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Abstract. In this paper we give more results about inner radius spectrum
of operators on Hilbert spaces with several examples. Also, we established
an inequality for inner radius spectrum of a positive operator matrix and its
minimum moduli block matrix.

1. Introduction and preliminaries

Let H be a complex Hilbert space and B(H) denote the algebra of all bounded
linear operators on H. For operator a ∈ B(H), let m(a), σ(a), W (a), r(a), w(a),
i(a), and wi(a) denote the minimum moduli, spectrum, numerical range, spectral
radius, numerical radius, inner spectral radius, and inner numerical radius of a,
respectively.

m(a) = inf{‖ax‖, x ∈ H, and ‖x‖ = 1 },
σ(a) = {λ ∈ C : a− λI is not invertible },

W (a) = {〈x, ax〉, ‖x‖ = 1 },
r(a) = sup{|λ| : λ ∈ σ(A) },

w(a) = sup{|〈x, ax〉|, ‖x‖ = 1 },
i(a) = inf{|λ| : λ ∈ σ(a) },

wi(a) = inf{|〈x, ax〉|, ‖x‖ = 1 }.
Also, by definitions of m(a) and i(a) it is clear that; if A is not invertible in

B(H), then m(a) = i(a) = 0, and if a is invertible, then m(a) = ‖a−1‖−1 and
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i(a) = r(a−1)−1, where r(a) is the spectral radius of A. It is well known that for
every a ∈ B(H), we have

i(a) ≥ m(a) (1.1)

In addition to the inequality (1.1), the most important properties of the inner
spectral radius are the inner spectral radius formula

i(a) = lim
n→∞

(m(an))
1
n ,

if and only if

lim
n→∞

(m(an))
1
n ≤ lim

n→∞
(m((a∗)n))

1
n .

Also, a special of the spectral mapping theorem, which assert that

i(an) = (i(a))n, for every positive integer n,

and, if a is normal, then

i(a) = m(a) = wi(a).

For the proof of above inequalities and additional properties of inner spectral
radius, the reader is referred to [6].

It follows easily from the Theorem 1.3.4 [7] that if a, b ∈ B(H) are such that
ab = ba, then

r(a + b) ≤ r(a) + r(b),

and

r(ab) ≤ r(a)r(b).

The following examples show that the inner spectral radius is neither subadditive
nor submultiplicative.

Example 1.1. Suppose that

A =

(
0 1
0 1

)
, B =

(
0 0
1 1

)
.

Then i(A) = i(B) = 0, but i(A + B) =
√

2− 1. In this example AB 6= BA.

Example 1.2. Suppose that

A =

(
2 0
0 2

)
, B =

(
−1 0
0 −1

)
.

Then i(A) = 2 and i(B) = 1, but i(A + B) = 1 ≤ i(A) + i(B). In this example
AB = BA.

Example 1.3. Suppose that

A =

(
2 1
1 2

)
, B =

(
1 −1
−1 1

)
.

Then A and B are positive as operators on C2 with BA = AB, and i(A + B) =
3 ≥ 1 + 0 = i(A) + i(B).

As a result of Theorem 1.3.4 in [7] we have the following corollary.
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Corollary 1.4. If a, b ∈ B(H) are positive operators such that ab = ba, then

r(a + b) ≥ r(a) + r(b) .

Example 1.5. Let

A =

(
1 1
0 1

)
, B =

(
0 1
1 1

)
.

Then AB 6= BA and i(AB) =
√

2− 1 ≤
√

5−1
2

= i(B) i(A) .

Example 1.6. Let

C =

(
3 2
0 2

)
, D =

(
1 1
−1 1

)
.

Then CD 6= DC and i(CD) = 2
√

3 ≥ 2
√

2 = i(C) i(D).

However, If a, b ∈ B(H) are such that ab = ba, then by Theorem 1.3.4 in [7]
we have

i(ab) ≥ i(a)i(b).

2. Inner spectral radius of block-minimum moduli matrices

In this section we try to introduce block-minimum moduli matrices associated
with an operator matrix A = (aij)n×n. Also we will give an open problem about
minimum moduli and inner spectral radius of the block-minimum moduli matrix
associated with an operator matrix. Let Hi, i = 1, · · · , n, be complex Hilbert
spaces with inner product 〈· , ·〉. As usual B(Hi, Hj) is the Banach space of
all bounded linear operators from Hi to Hj with operator norm topology. For
H =

⊕n
i=1 Hi, and A ∈ B(H), the operator A can be represented as an n × n

matrix, that is A = (aij)n×n with aij ∈ B(Hj, Hi). The block-norm and block-
minimum moduli matrices associated with an operator matrix A = (aij)n×n are

defined respectively by Ã = (‖aij‖)n×n and Â = (m(aij))n×n. Note that, Ã and

Â are nonnegative matrices. Recall that an n × n complex matrix T = (tij)n×n

is said to be a nonnegative matrix if each entry tij is a nonnegative number. An
operator a ∈ B(H) is called positive and denoted by a ≥ 0 if 〈ax, x〉 ≥ 0 for all
x ∈ H.

In recent years, a number of researchers have considered questions concern-
ing the spectral radius of an operator matrix A and its block-norm Ã (see for
example,[1, 2, 4]).Jin-Chuan Hou and Hong-Ke Du proved the following theorem
[2]. In what follows, Mn(B(H)) shall denote the algebra of all n × n matrices
with entries in B(H).

Theorem 2.1. Let A = (Aij)n×n ∈ Mn(B(H)) and Ã = (‖Aij‖)n×n be its block-
norm matrix. Then

(1) ‖A‖ ≤ ‖Ã‖ .
(2) w(A) ≤ w(Ã) .
(3) r(A) ≤ r(Ã) .
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As an application of this theorem in [4] F. Kittaneh proved the following the-
orems.

Theorem 2.2. If a1, a2, b1, b2 ∈ B(H), then

r(a1b1 + a2b2) ≤
1

2
(‖b1a1‖+ ‖b2a2‖) +

√
(‖b1a1‖+ ‖b2a2‖)2 + 4‖b1a2‖‖b2a1‖ .

For any vector x = (x1, · · · , xn)T , xi ∈ H, we write |x| = (‖xi‖, · · · , ‖xn‖)T .
Then |x| is a unit vector in the Hilbert space Cn if x is a unit vector in H. The
proof of Theorem 2.1 is based on the norm monotonicity of nonnegative matrices
and the following equations.

sup
‖x‖=1

〈Ã|x|, |x| 〉 ≤ w(Ã), sup
‖x‖=1

〈Ã∗Ã|x|, |x| 〉 = ‖Ã‖ .

Proposition 2.3. The minimum moduli has monotone property that is;

(1) If A, B ∈ B(H) such that 0 ≤ A ≤ B, then m(A) ≤ m(B).
(2) If A and B are two positive semidefinite matrices such that B−A is also

positive semidefinite, then m(A) ≤ m(B).

Proof. If m(A) = 0, then the result is clear. Let m(A) 6= 0. Then A is invertible.
By Proposition 4.2.8 [3] we get B is invertible and ‖B−1‖ ≤ ‖A−1‖. Thus

m(A) = ‖A−1‖−1 ≤ ‖B−1‖−1 = m(B).

�

The following example shows that we can not replace positive semidefinte with
nonnegative in statement (2) in the above proposition.

Example 2.4. Suppose that

A =

(
1 0
0 1

)
, B =

(
1 1
1 1

)
.

It is clear that B − A is a nonnegative matrix but m(A) = i(A) = wi(A) = 1
and m(B) = i(B) = wi(B) = 0.

This example also shows that the monotonicity property does not hold for
spectral inner radius and numerical inner radius.

Proposition 2.5. Let A = (aijI)n×n ∈ Mn(B(H)), where I is the identity

element in B(H) and Ã = (aij)n×n ∈ Mn(R) be a nonnegative matrix. Then

(1) wi(A) ≤ wi(Ã)
(2) m(A) ≤ m(Ã).
(3) i(A) ≤ i(Ã).

Proof. (1). Let e0 be a unit vector in the Hilbert space H. For every unit vector
X = (x1, · · · , xn)T ∈ Cn we write y = (x1e0, · · · , xne0) ∈ Hn. We have

〈ÃX, X〉 =
n∑

i,j=1

aijxjx̄i =
n∑

i,j=1

〈aijIyj, yi〉 = 〈Ay, y〉 .
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Thus,
wi(Ã) = inf

‖X‖=1
|〈ÃX, X〉| = inf

‖y‖=1
|〈Ay, y〉| ≥ wi(A) .

(2). Let X and y be as in part (1).

m(Ã)2 = inf
‖x‖=1

‖ÃX‖2 = inf
‖X‖=1

〈Ã∗ÃX, X〉

= inf
‖x‖=1

|
n∑

i=1

n∑
j=1

n∑
k=1

akjxjakix̄i|

= inf
‖x‖=1

|
n∑

i=1

n∑
j=1

n∑
k=1

〈akjyj, akiyi〉|

= inf
‖y‖=1

〈A∗Ay, y〉 = inf
‖y‖=1

‖Ay‖2

≥ m(A)2.

So m(A) ≤ m(Ã).
(3). Notice that for operators matrices A = (aijI)n×n, B = (bijI)n×n in Mn(H)

and nonnegative matrices Ã = (aij)n×n, B̃ = (bij)n×n in Mn(R) we have

m(ÃB) = m(ÃB̃) .

Using induction, we have

m(An) = m(Ãn) = m((Ã)n),

for every positive integer n. Also,

i(A) ≤ lim
n→∞

(m(An))
1
n = lim

n→∞

(
m(Ãn)

) 1
n

= i(Ã).

(The first inequality above is result of Equation (3.1) in [6] and the last equality
is the Fact 3.1 in [6] about properties of the inner spectral radius.) �

The following examples show that in general neither m(A) ≤ m(Ã) (i(A) ≤
i(Ã)) nor m(A) ≥ m(Ã) (i(A) ≥ i(Ã)).

Example 2.6. Let a =

(
1 1
1 1

)
, and b =

(
1 0
0 1

)
. Consider the 2 × 2

operator matrix

A =

(
a b
b a

)
.

We have m(A) = i(A) =
√

3 − 1, but m(Ã) = i(Ã) = 0. Thus, m(A) = i(A) ≥
m(Ã) = i(Ã).

Example 2.7. Let a =

(
1 0
0 0

)
, and b =

(
0 0
0 0

)
. Consider the 2 × 2

operator matrix

A =

(
a b
b a

)
.

Since A is a positive operators, we have m(A) = i(A) = 0 ≤ m(Ã) = i(Ã) = 1.
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As we see in Example 2.6, m(Â) = i(Â) = 1 ≥ m(A) = i(A) =
√

3− 1 and in

Example 2.7, m(Â) = i(Â) = 0 = m(A) = i(A). Therefore in the above examples

we have m(Â) ≥ m(A) and i(Â) ≥ i(A). But for arbitrary operator matrix A

still we do not know what is the relation between m(A) and m(Â) ( i(A) and

i(Â) )?
At the end of this section we give an inequality for positive operator matrices.

Let A = (aij)n×n be a positive operator matrix. Then aii is positive for every
i = 1, · · · , n and aij = a∗ji when i 6= j.

Theorem 2.8. If A = (aij)n×n is a positive operator matrix, then

m(A) ≤ min
1≤ i≤n

{m(aii)} .

Proof. Let x be unit vectors in H. Then, consider unit vector Xi = (x1, · · · , xn)T ∈
Hn, where xi = x and xj = 0 for j 6= i.

〈AXi , Xi〉 = 〈aiix, x〉 .
Since A and aii are positive operators for every 1 ≤ i ≤ n,

m(aii) = inf
‖x‖=1

〈aiix, x〉 = inf
‖Xi‖=1

〈AXi , Xi〉 ≥ inf
‖X‖=1

〈AX , X〉 = m(A) .

Thus,

i(A) = wi(A) = m(A) ≤ min (m(aii) = wi(aii) = i(aii), m(aii) = wi(aii) = i(aii)) .

�

Remark 2.9. In Example 2.6; A is not positive because one of its eigenvalues is
−1 and we have m(A) = 1 ≥ min(m(a) = 0 , m(b) = 1). Therefore, Theorem
2.8 does not hold for arbitrary operator matrix. If A = (aij) ≥ 0, with aij = 0
whenever i 6= j, then m(A) = min1≤ i≤n{m(aii)} . If A = (aij)n×n is a positive
semidefinite matrix with aii 6= 0 and aij =

√
aiiajj for every 1 ≤ i, j ≤ n, then

m(A) = 0 which is strictly less than min1≤ i≤n{m(aii)} .

3. Positive operator matrices on C∗-Algebras

In this section we show that the last results hold for a positive operator matrix
on an arbitrary C∗-algebra by GNS construction defined as for scalar matrices.
If A is an algebra, then Mn(A) denotes the algebra of all n × n matrices with
entries in A. The operations on Mn(A) are define just as for scalar matrices. If A
is a ∗-algebra, so is Mn(A), where the involution is given by (aij)

∗
n×n = (a∗ij)n×n.

If ϕ : A → B is a ∗-homomorphism between ∗-algebras, then

ϕ : Mn(A) :→ Mn(B), (aij)n×n → (ϕ(aij))n×n

is ∗-homomorphism and also denoted by ϕ.
A representation of a C∗-algebra A is a pair (H, ϕ) where H is a Hilbert space

and ϕ : A → B(H) is a ∗-homomorphism. We say (H, ϕ) is faithful if ϕ is
injective. Recall that if ϕ : A → B is an injective ∗-homomorphism between
C∗-algebras A and B, then ϕ is necessarily isometric [7, Theorem 3.2.7]. Let
(H, ϕ) be the universal representation (in GNS construction). Then, for element
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a ∈ A we define W (a) = {〈ϕ(a)x, y〉, x, y ∈ H}. By the GNS representation of
a C∗-algebra A in [7] the following theorem and inequalities were established.

Theorem 3.1. If A is a C∗-algebra, then there is a unique norm on Mn(A)
making it a C∗-algebra.

If A is a C∗-algebra and A ∈ Mn(A), then

‖aij‖ ≤ ‖A‖ ≤
n∑

k,l=1

‖akl‖ , i, j = 1, · · · , n .

As far as C∗-algebras are concerned, the results to this point lead to the following
theorem about positive operator matrices on C∗-algebras.

Theorem 3.2. Let A = (aij)n×n ∈ Mn(A) be an operator matrix and Ã =
(‖aij‖)n×n its block-norm matrix, where A is a C∗-algebra. Then

(1) ‖A‖ ≤ ‖Ã‖ .
(2) r(A) ≤ r(Ã) .

Theorem 3.3. If a1, a2, b1, b2 ∈ A, then

r(a1b1 + a2b2) ≤
1

2
(‖b1a1‖+ ‖b2a2‖) +

√
(‖b1a1‖+ ‖b2a2‖)2 + 4‖b1a2‖‖b2a1‖ .

Theorem 3.4. If A = (aij)n×n is a positive operator matrix on the C∗-algebra
A, then

m(A) ≤ min
1≤ i≤n

{m(aii)} .

These inequalities follow from corresponding inequalities in Mn(B(H)) and the
unique norm on Mn(A) is the norm induced by the norm defined above on the
corresponding Mn(B(H)).
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