L∞(Γ) is an isometrical isomorphism, the inverse of
which is given by the following formula:

(B−1
0 φ)(x) = φ

(
x− i
x+ i

)
, x ∈ R .

In addition, the operator B given by

(Bϕ)(x) =

√
2

x+ i
ϕ

(
x− i
x+ i

)
, x ∈ R ,

is an isometrical isomorphism of L2(Γ) onto L2(R), of H2
+(Γ) onto H2

+(R), and of
t−1H2

−(Γ) onto H2
−(R). For the inverse of B, we have:

(B−1φ)(t) =
i
√

2

1− t
φ

(
i
1 + t

1− t

)
, t ∈ Γ .

By using the “convolution” with B operators, it is obtained the formula:

BL(φ)B−1 = (B−1
0 φ)I . (4.4)

A straightforward computation shows that

SR = BSΓB
−1, PR = BPΓB

−1, QR = BQΓB
−1 . (4.5)

The following formula is also of interest:

F−1PRF = `0r+ : L2(R)→ L2
+(R) . (4.6)

Let L(X, Y ) denote the Banach space of all bounded linear operators acting
between Banach spaces X and Y . In the case of X = Y , we will abbreviate
L(X,X) by L(X).

In what follows we will also use the notion of equivalent operators in the fol-
lowing way. Let T ∈ L(Z1, Y1) and S ∈ L(Z2, Y2) (for Banach spaces Z1, Z2, Y1

and Y2). It is said that T and S are equivalent operators, if there exist bounded
invertible operators E ∈ L(Y2, Y1) and F ∈ L(Z1, Z2), such that T = ESF. In
addition, if we have an equality T = ESE−1 we say that T and S are unitarily
equivalent operators.

Proposition 4.4. A function φ ∈ GL∞(Γ) admits an odd asymmetric factoriza-
tion in L2(Γ) with index k if and only if ϕ := (B−1

0 φ) ∈ GL∞(R) admits an odd
asymmetric factorization in L2(R) with index k.
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Proof. Let us assume that φ admits an odd asymmetric factorization in L2(Γ)
with index k. Hence, we can write (cf. (4.3)):

φ(t) = φ−(t)tkφo(t), t ∈ Γ, (4.7)

with the properties (i)–(iii) on the factors stated in Definition 4.3. Performing
the B−1

0 transformation in both sides of the equality (4.7), we obtain:

(B−1
0 φ)(x) = (B−1

0 φ−)(x) (B−1
0 d)(x) (B−1

0 φo)(x) ,

where d denotes the function d(t) := tk. Now, if defining

ϕ(x) := (B−1
0 φ)(x) = φ

(
x− i
x+ i

)
,

ϕ−(x) := (B−1
0 φ−)(x) = φ−

(
x− i
x+ i

)
,

ϕo(x) := (B−1
0 φo)(x) = φo

(
x− i
x+ i

)
,

it follows

ϕ(x) = ϕ−(x)

(
x− i
x+ i

)k

ϕo(x) .

I.e., formula (3.7) with m taken to be equal to k. Thus, we are left to show that
the corresponding conditions (i)–(iii) on the factors used in the factorizations of
definitions 4.3 and 3.3 are equivalent.

We have that

(1 + t−1)φ− ∈ H2
−(Γ)

if and only if
√

2

x− i

(
1 +

x+ i

x− i

)
ϕ− ∈ H2

−(R) .

Indeed, let (1 + t−1)φ− ∈ H2
−(Γ), then [B−1

0 (1 + t−1)φ−](x) ∈ (x− i)H2
−(R) (cf.,

e.g., [6, page 108 and in particular formula (6.3)]). That means

2
√

2
x

(x− i)2
ϕ−(x) =

√
2

x− i

(
1 +

x+ i

x− i

)
ϕ−(x) ∈ H2

−(R) ,

and therefore we have the equivalence of the first propositions of conditions (i).
To prove the equivalence of the first proposition of (ii)–conditions we need to

“compensate” the space with a particular even weight. Letting |1−t|φo ∈ L2
odd(Γ),

then

B−1
0 (|1− t|φo) ∈ B−1

0 (L2
odd(Γ)) . (4.8)

Thus, to obtain from the last inclusion a new one where we will be dealing with
the space L2

odd(R) we just need to use in (4.8) the multiplication by the weight
function 1√

x2+1
and therefore reach to

1√
x2 + 1

(B−1
0 (|1− t|φo))(x) ∈ L2

odd(R) .
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Consequently, we have:

2

x2 + 1
ϕo(x) ∈ L2

odd(R) .

Analogous arguments will give corresponding equivalences for the second inclu-
sions in conditions (i) and (ii).

We will prove now the equivalence of conditions (iii). As far as the condi-
tion (iii) of Definition 4.3 can be written in the form of the condition (iii∗) cited
after Definition 4.3, we will show that E is a bounded operator if and only if S
is a bounded operator. Consider the following operator:

F−1BEB−1F . (4.9)

This operator is equivalent to E simply because it is obtained from E by multi-
plying from the left and from the right by invertible operators. Moreover, from
(4.9) we have:

F−1BEB−1F = F−1BL(φ−1
o )(I + JΓ)PΓL(φ−1

− )B−1F
= F−1BL(φ−1

o )B−1FF−1B︸ ︷︷ ︸
I

(I + JΓ)B−1FF−1B︸ ︷︷ ︸
I

PΓ

B−1FF−1B︸ ︷︷ ︸
I

L(φ−1
− )B−1F

= F−1ϕ−1
o F(I − J)`0r+F−1ϕ−1

− F
= W 0

ϕ−1
o

(I − J)`0Wϕ−1
−

= S ,

where we have used formulas (4.4), (4.5) and (4.6). Finally this means that E
and S are unitarily equivalent operators.

From the above reasoning it is clear that we can proceed in a “reverse” direction,
i.e., starting from a factorization for the function ϕ and obtain a corresponding
factorization to the function φ, which completes the proof. �

5. Proof of the invertibility criterion

To prove the main invertibility result of the present work (i.e., Theorem 3.4) we
need first to prepare some auxiliary material.

5.1. Auxiliary notions, operators, and results. We will relate Toeplitz mi-
nus Hankel operators with the following operators:

−→
Tφ = PΓL(φ)QJΓ

: ImQJΓ
→ H2

+(Γ), (5.1)
←−
Tψ = QJΓ

L(ψ)PΓ : H2
+(Γ)→ ImQJΓ

,

where ψ(t) = φ−1(−t−1). It is readily seen that 2
−→
Tφ = (Tφ −Hφ)|ImQJΓ

.

The following well-known lemma is of interest and will be used to prove Propo-
sition 5.3.

Lemma 5.1. Let Z1 and Z2 be linear spaces, A : Z1 → Z2 be a linear and
invertible operator, P1 : Z1 → Z1 and P2 : Z2 → Z2 be linear projections, and
Q1 = I − P1 and Q2 = I − P2. Then P2AP1 : ImP1 → ImP2 is invertible if and
only if Q1A

−1Q2 : ImQ2 → ImQ1 is invertible.
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The proof of Lemma 5.1 can be found e.g. in [14].
We will now present two basic propositions which anyway will turn clear the

reason why to consider the above introduced operators
−→
Tφ and

←−
Tψ.

Proposition 5.2. Let φ ∈ GL∞(Γ). The operator
−→
Tφ ∈ L(ImQJΓ

, H2
+(Γ)) (defined

in (5.1)) is equivalent to the Toeplitz minus Hankel operator Tφ−Hφ ∈ L(H2
+(Γ)).

Proof. Let us consider the operators

R1 := (I − JΓ)PΓ : H2
+(Γ)→ ImQJΓ

R2 :=
1

2
PΓ(I − JΓ) : ImQJΓ

→ H2
+(Γ) .

These operators are inverses to one another and a direct computation yields that

−→
TφR1 = Tφ −Hφ

which shows explicitly the equivalence relation between the operators
−→
Tφ and

Tφ −Hφ. �

Proposition 5.3. Let φ ∈ GL∞(Γ) and ψ(t) = φ−1(−t−1), t ∈ Γ. The oper-

ator
−→
Tφ : ImQJΓ

→ H2
+(Γ) is invertible if and only if

←−
Tψ : H2

+(Γ) → ImQJΓ
is

invertible.

Proof. We will make use of Lemma 5.1 by choosing P1 = QJΓ
, P2 = PΓ, Q1 = PJΓ

and Q2 = QΓ. Thus, from Lemma 5.1 we derive that
−→
Tφ is invertible if and only

if PJΓ
L(φ−1)QΓ is invertible. Multiplying from the left and the right in this last

operator by JΓ, we obtain

JΓPJΓ
L(φ−1)QΓJΓ = PJΓ

JΓL(φ−1)JΓPΓ . (5.2)

Now, to reach the operator
←−
Tψ, we will consider the operator VΓ : L2(Γ)→ L2(Γ),

(VΓf)(t) = f(−t), and use it in (5.2) in the way that:

VΓPJΓ
JΓL(φ−1)JΓPΓVΓ = QJΓ

VΓJΓL(φ−1)JΓVΓ︸ ︷︷ ︸
L(ψ)

PΓ =
←−
Tψ ,

where ψ(t) = φ−1(−t−1). �

We assemble in the next corollary a direct consequence of the last two propo-
sitions.

Corollary 5.4. Let φ ∈ GL∞(Γ). Then the following assertions are equivalent:

(i) Tφ −Hφ is invertible in L(H2
+(Γ)) ,

(ii)
−→
Tφ is invertible in L(ImQJΓ

, H2
+(Γ)) ,

(iii)
←−
Tψ is invertible in L(H2

+(Γ), ImQJΓ
), where ψ(t) = φ−1(−t−1).
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Proposition 5.5. Assume that φ ∈ GL∞(Γ) admits a weak odd asymmetric
factorization in L2(Γ) with index k = 0. Then the following assertions hold:

(i) the operator E = L(φ−1
o )(I + JΓ)PΓL(φ−1

− ) is a well-defined linear

operator acting from X1 into X2 ,

(ii)
−→
TφE = PΓ|X1 ,

(iii) Ker
−→
Tφ = {0} .

Proof. (i) Let f ∈ X1 and φ = φ−φo (with φ− and φo under the conditions of
Definition 4.1). We will compute E f. First, we write f(t) = (1 − t−1)f1(t) with
f1 ∈ R. Multiplying both sides of the last equality by φ−1

− , we have:

φ−1
− (t)f(t) = (1− t−1)φ−1

− (t)f1(t) .

Hence, we can decompose φ−1
− f in an unique way:

φ−1
− (t)f(t) = u1(t) + p1(t) , (5.3)

where u1 ∈ t−1H2
−(Γ) and p1 is a polynomial. From the last equality and

from the assumption that f ∈ X1 it also follows that f has the following form:
f(t) = φ−(t)(u1(t) + p1(t)). Later on we will use this fact. Now, applying the
Riesz projection to (5.3), we will have PΓ(φ−1

− f)(t) = p1(t). Hence (E f)(t) =
φ−1
o (t)(p1(t)+t

−1p1(t
−1)). Since p1(t)+t

−1p1(t
−1) vanishes at t = −1, this expres-

sion is (1 + t−1) times a trigonometrical polynomial f2, such that f2(t) = f2(t
−1).

Now it is clear that E f belongs to the space X2.
(ii) Let us take again f ∈ X1 and assume the existence of a weak odd asym-

metric factorization of φ = φ−φo in L2(Γ) (with index k = 0). From the part (i)
of the proof we know that

f(t) = φ−(t)(u1(t) + p1(t)) ,

where u1 and p1 are as in the formula (5.3). Our aim is to compute
−→
TφE f. We

have already calculated (E f)(t) = φ−1
o (t)(p1(t) + t−1p1(t

−1)). From here we have
that

(
−→
TφE f)(t) = (PΓL(φ−)L(φo)

I − JΓ

2
φ−1
o (p1 + t−1p̃1))(t)

= PΓ(φ−(p1 + t−1p̃1))(t) .

In addition, we need to prove that
−→
TφE = PΓ|X1 . To this end, we need to show

that the following inclusion holds true: φ−(p1 + t−1p̃1) − f ∈ t−1H1
−(Γ). We are

left to note that the last inclusion was already deduced (even in a more general
setting) in [2, Lemma 4.1]. This proves the part (ii) of the proposition.

(iii) For f ∈ Ker
−→
Tφ, we directly have f ∈ ImQJΓ

and

PΓ(φf) = 0 . (5.4)

Define f− := φf. From the definition of PΓ and (5.4) it follows that f− ∈
t−1H2

−(Γ). Consequently, we have

φ−1
− f− = φof ,
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and therefore

t(1− t−1)φ−1
− (t)f−(t) = (t− 1)φo(t)f(t) =: ψ(t) . (5.5)

Additionally, we have that (1 − t−1)φ−1
− ∈ H2

−(Γ) and tf− ∈ H2
−(Γ). Then it

follows from (5.5) that ψ ∈ H1
−(Γ). Moreover, from the last identity in (5.5) we

have ψ̃ = −ψ. In particular, this implies that ψ = 0 and consequently f = 0. �

5.2. Proof of Theorem 3.4. After all the previous auxiliary material, we are
now ready to present the proof of the invertibility criterion for WHϕ.

Proof of Theorem 3.4. Let ϕ ∈ GL∞(R). First of all observe that

WHϕ : L2
+(R)→ L2(R+)

is equivalent to T(B0ϕ) − H(B0ϕ) : H2
+(Γ) → H2

+(Γ). Indeed, if we consider the
operator

F−1B[T(B0ϕ) −H(B0ϕ)]B
−1F : L2

+(R)→ L2
+(R) ,

then a straightforward computation leads to

F−1B[T(B0ϕ) −H(B0ϕ)]B
−1F = F−1B[PΓL(B0ϕ)(I − JΓ)PΓ]B−1F

= F−1BPΓB
−1F︸ ︷︷ ︸

`0r+

F−1BL(B0ϕ)B−1︸ ︷︷ ︸
L(ϕ)

F

F−1B(I − JΓ)B−1F︸ ︷︷ ︸
I+J

F−1BPΓB
−1F︸ ︷︷ ︸

`0r+

= `0r+F−1ϕF(I + J)`0r+

: L2
+(R)→ L2

+(R) . (5.6)

We notice that in the last identities the formulas (4.4), (4.5) and (4.6) were used.
In addition, it is clear that we can drop the last `0r+ operator in (5.6) since this
is just the identity operator in L2

+(R). So, we have that

F−1B[T(B0ϕ) −H(B0ϕ)]B
−1F = `0WHϕ .

This means that (as announced above) WHϕ is equivalent to T(B0ϕ)−H(B0ϕ) (due
to the fact that `0 : L2(R+)→ L2

+(R) is an invertible operator, the inverse being
r+ : L2

+(R)→ L2(R+)). Therefore, WHϕ is invertible if and only if T(B0ϕ)−H(B0ϕ)

is invertible.
The next step is then to prove that the invertibility of T(B0ϕ)−H(B0ϕ) happens

if and only if B0ϕ admits an odd asymmetric factorization in L2(Γ) with index
k = 0.

If T(B0ϕ) −H(B0ϕ) is invertible, then by Corollary 5.4 it follows that:

(a)
−−−→
T(B0ϕ) is invertible;

(b)
←−
Tψ is also invertible (with ψ(t) = (B0ϕ)−1(−t−1)).
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From (a), it follows that Im
−−−→
T(B0ϕ) = H2

+(Γ). Let us now consider ho ∈ ImQJΓ

such that
−−−→
T(B0ϕ)ho = 1. In addition, take h−(t) := (B0ϕ)(t)ho(t). From here we

have that h− ∈ H2
−(Γ) and h− 6= 0. If defining

f−(t) := (1 + t−1)−1h−(t) ,

fo(t) := (1 + t−1)−1ho(t)

it is readily seen that |1 + t|fo ∈ L2(Γ) and fo is an odd function. Indeed, for all
t ∈ Γ, it holds true

fo(t
−1) = (1 + t)−1ho(t

−1) = −(1 + t)−1tho(t) = −(1 + t−1)−1ho(t)

= −fo(t) .

In addition, we obtain the “factorization”

f− = (B0ϕ)fo (5.7)

with

(1 + t−1)f− ∈ H2
−(Γ), |1 + t|fo ∈ L2

odd(Γ) .

From (b), it follows that the corresponding adjoint operator
(←−
Tψ

)∗
=
−→
Tψ is also

invertible (recalling that ψ(t) = (B0ϕ)−1(−t−1)). Thus, from the just presented
reasoning, we guarantee the existence of elements f− 6= 0 and fo such that

(1 + t−1)f− ∈ H2
−(Γ) , |1 + t|fo ∈ L2

odd(Γ) ,

and

f−(t) = (B0ϕ)−1(−t−1)fo(t).

Let us now pass to the complex conjugate and make the substitution t 7→ −t−1.
Choosing g−(t) = f−(−t−1) and go(t) = fo(−t−1), it follows that

(1− t−1)g− ∈ H2
−(Γ), |1− t|go ∈ L2

odd(Γ) ,

and

g−(t) = (B0ϕ)−1(t)go(t). (5.8)

Multiplying now the corresponding elements in the identities (5.7) and (5.8),
we obtain g−f− = gofo. Moreover, it follows that g−f− = gofo =: C is a nonzero
constant (this can be verified in a similar way as in the proof of the uniqueness
of weak odd asymmetric factorizations in L2(Γ)).

Now, we put (B0ϕ)− = f− = Cg−1
− and (B0ϕ)o = f−1

o = goC
−1. Hence,

B0ϕ = (B0ϕ)−(B0ϕ)o ,

and we have shown that B0ϕ admits a weak odd asymmetric factorization in
L2(Γ) (with index k = 0). Now we have to prove that

E = L((B0ϕ)−1
o )(I + JΓ)PΓL((B0ϕ)−1

− )
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can be extended to a linear bounded operator which acts on L2(Γ). From Proposi-
tion 5.5 we have that this E is well-defined. Assertion (ii) of the same proposition
gives the following:

E =
(−−−→
T(B0ϕ)

)−1

PΓ|X1

(recall that
−−−→
T(B0ϕ) is invertible due to the hypothesis on T(B0ϕ) − H(B0ϕ)). Ob-

viously, this right hand side can be extended by continuity to a linear bounded
operator acting from L2(Γ) into ImQJΓ

(since that is a restriction of such an op-
erator to the space X1), and hence the present operator E can also be extended
as well.

Let us now assume that B0ϕ admits an odd asymmetric factorization in L2(Γ)
with index k = 0 (and so the corresponding conditions (i)–(iii) of the Defin-

ition 4.3 are satisfied). By Ẽ we will denote the continuous extension of the
operator E = L((B0ϕ)−1

o )(I + JΓ)PΓL((B0ϕ)−1
− ). As far as X1 is dense in L2(Γ),

we have that

−−−→
T(B0ϕ)Ẽ = PΓ

for operators defined in L2(Γ). In particular, this shows that Ẽ|H2
+(Γ) is the right

inverse of
−−−→
T(B0ϕ). Moreover, from the above identity we obtain

−−−→
T(B0ϕ)Ẽ|H2

+(Γ)

−−−→
T(B0ϕ) =

−−−→
T(B0ϕ) ,

and from here we have

−−−→
T(B0ϕ)

(
Ẽ|H2

+(Γ)

−−−→
T(B0ϕ) − I

)
= 0 . (5.9)

Recalling now that the kernel of
−−−→
T(B0ϕ) is trivial (cf. Proposition 5.5 (iii)), it

follows from (5.9) that Ẽ|H2
+(Γ)

−−−→
T(B0ϕ) = I. Consequently,

−−−→
T(B0ϕ) is invertible and

its inverse is just Ẽ|H2
+(Γ). In such a case, observe that from Corollary 5.4 we

conclude that T(B0ϕ) −H(B0ϕ) is also an invertible operator.
Therefore, until now we have proved that WHϕ is an invertible operator if and

only if B0ϕ admits an odd asymmetric factorization in L2(Γ) with index k = 0.
In addition, due to Proposition 4.4, we have that B0ϕ admits an odd asymmet-

ric factorization in L2(Γ) with index k = 0 if and only if B−1
0 (B0ϕ) = ϕ admits

an odd asymmetric factorization in L2(R) with index k = 0.
Putting altogether, we have that WHϕ is invertible if and only if ϕ admits an

odd asymmetric factorization in L2(R) with index k = 0. �

6. Fredholm property

In the present section it will be obtained a Fredholm criterion for WHϕ. Besides
this, other particular results will follow as direct consequences of this Fredholm
criterion.
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Theorem 6.1. Let ϕ ∈ GL∞(R). The operator WHϕ : L2
+(R) → L2(R+) is a

Fredholm operator if and only if ϕ admits an odd asymmetric factorization in
L2(R). Moreover, if WHϕ is a Fredholm operator, then it holds

dim KerWHϕ = max{0,−k}, dim KerWH∗
ϕ = max{0, k} , (6.1)

where k is the index of an odd asymmetric factorization of ϕ in L2(R).

Proof. Assume that WHϕ is a Fredholm operator with index −k. We will start
by using the classical Wiener-Hopf technique to built a corresponding auxiliary
invertible operator. For this purpose, let us consider the auxiliary function ψ(x) =(
x−i
x+i

)−k
ϕ(x). It is well-known that an Hankel operator with a continuous symbol

is compact. Therefore (since for k ∈ Z the element ζ−k with ζ(x) :=
(
x−i
x+i

)
is

continuous in the compactified real line), by employing formula (2.1), it follows
that

WHψ = WHζ−k`0WHϕ +K1 , (6.2)

where K1 is a compact operator. In addition, let us also observe that WHζ−k =
Wζ−k +K2 (where K2 is a compact operator). Thus, from the Fredholm theory
of Wiener-Hopf operators we conclude that WHζ−k is a Fredholm operator with
Fredholm index k. Consequently, from identity (6.2) we conclude that WHψ is a
Fredholm operator with index zero.

Let us now consider the Lebesgue measure zero set

Vψ := {x ∈ R : ψ(x) = ψ(−x) = 0}

(note that ψ ∈ GL∞(R)), and the corresponding characteristic function

χVψ(x) =

{
1, x ∈ Vψ;
0, x 6∈ Vψ.

Arguing in a similar way as in the Toeplitz plus Hankel case (see [2]), it follows
that

KerWHψ
∼= ImWHχVψ

or KerWH∗
ψ = {0}, (6.3)

where ∼= denotes the existence of an isomorphically isomorphism between the
related sets. Since Vψ has zero Lebesgue measure, and hence χVψ = 0 for almost
all x ∈ R, it follows that ImWHχVϕ

= {0}. This combined with (6.3) leads to

KerWHψ
∼= {0} or KerWH∗

ψ = {0}. Thus KerWHψ = {0} or KerWH∗
ψ = {0}.

This means that WHψ is invertible (since we have already previously concluded
that WHψ is a Fredholm operator with index zero).

Now, employing Theorem 3.4 we deduce that ψ admits an odd asymmetric
factorization in L2(R) with index zero. Hence ϕ admits an odd asymmetric
factorization in L2(R) with index k.

Now we will proceed with the reverse implication. Assume that ϕ admits an
odd asymmetric factorization in L2(R) with index k. Consequently, we have a
corresponding operator decomposition:

WHϕ = Wϕ−`0WHζk`0WHϕo +K ,



WIENER-HOPF PLUS HANKEL OPERATORS 17

where K is a compact operator. Thus, WHϕ is a Fredholm operator if and only
if Wϕ−`0WHζk`0WHϕo is a Fredholm operator. However, the latter operator is
equivalent to WHζk , because `0, Wϕ− and WHϕo are invertible operators. There-
fore, as above, we simply have to notice that WHζk = Wζk +Hζk is a Fredholm
operator with index −k.

Let us now turn to formulas (6.1). Under the Fredholm property we already
know that WHϕ has a Fredholm index equal to −k. Thus, combining this fact
with (6.3) it directly follows the presented formulas for the defect numbers. �

As a direct consequence of the last result we collect the following interesting
conclusions.

Corollary 6.2. If WHϕ is a Fredholm operator, then WHϕ has a trivial kernel
or a trivial cokernel.

Corollary 6.3. The Wiener-Hopf plus Hankel operator WHϕ is invertible if and
only if WHϕ is Fredholm with index zero.

In addition, it is also clear that Theorem 6.1 implies Theorem 3.4 but we would
like to emphasize that to prove Theorem 6.1 we needed to use Theorem 3.4.
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