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Abstract. Let X be a pointed metric space and let E be a Banach space. It
is known that the Lipschitz space Lip0(X,E∗) is isometrically isomorphic to
(F(X)⊗̂πE)∗, the dual of the projective tensor product of the Lipschitz-free
space F(X) and E. Since the injective norm ε on F(X)⊗E is smaller than the
projective norm π, we study Lipschitz Grothendieck-integral operators which
are exactly those elements in Lip0(X,E∗) which correspond to the elements of
(F(X)⊗̂εE)∗, the dual of the injective tensor product of F(X) and E.

Introduction

Let X be a pointed metric space with a base point denoted by 0, and let E be
a Banach space over K. The Lipschitz space Lip0(X,E) is the Banach space of
all Lipschitz maps f from X into E that vanish at 0, under the Lipschitz norm
defined by

Lip(f) = sup

{
‖f(x)− f(y)‖

d(x, y)
: x, y ∈ X, x 6= y

}
.

The elements of Lip0(X,E) are referred as Lipschitz operators. Lip0(X,K) is
known as the Lipschitz dual of X and denoted by X#. The closed linear subspace
of the dual of X# spanned by the point evaluation functionals δx on X# with
x ∈ X is a predual ofX# called the Lipschitz-free space overX and denoted F(X)
by Godefroy and Kalton in [8]. The Weaver’s book [13] contains a complete study
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of Lip0(X) and its predual F(X) which is called the Arens–Eells space of X and
denoted by Æ(X) there.

Let E and F be Banach spaces. As usual, BE stands for the closed unit ball
of E, E∗ for the topological dual of E and κE for the canonical injection from
E into E∗∗. We denote by E⊗̂εF the completion of the algebraic tensor product
E ⊗ F in the injective norm defined by

ε

(
n∑
i=1

xi ⊗ yi

)
= sup

{∣∣∣∣∣
n∑
i=1

f(xi)g(yi)

∣∣∣∣∣ : f ∈ BE∗ , g ∈ BF ∗

}
,

and by E⊗̂πF the completion of E ⊗ F in the projective norm defined by

π

(
n∑
i=1

xi ⊗ yi

)
= inf

{
k∑
j=1

∥∥x′j∥∥∥∥y′j∥∥ :
k∑
j=1

x′j ⊗ y′j =
n∑
i=1

xi ⊗ yi

}
.

The space Lip0(X,E∗) is isometrically isomorphic to (F(X)⊗̂πE)∗, via the map
f 7→ Γ(f) given by

〈Γ(f), δx ⊗ e〉 = 〈f(x), e〉
for f ∈ Lip0(X,E∗) and δx ⊗ e ∈ F(X) ⊗ E (essentially, [10, Theorems 4.1
and 5.8]). Since ε ≤ π on F(X) ⊗ E, we are interested in determining those
Lipschitz operators f in Lip0(X,E∗) which correspond to the elements of the
space (F(X)⊗̂εE)∗. We will prove that those Lipschitz operators are exactly
Lipschitz Grothendieck-integral operators from X into E∗, defined as follows.

Definition 1. Let X be a pointed metric space and let E be a Banach space.
A Lipschitz operator f ∈ Lip0(X,E) is called a Lipschitz Grothendieck-integral
(G-integral for short) operator if there exist a finite measure space (Ω,Σ, µ),
a bounded linear operator A ∈ L(L1(µ), E∗∗) and a Lipschitz operator b ∈
Lip0(X,L∞(µ)) such that the following diagram commutes:

X E E∗∗

L∞(µ) L1(µ)

f κE

b

I∞,1

A

where I∞,1 : L∞(µ)→ L1(µ) is the formal inclusion operator. The triple (A, b, µ)
is called a Lipschitz G-integral factorization of f . The Lipschitz G-integral norm
of f is defined by LipGI(f) = inf ‖A‖Lip(b)µ(Ω), where the infimum is taken over
all Lipschitz G-integral factorizations of f . The set of all Lipschitz G-integral
operators from X to E will be denoted by Lip0GI(X,E). Multiplying A or b by
a constant, we can assume that µ is a probability measure.

In 2009, Farmer and Johnson started in [7] the study of Lipschitz p-summing
operators between metric spaces, a nonlinear generalization of p-summing opera-
tors. From then, some Lipschitz versions of different classes of bounded linear op-
erators have been investigated as, for example, Lipschitz (p, r, s)-summing ((q, p)-
mixing, completely (q, p)-mixing) operators by Chávez-Domı́nguez in [1, 2, 3],
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Lipschitz p-nuclear (p-integral, p-dominated) operators by Chen and Zheng in
[4, 5], Lipschitz strongly p-summing operators by Saadi in [12], and Lipschitz
compact (weakly compact, finite-rank, approximable) operators by Sepulcre, Vi-
llegas and the second-named author in [9].

This paper is devoted to the study of Lipschitz G-integral operators from X
to E and their relationships with other classes of Lipschitz operators as Lipschitz
finite-rank operators, Lipschitz Pietsch-integral operators and Lipschitz nuclear
operators.

Before going to describe the contents of this paper, we recall the following
concepts.

Definition 2. Let X be a pointed metric space and let E be a Banach space.
For any g ∈ X# and e ∈ E, let g · e be the map from X to E defined by
(g · e)(x) = g(x)e for all x ∈ X. Let A(X,E) be a linear subspace of Lip0(X,E)
equipped with a norm || · ||A. Consider the following conditions:

(i) Lip(f) ≤ ||f ||A for every f ∈ A(X,E).
(ii) (A(X,E), || · ||A) is a Banach space.
(iii) If g ∈ X# and e ∈ E, then g · e ∈ A(X,E) and ||g · e||A ≤ Lip(g)||e||.
(iv) The ideal property: Let Y be a pointed metric space and let F be a

Banach space. If h ∈ Lip0(Y,X), f ∈ A(X,E) and T ∈ L(E,F ), then
Tfh ∈ A(Y, F ) and ||Tfh||A ≤ ‖T‖ ‖f‖A Lip(h).

It is said that (A(X,E), || · ||A) is a Banach space (Banach ideal) of Lipschitz
operators if it satisfies the properties (i), (ii) and (iii) (respectively, (ii), (iii) and
(iv)).

Section 1 gathers the main properties of Lipschitz finite-rank operators, some
preliminary results about the Lipschitz-free space F(X) and an integral descrip-
tion for the elements of (F(X)⊗̂εE)∗.

In Section 2, we show that (Lip0GI(X,E),LipGI) is a Banach space and a Ba-
nach ideal of Lipschitz operators. Our main result in Section 2 characterizes
Lipschitz G-integral operators from X to E as those Lipschitz operators f in
Lip0(X,E) whose associate linear functionals Γ(κEf) on F(X)⊗ E∗ are contin-
uous on F(X)⊗̂εE∗. Furthermore, LipGI(f) = ‖Γ(κEf)‖. We also show that the
space L∞(µ) in Definition 1 can be replaced by the space Cw∗(BX#) of all weak*
continuous functions from BX# into K.

Let us recall that the Lipschitz transpose operator of a Lipschitz operator
f ∈ Lip0(X,E) is the bounded linear operator f t : E∗ → X# defined by f t(φ) =
φ ◦ f for all φ ∈ E∗. Furthermore, ‖f t‖ = Lip(f) and f t = Q−1

X (Tf )
∗, where

QX : X# → F(X)∗ is the canonical isometric isomorphism and Tf : F(X)→ E is
the linearization of f provided by a known result of Weaver [13, Theorem 2.2.4].
We will prove that a Lipschitz operator f ∈ Lip0(X,E) is Lipschitz G-integral
if and only if its Lipschitz transpose operator f t (or its linearization Tf ) is an
integral linear operator from E∗ into X# (respectively, from F(X) into E), in
whose case LipGI(f) coincides with the integral norms of f t and Tf .

Section 3 deals with a subclass of Lipschitz G-integral operators from X to E
called Lipschitz Pietsch-integral (P-integral for short) operators which are defined
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if we require to factor the operator f : X → E rather than κEf in Definition
1. We prove that the set Lip0PI(X,E) of such operators is a Banach space
(respectively, Banach ideal) of Lipschitz operators under the so-called Lipschitz
P-integral norm LipPI . When E is a dual Banach space, we show that both
spaces Lip0GI(X,E) and Lip0PI(X,E) coincide and use this fact to answer the
question which motivated this paper by establishing that a Lipschitz operator f ∈
Lip0(X,E∗) is Lipschitz G-integral if and only if the associate linear functional
Γ(f) on F(X)⊗E is continuous on F(X)⊗̂εE. Moreover the mapping f 7→ Γ(f)
is an isometric isomorphism from (Lip0GI(X,E

∗),LipGI) onto (F(X)⊗̂εE)∗.
Section 4 is devoted to the set Lip0N(X,E) of Lipschitz nuclear operators from

X to E. We prove that Lip0N(X,E) is a Banach space (respectively, Banach ideal)
of Lipschitz operators with the so-called Lipschitz nuclear norm LipN . In fact,
every element in Lip0N(X,E) is the LipN -limit of a sequence of Lipschitz finite-
rank operators from X to E. We also prove that Lip0N(X,E) ⊂ Lip0PI(X,E)
and LipPI(f) ≤ LipN(f) for all f ∈ Lip0N(X,E). Moreover, the converse in-
clusion and inequality hold when E has the Radon–Nikodým property. Finally,
it is shown that a Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz G-integral
operator if and only if f is the limit in the Lipschitz weak operator topology on
Lip0(X,E) of a LipN -bounded net of Lipschitz nuclear operators (respectively,
Lipschitz finite-rank operators) from X to E.

1. Preliminaries

Throughout this paper, if X and Y are pointed metric spaces, we will denote by
Lip0(X, Y ) the set of all base-point preserving Lipschitz maps from X to Y . If E
and F are Banach spaces, L(E,F ) will stand for the Banach space of all bounded
linear operators from E into F endowed with the usual norm.

An element f ∈ Lip0(X,E) is said to be a Lipschitz finite-rank operator if the
linear subspace of E generated by f(X), lin(f(X)), is finite dimensional in whose
case the rank of f , denoted by rank(f), is defined as the dimension of lin(f(X)).
We denote by Lip0F (X,E) the set of all Lipschitz finite-rank operators from X
into E.

We gather some properties of those Lipschitz operators in the following easy
result.

Proposition 1.1. Let X be a pointed metric space and be E a Banach space.

(i) Lip0F (X,E) is a linear subspace of Lip0(X,E).
(ii) If g ∈ X# and e ∈ E, then g·e ∈ Lip0F (X,E) with Lip(g·e) = Lip(g) ‖e‖.

Moreover, rank(g · e) = 1 if g 6= 0 and e 6= 0.
(iii) Every element f ∈ Lip0F (X,E) has a representation in the form f =∑n

i=1 gi · ei where n = rank(f), g1, . . . , gn ∈ X# and e1, . . . , en ∈ E.
(iv) If f =

∑n
i=1 gi · ei as in (iii), then f t : E∗ → X# has finite rank and

f t =
∑n

i=1 κE(ei) · gi.
(v) If Y is a pointed metric space, F a Banach space, h ∈ Lip0(Y,X),

f ∈ Lip0(X,E) and T ∈ L(E,F ), then Tfh ∈ Lip0F (Y, F ) and Tfh =∑n
i=1(gi ◦ h) · T (ei).
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We now recall some properties of the Lipschitz-free space F(X) that will be
needed later.

Theorem 1.2. [13, pp. 39-41],[9] Let X be a pointed metric space and E a
Banach space.

(i) The dual of F(X) is isometrically isomorphic to X#, via the evaluation
map QX : X# → F(X)∗ defined by QX(g)(γ) = γ(g) for all g ∈ X#

and γ ∈ F(X). Moreover, on bounded subsets of X#, the weak* topology
coincides with the topology of pointwise convergence.

(ii) The Dirac map δX : x 7→ δx is an isometric embedding of X into F(X).
(iii) For any f ∈ Lip0(X,E), there is a unique Tf ∈ L(F(X), E) such that

Tf ◦ δX = f . Furthermore, ‖Tf‖ = Lip(f) and (Tf )
∗ = QXf

t.
(iv) The space F(X) agrees with the space of all linear functionals γ on X#

such that γ|B
X#

is continuous in the topology of pointwise convergence.

Taking into account the density of the linear span of {δx}x∈X in F(X), the
following characterization of the elements of (F(X)⊗̂E)∗ can be deduced from
the theory of tensor products of Banach spaces (see [11, Section 3.4]).

Theorem 1.3. Let ϕ be a linear functional on F(X)⊗E. Then ϕ is continuous
on F(X)⊗̂εE if and only if there exist a finite measure space (Ω,Σ, µ), a bounded
linear operator A ∈ L(E,L∞(µ)) and a Lipschitz operator b ∈ Lip0(X,L∞(µ))
such that

〈ϕ, δx ⊗ e〉 =

∫
Ω

b(x)A(e)dµ

for all x ∈ X and e ∈ E. Furthermore, the norm of ϕ is given by ‖ϕ‖ =
inf ‖A‖Lip(b)µ(Ω), where the infimum is taken over all such factorizations of ϕ,
and this infimum is attained. Multiplying A or b by a constant, we can assume
that µ is a probability measure.

From now on, Φ: L∞(µ)→ L1(µ)∗ will denote the canonical isometric isomor-
phism given by

〈Φ(t), s〉 =

∫
Ω

I∞,1(t)sdµ (t ∈ L∞(µ), s ∈ L1(µ)) .

Note that, for any ϕ ∈ L1(µ)∗ and s ∈ L1(µ), we have

〈ϕ, s〉 =
〈
Φ(Φ−1(ϕ)), s

〉
=

∫
Ω

I∞,1(Φ−1(ϕ))sdµ.

2. Lipschitz Grothendieck-integral operators

The question raised in the introduction can be posed to Lipschitz operators taking
values in E instead of E∗. Indeed, every Lipschitz operator f ∈ Lip0(X,E) deter-
mines a Lipschitz operator κEf ∈ Lip0(X,E∗∗) which has an associate functional
Γ(κEf) in (F(X)⊗̂πE∗)∗ defined by

〈Γ(κEf), δx ⊗ φ〉 = 〈κEf(x), φ〉 = 〈φ, f(x)〉 .
Furthermore, ‖Γ(κEf)‖ = Lip(κEf) = Lip(f). Since ε ≤ π on F(X) ⊗ E∗, we
wish to study for which Lipschitz operators f in Lip0(X,E) the linear functional
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Γ(κEf) is continuous even with respect to ε. Towards this end, we will need the
class Lip0GI(X,E) of Lipschitz G-integral operators from X to E, presented in
the introduction.

In light of the next result, we first obtain that (Lip0GI(X,E),LipGI) is a Banach
space and a Banach ideal of Lipschitz operators.

Proposition 2.1. Lip0GI(X,E) is a linear subspace of Lip0(X,E) satisfying the
following properties:

(i) Lip(f) ≤ LipGI(f) for all f ∈ Lip0GI(X,E).
(ii) LipGI is a Banach space norm on Lip0GI(X,E).
(iii) If g ∈ X# and e ∈ E, then g · e ∈ Lip0GI(X,E) and LipGI(g · e) =

Lip(g) ‖e‖.
(iv) Let Y be a pointed metric space and F a Banach space. If h ∈ Lip0(Y,X),

f ∈ Lip0GI(X,E) and T ∈ L(E,F ), then Tfh ∈ Lip0GI(Y, F ) and
LipGI(Tfh) ≤ ‖T‖LipGI(f)Lip(h).

Proof. (i) Let f ∈ Lip0GI(X,E) and let (A, b, µ) be a Lipschitz G-integral factor-
ization for f . Clearly, κEf ∈ Lip0(X,E∗∗) and Lip(κEf) = Lip(f). Moreover,
Lip(κEf) ≤ ‖A‖Lip(b)µ(Ω) and passing to the infimum yields Lip(f) ≤ LipGI(f).

(ii) We first show that Lip0GI(X,E) is a linear subspace of Lip0(X,E). For any
λ ∈ K, the triple (λA, b, µ) is a Lipschitz G-integral factorization of λf . Then
λf ∈ Lip0GI(X,E) and

LipGI(λf) ≤ ‖λA‖Lip(b)µ(Ω) = |λ| ‖A‖Lip(b)µ(Ω).

It follows that LipGI(λf) = 0 = |λ|LipGI(f) if λ = 0, and that LipGI(λf) ≤
|λ|LipGI(f) if λ 6= 0. Then, for λ 6= 0, we have LipGI(f) = LipGI(λ

−1λf) ≤
|λ|−1 LipGI(λf), hence |λ|LipGI(f) ≤ LipGI(λf) and so LipGI(λf) = |λ|LipGI(f).

Let f1, f2 ∈ Lip0GI(X,E) and ε > 0. For i = 1, 2 we can find a probability space
(Ωi,Σi, µi), the formal inclusion operator I∞,1,i : L∞(µi) → L1(µi), a Lipschitz
operator bi ∈ Lip0(X,L∞(µi)) with Lip(bi) = 1/2 and a linear operator Ai ∈
L(L1(µi), E

∗∗) such that κEfi factors as

κEfi = AiI∞,1,ibi : X
bi→ L∞(µi)

I∞,1,i→ L1(µi)
Ai→ E∗∗

satisfying ‖Ai‖ < LipGI(fi) + ε/2. We may assume also that Ω1 ∩ Ω2 = ∅.
Take Ω := Ω1 ∪ Ω2 and Σ := {S ⊂ Ω: S ∩ Ωi ∈ Σi, i = 1, 2}. Define the prob-

ability measure µ on Σ by

µ(S) =
‖A1‖µ1(S ∩ Ω1) + ‖A2‖µ2(S ∩ Ω2)

‖A1‖+ ‖A2‖
.

Define A : L1(µ)→ E∗∗ and b : X → L∞(µ) by

A(s) = A1(s|Ω1
) + A2(s|Ω2

),

b(x) = b1(x) · χΩ1 + b2(x) · χΩ2 ,

where χΩi is the characteristic function of the subset Ωi ⊂ Ω for i = 1, 2. Clearly,
A is linear and

‖A(s)‖ ≤ ‖A1‖
∥∥s|Ω1

∥∥
L1(µ1)

+ ‖A2‖
∥∥s|Ω2

∥∥
L1(µ2)

= (‖A1‖+ ‖A2‖) ‖s‖L1(µ)
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for all s ∈ L1(µ). Hence A ∈ L(L1(µ), E) and ‖A‖ ≤ ‖A1‖ + ‖A2‖. Moreover,
b ∈ Lip0(X,L∞(µ)) with Lip(b) ≤ 1 because b(0) = 0 and

‖b(x)− b(y)‖L∞(µ) ≤ ‖(b1(x)− b1(y)) · χΩ1‖L∞(µ) + ‖(b2(x)− b2(y)) · χΩ2‖L∞(µ)

= ‖b1(x)− b1(y)‖L∞(µ1) + ‖b2(x)− b2(y)‖L∞(µ2)

≤ d(x, y) (Lip(b1) + Lip(b2))

= d(x, y)

for all x, y ∈ X. For each x ∈ X, we have

AI∞,1b(x) = AI∞,1 (b1(x) · χΩ1 + b2(x) · χΩ2)

= A (I∞,1(b1(x) · χΩ1) + I∞,1(b2(x) · χΩ2))

=
2∑
i=1

Ai

(
(I∞,1(b1(x) · χΩ1) + I∞,1(b2(x) · χΩ2))|Ωi

)
= A1I∞,1,1b1(x) + A2I∞,1,2b2(x)

= κEf1(x) + κEf2(x)

= κE(f1 + f2)(x),

and thus κE(f1 + f2) = AI∞,1b. Hence f1 + f2 ∈ Lip0GI(X,E) and

LipGI(f1 + f2) ≤ ‖A‖Lip(b)µ(Ω) ≤ ‖A1‖+ ‖A2‖ ≤ LipGI(f1) + LipGI(f2) + ε.

Since ε was arbitrary, it follows that LipGI(f1 + f2) ≤ LipGI(f1) + LipGI(f2).
We have proved above that LipGI is a norm on Lip0GI(X,E). To show that

this norm is complete, it is enough to check that if {fn}n∈N is a sequence in
Lip0GI(X,E) such that

∑∞
n=1 LipGI(fn) <∞, then the series

∑
fn is convergent

in (Lip0GI(X,E),LipGI). To prove this, we follow the proof of [6, Theorem 5.2
(a)].

By (i),
∑∞

n=1 Lip(fn) < ∞ too, and so f =
∑∞

n=1 fn exists in Lip0(X,E). We
claim that f ∈ Lip0GI(X,E) and LipGI(f) ≤

∑∞
n=1 LipGI(fn). Indeed, let ε > 0.

For each n ∈ N we can find a probability space (Ωn,Σn, µn), the formal inclusion
operator I∞,1,n : L∞(µn) → L1(µn), a Lipschitz operator bn ∈ Lip0(X,L∞(µn))
with Lip(bn) = 1/2n and a linear operator An ∈ L(L1(µn), E∗∗) such that κEfn
factors as

κEfn = AnI∞,1,nbn : X
bn→ L∞(µn)

I∞,1,n→ L1(µn)
An→ E∗∗

with ‖An‖ < LipGI(fn) + ε/2n. Let (Ω,Σ) be the direct sum measurable space
of the (Ωn,Σn), that is, Ω := ∪n∈NΩn and Σ := {S ⊂ Ω: S ∩ Ωn ∈ Σn, ∀n ∈ N}
where the Ωn’s are pairwise disjoint. Define a probability measure µ on Σ by

µ(Sm) = µm(Sm)
‖Am‖∑∞
n=1 ‖An‖

(m ∈ N, Sm ∈ Σm).
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Define A : L1(µ)→ E∗∗ and b : X → L∞(µ) by

A(s) =
∞∑
n=1

An(s|Ωn),

b(x) =
∞∑
n=1

bn(x) · χΩn .

Clearly, A is linear and, for any s ∈ L1(µ), we have

‖A(s)‖ ≤
∞∑
n=1

‖An‖
∥∥s|Ωn∥∥L1(µn)

≤ ‖s‖L1(µ)

∞∑
n=1

‖An‖ .

Hence A ∈ L(L1(µ), E) and ‖A‖ ≤
∑∞

n=1 ‖An‖ ≤
∑∞

n=1 LipGI(fn)+ε. Moreover,
b ∈ Lip0(X,L∞(µ)) with Lip(b) ≤ 1 because b(0) = 0 and

‖b(x)− b(y)‖L∞(µ) ≤
∞∑
n=1

‖(bn(x)− bn(y)) · χΩn‖L∞(µ)

=
∞∑
n=1

‖bn(x)− bn(y)‖L∞(µn)

≤ d(x, y)
∞∑
n=1

Lip(bn) = d(x, y)

for all x, y ∈ X. For each x ∈ X, we have

AI∞,1b(x) = AI∞,1

(
∞∑
n=1

bn(x) · χΩn

)

= A

(
∞∑
n=1

I∞,1(bn(x) · χΩn)

)

=
∞∑
m=1

Am

((
∞∑
n=1

I∞,1(bn(x) · χΩn)

)∣∣∣∣∣
Ωm

)

=
∞∑
m=1

AmI∞,1,mbm(x)

=
∞∑
m=1

κEfm(x) = κEf(x),

and thus κEf = AI∞,1b. Hence f ∈ Lip0GI(X,E) and

LipGI(f) ≤ ‖A‖Lip(b)µ(Ω) ≤
∞∑
n=1

LipGI(fn) + ε.

By the arbitrariness of ε, we infer that LipGI(f) ≤
∑∞

n=1 LipGI(fn) and this
proves our claim.

We now will show that f is the LipGI-limit of the sequence {
∑n

k=1 fk}n∈N.
For each n ∈ N, define tn : L1(µ) → E∗∗ by tn(s) =

∑∞
k=n+1 Ak(s|Ωk). Clearly,
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tn ∈ L(L1(µ), E∗∗) with ‖tn‖ ≤
∑∞

k=n+1 ‖Ak‖ and so limn→∞ ‖tn‖ = 0. It is easy
to see that f −

∑n
k=1 fk = tnI∞,1b. Then LipGI(f −

∑n
k=1 fk) ≤ ‖tn‖Lip(b) and

therefore limn→∞ LipGI(f −
∑n

k=1 fk) = 0 as desired.
(iii) Fix a point x0 ∈ X and take Ω = {x0}, Σ = {Ω, ∅} and µ : Σ→ R defined

by µ(Ω) = 1 and µ(∅) = 0. Then (Ω,Σ, µ) is a probability space. Clearly, L∞(µ)
and L1(µ) contain only constant functions.

Let g ∈ X# and e ∈ E. Define A ∈ L(L1(µ), E∗∗) and b ∈ Lip0(X,L∞(µ))
by A(t1) = tκE(e) for all t ∈ K and b(x) = g(x)1 for all x ∈ X, where 1 is the
function constantly equal to 1 on Ω. It is clear that

(κE(g · e))(x) = g(x)κE(e) = g(x)A(1) = A(g(x)1) = AI∞,1(g(x)1) = AI∞,1b(x)

for all x ∈ X. Then g · e ∈ Lip0GI(X,E) and LipGI(g · e) ≤ ‖A‖Lip(b) =
‖e‖Lip(g). The converse inequality follows from (i) and Proposition 1.1 (ii).

(iv) Since f ∈ Lip0GI(X,E), consider a typical Lipschitz G-integral factoriza-
tion

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Since κFT = T ∗∗κE, putting

B = T ∗∗A ∈ L(L1(µ), F ∗∗), c = bh ∈ Lip0(Y, L∞(µ)),

we obtain

κFTfh = BI∞,1c : Y
c→ L∞(µ)

I∞,1→ L1(µ)
B→ F ∗∗.

Hence Tfh ∈ Lip0GI(Y, F ) and the inequality LipGI(Tfh) ≤ ‖T‖LipGI(f)Lip(h)
follows readily from

LipGI(Tfh) ≤ ‖B‖Lip(c)µ(Ω) ≤ ‖T‖ ‖A‖Lip(b)Lip(h)µ(Ω).

�

We now may answer for the question which opened this section.

Theorem 2.2. A Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz G-integral
operator if and only if its associate linear functional Γ(κEf) on F(X) ⊗ E∗ is
continuous on F(X)⊗̂εE∗. Furthermore, LipGI(f) = ‖Γ(κEf)‖.
Proof. Assume that Γ(κEf) is a bounded linear functional on F(X)⊗̂εE∗. By
Theorem 1.3, there exist a finite measure space (Ω,Σ, µ) and operators B ∈
L(E∗, L∞(µ)) and b ∈ Lip0(X,L∞(µ)) such that

〈Γ(κEf), δx ⊗ φ〉 =

∫
Ω

b(x)B(φ)dµ

for all x ∈ X and φ ∈ E∗, with ‖Γ(κEf)‖ = ‖B‖Lip(b)µ(Ω). Define

A = B∗Φ∗κL1(µ) : L1(µ)
κL1(µ)→ L1(µ)∗∗

Φ∗→ L∞(µ)∗
B∗→ E∗∗.

It is clear that A ∈ L(L1(µ), E∗∗) and, for any x ∈ X and φ ∈ E∗, we have

〈κEf(x), φ〉 = 〈Γ(κEf), δx ⊗ φ〉 =

∫
Ω

b(x)B(φ)dµ =

∫
Ω

I∞,1B(φ)I∞,1b(x)dµ

= 〈Φ(B(φ)), I∞,1b(x)〉 =
〈
κL1(µ)(I∞,1b(x)),Φ(B(φ))

〉
=
〈
B∗Φ∗κL1(µ)I∞,1b(x), φ

〉
= 〈AI∞,1b(x), φ〉 ,
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and thus

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Moreover,

‖A‖ = sup
s∈BL1(µ)

∥∥B∗Φ∗κL1(µ)(s)
∥∥

= sup
s∈BL1(µ)

sup
φ∈BE∗

∣∣〈B∗Φ∗κL1(µ)(s), φ
〉∣∣

= sup
φ∈BE∗

sup
s∈BL1(µ)

|〈Φ(B(φ)), s〉|

= sup
φ∈BE∗

‖Φ(B(φ))‖

= sup
φ∈BE∗

‖B(φ)‖ = ‖B‖ ,

and therefore LipGI(f) ≤ ‖A‖Lip(b)µ(Ω) = ‖Γ(κEf)‖.
Conversely, assume that f has a Lipschitz G-integral factorization of the form

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Take

B = Φ−1A∗κE∗ : E∗
κE∗→ E∗∗∗

A∗→ L1(µ)∗
Φ−1

→ L∞(µ).

Clearly, B ∈ L(E∗, L∞(µ)) and ‖B‖ ≤ ‖A‖. For x ∈ X and φ ∈ E∗, we have

〈Γ(κEf), δx ⊗ φ〉 = 〈κEf(x), φ〉 = 〈κE∗(φ), κEf(x)〉
= 〈κE∗(φ), AI∞,1b(x)〉 = 〈A∗κE∗(φ), I∞,1b(x)〉 = 〈Φ(B(φ)), I∞,1b(x)〉

=

∫
Ω

I∞,1b(x)I∞,1B(φ)dµ =

∫
Ω

b(x)B(φ)dµ.

Hence Γ(κEf) is continuous on F(X)⊗̂εE∗ and ‖Γ(κEf)‖ ≤ ‖B‖Lip(b)µ(Ω) ≤
‖A‖Lip(b)µ(Ω) by Theorem 1.3. The factorization κEf = AI∞,1b was arbitrary,
so ‖Γ(κEf)‖ ≤ LipGI(f). �

The space L∞(µ) in Definition 1 can be replaced by the space Cw∗(BX#) of all
weak* continuous functions from BX# into K. Let us recall that a Banach space F
is injective if, whenever E0 is a subspace of a Banach space E, any T ∈ L(E0, F )

has an extension T̃ ∈ L(E,F ) with ‖T‖ = ||T̃ ||. For any finite measure, L∞(µ)
is an injective Banach space by [6, Theorem 4.14].

Theorem 2.3. A Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz G-integral
operator if and only if there exist a positive regular Borel measure ν on the Borel

σ-algebra of BX# with the weak* topology and an operator Ã ∈ L(L1(ν), E∗∗)
such that the following diagram commutes:

X E E∗∗

Cw∗(BX#) L1(ν)

f κE

iX

j1

Ã
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where j1 is the canonical map and iX is the natural isometric embedding defined

by iX(x) = δx|B
X#

. In this case, LipGI(f) = inf ||Ã||ν(BX#), where the infimum

is taken over all such possible ν’s and Ã’s, and this infimum is attained.

Proof. Let f ∈ Lip0(X,E) and assume that there exist a positive regular Borel
measure ν on the Borel σ-algebra ofBX# with the weak* topology and an operator

Ã ∈ L(L1(ν), E∗∗) such that

κEf = Ãj1iX : X
iX→ Cw∗(BX#)

j1→ L1(ν)
Ã→ E∗∗.

Take the canonical map j∞ : Cw∗(BX#)→ L∞(ν) and factor

j1 = I∞,1j∞ : Cw∗(BX#)
j∞→ L∞(ν)

I∞,1→ L1(ν).

Denoting b = j∞iX ∈ Lip0(X,L∞(ν)), we have

κEf = ÃI∞,1b : X
b→ L∞(ν)

I∞,1→ L1(ν)
Ã→ E∗∗.

Then f ∈ Lip0GI(X,E) and LipGI(f) ≤ ||Ã||Lip(b)ν(BX#) ≤ ||Ã||ν(BX#).
Conversely, suppose that f ∈ Lip0GI(X,E). Then there are a finite measure

space (Ω,Σ, µ) and operators A ∈ L(L1(µ), E∗∗) and b ∈ Lip0(X,L∞(µ)) such
that

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Let F(X) be the Lipschitz-free space over X. By Theorem 1.2, there exists
Tb ∈ L(F(X), L∞(µ)) such that TbδX = b and ‖Tb‖ = Lip(b). Moreover, F(X)
is the space of all linear functionals γ on X# such that γ|B

X#
is weak* con-

tinuous. Denote by R the linear map γ 7→ γ|B
X#

from F(X) into Cw∗(BX#).

Since L∞(µ) is injective, there is an operator T̃b ∈ L(Cw∗(BX#), L∞(µ)) such

that T̃bR = Tb and ‖Tb‖ = ||T̃b||. It is known (see [6, 2.9 (d) and 2.4]) that
I∞,1 : L∞(µ) → L1(µ) is 1-summing with 1-summing norm π1(I∞,1) = µ(Ω),

and so is I∞,1T̃b ∈ L(Cw∗(BX#), L1(µ)) with π1(I∞,1T̃b) ≤ π1(I∞,1)||T̃b||. Then,

applying [6, Corollary 2.15] to I∞,1T̃b, we may obtain a positive regular Borel mea-
sure ν on the Borel σ-algebra of BX# with the weak* topology and an operator
C ∈ L(L1(ν), L1(µ)) such that

I∞,1T̃b = Cj1 : Cw∗(BX#)
j1→ L1(ν)

C→ L1(µ)

and π1(I∞,1T̃b) = ‖C‖ ν(BX#). Put Ã = AC ∈ L(L1(ν), E∗∗). An easy verifica-
tion yields

κEf = AI∞,1b = AI∞,1TbδX = AI∞,1T̃bRδX = ACj1RδX = Ãj1iX ,

and so we have

κEf = Ãj1iX : X
iX→ Cw∗(BX#)

j1→ L1(ν)
Ã→ E∗∗.

This is a factorization of κEf in the desired form. It follows that

||Ã||ν(BX#) ≤ ‖A‖ ‖C‖ ν(BX#) = ‖A‖ π1(I∞,1T̃b)

≤ ‖A‖ ||T̃b||π1(I∞,1) = ‖A‖Lip(b)µ(Ω).
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Passing to the infimum we arrive at ||Ã||ν(BX#) ≤ LipGI(f). �

Let us recall that a linear operator T : E → F between Banach spaces is
an integral operator if there are a finite measure space (Ω,Σ, µ) and operators
A ∈ L(L1(µ), F ∗∗) and B ∈ L(E,L∞(µ)) giving rise to the commutative diagram

E F F ∗∗

L∞(µ) L1(µ)

T κF

B

I∞,1

A

The integral norm of T is ‖T‖I = inf ‖A‖ ‖B‖µ(Ω), where the infimum is ex-
tended over all measures µ and operators A and B as above. We denote by
I(E,F ) the Banach space of all linear integral operators from E to F endowed
with the integral norm. We refer to [6, 11] for a complete study of these operators.

We now obtain some nice characterizations of Lipschitz G-integral operators.

Proposition 2.4. Let f ∈ Lip0(X,E). The following statements are equivalent:

(i) f ∈ Lip0GI(X,E).
(ii) f t ∈ I(E∗, X#).

(iii) Tf ∈ I(F(X), E).

Furthermore, if f ∈ Lip0GI(X,E), then LipGI(f) = ‖f t‖I = ‖Tf‖I .

Proof. (i)⇒ (ii): Assume that f ∈ Lip0GI(X,E) and select a typical factorization

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Then we have f tκ∗EκE∗ = btI∗∞,1A
∗κE∗ . Now notice that

κ∗EκE∗ = IdE∗ : E∗
κE∗→ E∗∗∗

κ∗E→ E∗

and

I∗∞,1 = Φ∗κL1(µ)I∞,1Φ−1 : L1(µ)∗
Φ−1

→ L∞(µ)
I∞,1→ L1(µ)

κL1(µ)→ L1(µ)∗∗
Φ∗→ L∞(µ)∗.

Indeed, for any e ∈ E and φ ∈ E∗, we have

〈κ∗EκE∗(φ), e〉 = 〈κE∗(φ), κE(e)〉 = 〈κE(e), φ〉 = 〈φ, e〉 ;
and, for any t ∈ L∞(µ) and ϕ ∈ L1(µ)∗,〈

Φ∗κL1(µ)I∞,1Φ−1(ϕ), t
〉

=
〈
κL1(µ)I∞,1Φ−1(ϕ),Φ(t)

〉
=
〈
Φ(t), I∞,1Φ−1(ϕ)

〉
=

∫
Ω

I∞,1(t)I∞,1Φ−1(ϕ)dµ = 〈ϕ, I∞,1(t)〉 =
〈
I∗∞,1(ϕ), t

〉
.

Put C = κX#btΦ∗κL1(µ) ∈ L(L1(µ), (X#)∗∗) and D = Φ−1A∗κE∗ ∈ L(E∗, L∞(µ)).
Then we have the factorization

κX#f t = CI∞,1D : E∗
D→ L∞(µ)

I∞,1→ L1(µ)
C→ (X#)∗∗.

Then f t ∈ I(E∗, X#) and∥∥f t∥∥
I
≤ ‖C‖ ‖D‖µ(Ω) ≤

∥∥bt∥∥ ‖A∗‖µ(Ω) = ‖A‖Lip(b)µ(Ω).



46 M.G. CABRERA-PADILLA, A. JIMÉNEZ-VARGAS

The factorization κEf = AI∞,1b was arbitrary, so ‖f t‖I ≤ LipGI(f).
(ii) ⇒ (i): Assume that f t ∈ I(E∗, X#). Since X# is a dual space, by [6,

Corollary 5.4] there exist a finite measure space (Ω,Σ, µ) and a pair of operators
A ∈ L(L1(µ), X#) and B ∈ L(E∗, L∞(µ)) such that f t = AI∞,1B. Let δX from
X to F(X) be the Dirac map. Then we have (f t)∗δX = B∗I∗∞,1A

∗δX . Now notice
that (f t)∗δX = κEf since〈

(f t)∗δX(x), φ
〉

=
〈
(f t)∗(δx), φ

〉
=
〈
δx, f

t(φ)
〉

= 〈δx, φ ◦ f〉 = 〈φ, f(x)〉 = 〈κEf(x), φ〉

for every φ ∈ E∗ and x ∈ X. By above-proved, I∗∞,1 = Φ∗κL1(µ)I∞,1Φ−1. Denote

C = B∗Φ∗κL1(µ) ∈ L(L1(µ), E∗∗) and b = Φ−1A∗δX ∈ Lip0(X,L∞(µ)). Then we
have the factorization

κEf = CI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
C→ E∗∗.

Hence f ∈ Lip0GI(X,E) with LipGI(f) ≤ ‖C‖Lip(b)µ(Ω) ≤ ‖B∗‖ ‖A∗‖µ(Ω) =
‖A‖ ‖B‖µ(Ω), from which LipGI(f) ≤ inf ‖A‖ ‖B‖µ(Ω) = ‖f t‖I .

(ii)⇔ (iii): Taking into account the ideal property of the space of integral linear
operators between Banach spaces and the fact that such an operator is integral if
and only if so is its adjoint operator, our equivalence follows immediately from the
equality f t = Q−1

X (Tf )
∗ given in Theorem 1.2. Moreover, ‖f t‖I =

∥∥Q−1
X (Tf )

∗
∥∥
I

=
‖(Tf )∗‖I = ‖Tf‖I . �

3. Lipschitz Pietsch-integral operators

If we wish to factor the Lipschitz operator f ∈ Lip0(X,E) rather than κEf in
Definition 1, we obtain the following subclass of Lipschitz G-integral operators.

Definition 3. Let X be a pointed metric space and let E be a Banach space. A
Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz Pietsch-integral (P-integral for
short) operator if there exist a finite measure space (Ω,Σ, µ), a bounded linear
operator A ∈ L(L1(µ), E) and a Lipschitz operator b ∈ Lip0(X,L∞(µ)) such that
the following diagram commutes:

X E

L∞(µ) L1(µ)

f

b

I∞,1

A

The triple (A, b, µ) is called a Lipschitz P-integral factorization of f . The Lipschitz
P-integral norm of f is defined to be LipPI(f) = inf ‖A‖Lip(b)µ(Ω), where the
infimum is extended over all Lipschitz P-integral factorizations of f . The set of
all Lipschitz P-integral operators from X to E is denoted by Lip0PI(X,E).

Let us recall that a linear operator T : E → F between Banach spaces is a
Pietsch integral (P-integral for short) operator if there are a finite measure space
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(Ω,Σ, µ) and operators A ∈ L(L1(µ), F ) and B ∈ L(E,L∞(µ)) giving rise to the
commutative diagram

E F

L∞(µ) L1(µ)

T

B

I∞,1

A

The P-integral norm of T is ‖T‖PI = inf ‖A‖ ‖B‖µ(Ω), where the infimum is
taken over all such factorizations. We denote by PI(E,F ) the Banach space of
all P-integral operators from E to F endowed with the P-integral norm. We refer
to [6, 11] for a complete study of these operators.

Observe that if E and F are Banach spaces and f : E → F is a linear P-integral
operator, then f is Lipschitz P-integral and LipPI(f) ≤ ‖f‖PI .

An analogous result to Theorem 2.3 is stated next for Lipschitz P-integral
operators with a similar proof.

Theorem 3.1. A Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz P-integral
operator if and only if there exist a positive regular Borel measure ν on the Borel

σ-algebra of BX# with the weak* topology and an operator Ã ∈ L(L1(ν), E) such
that f admits the following factorization:

X E

Cw∗(BX#) L1(ν)

f

iX

j1

Ã

Moreover, LipPI(f) = inf ||Ã||ν(BX#), where the infimum is taken over all such

possible ν’s and Ã’s, and this infimum is attained.

We can prove that (Lip0PI(X,E),LipPI) is a Banach space and a Banach ideal
of Lipschitz operators with a similar proof to that of Proposition 2.1.

Proposition 3.2. Lip0PI(X,E) is a linear subspace of Lip0GI(X,E) having the
following properties:

(i) LipGI(f) ≤ LipPI(f) for all f ∈ Lip0PI(X,E).
(ii) LipPI is a Banach space norm on Lip0PI(X,E).
(iii) If g ∈ X# and e ∈ E, then g · e ∈ Lip0PI(X,E) and LipPI(g · e) =

Lip(g) ‖e‖.
(iv) Let Y be a pointed metric space and F a Banach space. If h ∈ Lip0(Y,X),

f ∈ Lip0PI(X,E) and T ∈ L(E,F ), then Tfh ∈ Lip0PI(Y, F ) and
LipPI(Tfh) ≤ ‖T‖LipPI(f)Lip(h).

A case in which Lipschitz G-integral operators are Lipschitz P-integral is the
following.
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Proposition 3.3. If κE(E) is complemented in E∗∗ by a projection of norm
one (in particular, if E is a dual Banach space), then every Lipschitz G-integral
operator f : X → E is Lipschitz P-integral and LipPI(f) = LipGI(f).

Proof. Let P be a continuous linear projection from E∗∗ onto κE(E) with ‖P‖ =
1. Hence PκE(e) = κE(e) for all e ∈ E. Let f ∈ Lip0GI(X,E) and take a
Lipschitz G-integral factorization

κEf = AI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
A→ E∗∗.

Hence κEf = PκEf = PAI∞,1b. Taking C = κ−1
E PA ∈ L(L1(µ), E), we have the

factorization

f = CI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
C→ E,

which shows that f ∈ Lip0PI(X,E) and

LipPI(f) ≤ ‖C‖Lip(b)µ(Ω) ≤ ‖A‖Lip(b)µ(Ω).

Passing to the infimum we obtain that LipPI(f) ≤ LipGI(f) and the proof is
complete. �

We now give a version of Proposition 2.4 for Lipschitz P-integral operators.

Proposition 3.4. Let f ∈ Lip0(X,E).

(i) If f ∈ Lip0PI(X,E), then f t ∈ PI(E∗, X#) and ‖f t‖PI ≤ LipPI(f).
(ii) If Tf ∈ PI(F(X), E), then f ∈ Lip0PI(X,E) and LipPI(f) ≤ ‖Tf‖PI .

We are now ready to answer the question that motivated this paper.

Theorem 3.5. A Lipschitz operator f ∈ Lip0(X,E∗) is Lipschitz G-integral
if and only if the associate linear functional Γ(f) on F(X) ⊗ E is continu-
ous on F(X)⊗̂εE. The mapping f 7→ Γ(f) is an isometric isomorphism from
(Lip0GI(X,E

∗),LipGI) onto (F(X)⊗̂εE)∗.

Proof. Let f ∈ Lip0GI(X,E
∗). Then f ∈ Lip0PI(X,E

∗) and LipPI(f) = LipGI(f)
by Proposition 3.3. Let f = AI∞,1b be a factorization of f , where (Ω,Σ, µ) is a
finite measure space, A ∈ L(L1(µ), E∗) and b ∈ Lip0(X,L∞(µ)). For all x, y ∈ X
and e ∈ E, we have

〈Γ(f), δx ⊗ e〉 = 〈f(x), e〉 = 〈AI∞,1b(x), e〉 = 〈κE(e), AI∞,1b(x)〉

=
〈
Φ(Φ−1A∗κE(e)), I∞,1b(x)

〉
=

∫
Ω

b(x)Φ−1A∗κE(e)dµ.

Hence Γ(f) is continuous on F(X)⊗̂εE and ‖Γ(f)‖ ≤ ‖Φ−1A∗κE‖Lip(b)µ(Ω) ≤
‖A‖Lip(b)µ(Ω) by Theorem 1.3. Passing to the infimum we arrive at ‖Γ(f)‖ ≤
LipPI(f) and so ‖Γ(f)‖ ≤ LipGI(f).

Conversely, assume that Γ(f) is continuous on F(X)⊗̂εE. By Theorem 1.3,
there exist a finite measure space (Ω,Σ, µ) and operators A ∈ L(E,L∞(µ)) and
b ∈ Lip0(X,L∞(µ)) such that

〈Γ(f), δx ⊗ e〉 =

∫
Ω

b(x)A(e)dµ
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for all x ∈ X and e ∈ E, with ‖Γ(f)‖ = ‖A‖Lip(b)µ(Ω). Hence

〈f(x), e〉 = 〈Γ(f), δx ⊗ e〉 =

∫
Ω

b(x)A(e)dµ =

∫
Ω

I∞,1A(e)I∞,1b(x)dµ

= 〈Φ(A(e)), I∞,1b(x)〉 =
〈
κL1(µ)(I∞,1b(x)),Φ(A(e))

〉
=
〈
A∗Φ∗κL1(µ)I∞,1b(x), e

〉
for all x ∈ X and e ∈ E. Putting C = A∗Φ∗κL1(µ) ∈ L(L1(µ), E∗), we have the
factorization

f = CI∞,1b : X
b→ L∞(µ)

I∞,1→ L1(µ)
C→ E∗.

This says us that f ∈ Lip0PI(X,E
∗) and

LipPI(f) ≤ ‖C‖Lip(b)µ(Ω) ≤ ‖A‖Lip(b)µ(Ω) = ‖Γ(f)‖ .
Then, by Proposition 3.2 (i), f ∈ Lip0GI(X,E

∗) and LipGI(f) ≤ ‖Γ(f)‖.
Hence the mapping f 7→ Γ(f) from (Lip0GI(X,E

∗),LipGI) to (F(X)⊗̂εE)∗ is
a linear isometry. To prove that it is surjective, take ϕ ∈ (F(X)⊗̂εE)∗. Clearly,
ϕ ∈ (F(X)⊗̂πE)∗ and, by [10, Theorem 4.1], there is f ∈ Lip0(X,E∗) such that
Γ(f) = ϕ. This implies that f ∈ Lip0GI(X,E

∗) by above-proved and the proof is
complete. �

From Theorems 2.2 and 3.5, we deduce immediately the following.

Corollary 3.6. Let f ∈ Lip0(X,E). Then f ∈ Lip0GI(X,E) if and only if
κEf ∈ Lip0GI(X,E

∗∗). Furthermore, LipGI(f) = LipGI(κEf).

4. Lipschitz nuclear operators

Let us recall that a linear operator between Banach spaces T : E → F is called
nuclear if it has a representation in the form T =

∑∞
n=1 fn ·yn, where {fn}n∈N and

{yn}n∈N are bounded sequences in E∗, F respectively such that
∑∞

n=1 ‖fn‖ ‖yn‖ <
∞. The nuclear norm of T is

‖T‖N = inf
∞∑
n=1

‖fn‖ ‖yn‖ ,

where the infimum is taken over all such representations of T . We denote by
N (E,F ) the Banach space of all nuclear linear operators from E to F equipped
with the nuclear norm. We direct the reader to [6, 11] for a study of these
operators.

Next we introduce a Lipschitz version of that class of linear operators.

Definition 4. Let X be a pointed metric space and let E be a Banach space. A
map f ∈ Lip0(X,E) is called a Lipschitz nuclear operator if there exist bounded
sequences {gn}n∈N in X# and {en}n∈N in E such that f =

∑∞
n=1 gn · en satisfying∑∞

n=1 Lip(gn) ‖en‖ <∞. The pair ({gn}n∈N, {en}n∈N) is called a Lipschitz nuclear
representation of f . The Lipschitz nuclear norm of f is

LipN(f) = inf
∞∑
n=1

Lip(gn) ‖en‖ ,

the infimum being taken over all Lipschitz nuclear representations of f . The set
of all Lipschitz nuclear operators from X to E will be denoted by Lip0N(X,E).
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Observe that if E and F are Banach spaces and f : E → F is a linear nuclear
operator, then f is Lipschitz nuclear and LipN(f) ≤ ‖f‖N .

Chen and Zheng introduced in [5] the spaces of strongly Lipschitz p-nuclear
operators from X to E with the so-called strongly Lipschitz p-nuclear norm sνLp
with p ∈ [1,∞]. It can be checked easily that every strongly Lipschitz 1-nuclear
operator f : X → E is Lipschitz nuclear and LipN(f) ≤ sνL1 (f). Hence we are
considering here a bigger space of Lipschitz operators under a different norm.

We now show that (Lip0N(X,E),LipN) is both a Banach space and a Banach
ideal of Lipschitz operators.

Proposition 4.1. Lip0N(X,E) is a linear subspace of Lip0(X,E) having the
following properties:

(i) Lip(f) ≤ LipN(f) for all f ∈ Lip0N(X,E).
(ii) LipN is a Banach space norm on Lip0N(X,E).
(iii) If g ∈ X# and e ∈ E, then g · e ∈ Lip0N(X,E) and LipN(g · φ) =

Lip(g) ‖e‖.
(iv) Let Y be a pointed metric space and F a Banach space. If h ∈ Lip0(Y,X),

f ∈ Lip0N(X,E) and T ∈ L(E,F ), then Tfh ∈ Lip0N(Y, F ) and

LipN(Tfh) ≤ ‖T‖LipN(f)Lip(h).

Proof. Let f ∈ Lip0N(X,E) and let f =
∑∞

n=1 gn · en be a Lipschitz nuclear
representation. Then f(0) = 0 and, for any x, y ∈ X, we have

‖f(x)− f(y)‖ =

∥∥∥∥∥
∞∑
n=1

(gn(x)− gn(y))en

∥∥∥∥∥ ≤ d(x, y)
∞∑
n=1

Lip(gn) ‖en‖ ,

which implies that f ∈ Lip0(X,E) and Lip(f) ≤
∑∞

n=1 Lip(gn) ‖en‖. Since∑
n∈N gn · en was an arbitrary Lipschitz nuclear representation of f , we infer

that Lip(f) ≤ LipN(f) and this proves (i).
In order to prove that Lip0N(X,E) is a linear subspace of Lip0(X,E), let λ ∈ K.

Since λf =
∑∞

n=1(λgn) · en and
∑∞

n=1 Lip(λgn) ‖en‖ = |λ|
∑∞

n=1 Lip(gn) ‖en‖, we
deduce that λf ∈ Lip0N(X,E) and LipN(λf) ≤ |λ|

∑∞
n=1 Lip(gn) ‖en‖. If λ = 0,

it follows that LipN(λf) = |λ|LipN(f), and if λ 6= 0, we have LipN(λf) ≤
|λ|LipN(f) which gives LipN(f) ≤ |λ|−1 LipN(λf) and |λ|LipN(f) ≤ LipN(λf).
In any case, LipN(λf) = |λ|LipN(f).

Take now k ∈ Lip0N(X,E) and let
∑

n∈N g
′
n · e′n be a Lipschitz nuclear repre-

sentation for k. For each n ∈ N, define

g′′n =

{
gk if n = 2k − 1,
g′k if n = 2k.

e′′n =

{
ek if n = 2k − 1,
e′k if n = 2k.

An easy verification shows that f + k =
∑∞

n=1 g
′′
n · e′′n and

∞∑
n=1

Lip(g′′n) ‖e′′n‖ =
∞∑
n=1

Lip(gn) ‖en‖+
∞∑
n=1

Lip(g′n) ‖e′n‖ .
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Hence f + k ∈ Lip0N(X,E) and

LipN(f + k) ≤
∞∑
n=1

Lip(gn) ‖en‖+
∞∑
n=1

Lip(g′n) ‖e′n‖ .

Passing to the infimum we arrive at LipN(f + k) ≤ LipN(f) + LipN(k).
We have just proved that LipN is a norm on Lip0N(X,E). To show its complete-

ness, let {fn}n∈N be a sequence in Lip0N(X,E) such that
∑∞

n=1 LipN(fn) < ∞.
Then

∑∞
n=1 Lip(fn) <∞ too, and so f =

∑∞
n=1 fn exists in Lip0(X,E). We will

show that f ∈ Lip0N(X,E) and LipN(f) ≤
∑∞

n=1 LipN(fn). Let ε > 0. For each
n ∈ N choose bounded sequences {g(n,k)}k∈N in X# and {e(n,k)}k∈N in E such that

fn =
∑∞

k=1 g(n,k) · e(n,k) and
∑∞

k=1 Lip(g(n,k))
∥∥e(n,k)

∥∥ < LipN(fn) + ε/2n. If σ is a
bijection from N to N× N, we have

f =
∞∑
n=1

fn =
∞∑
n=1

∞∑
k=1

g(n,k) · e(n,k) =
∞∑
m=1

gσ(m) · eσ(m)

with
∞∑
m=1

Lip(gσ(m))
∥∥eσ(m)

∥∥ < ∞∑
n=1

LipN(fn) + ε.

So f ∈ Lip0N(X,E) and LipN(f) ≤
∑∞

n=1 LipN(fn). We can apply the same
reasoning to f −

∑n
k=1 fk to get LipN (f −

∑n
k=1 fk) ≤

∑∞
k=n+1 LipN(fk) for all

n ∈ N, and so f =
∑∞

n=1 fn in Lip0N(X,E). This completes the proof of (ii).
In order to prove (iii), take g ∈ X# and e ∈ E. Clearly, g · e ∈ Lip0N(X,E)

and LipN(g · e) ≤ Lip(g) ‖e‖. The reverse inequality is deduced from (i) and
Proposition 1.1 (ii).

Finally, we prove (iv). Let h ∈ Lip0(Y,X), f ∈ Lip0N(X,E) and T ∈ L(E,F ).
Let

∑
n∈N gn · en be a Lipschitz nuclear representation for f . A simple computa-

tion shows that Tfh =
∑∞

n=1(gnh) · T (en) where {gnh}n∈N and {T (en)}n∈N are
bounded sequences in Y # and F , respectively. Moreover,

∞∑
n=1

Lip(gnh) ‖T (en)‖ ≤ Lip(h) ‖T‖
∞∑
n=1

Lip(gn) ‖en‖ <∞.

Therefore Tfh ∈ Lip0N(Y, F ) and LipN(Tfh) ≤ Lip(h) ‖T‖
∑∞

n=1 Lip(gn) ‖en‖.
This ensures that LipN(Tfh) ≤ ‖T‖LipN(f)Lip(h). �

Clearly, every Lipschitz finite-rank operator is Lipschitz nuclear. We give the
following converse. Let us recall also that a map f ∈ Lip0(X,E) is Lipschitz
compact if {

f(x)− f(y)

d(x, y)
: x, y ∈ X, x 6= y

}
is a relatively compact subset of E (see [9, Definition 2.1]).

Proposition 4.2. Every Lipschitz nuclear operator from X to E is the LipN -limit
of a sequence of Lipschitz finite-rank operators from X to E, and so is Lipschitz
compact.
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Proof. Let f ∈ Lip0N(X,E) and let f =
∑∞

n=1 gn · en be a Lipschitz nuclear
representation. For each n ∈ N, define sn =

∑n
k=1 gk · ek. Then {sn}n∈N is a

sequence in Lip0F (X,E) by Proposition 1.1 and it converges to f in the LipN -
norm since LipN(f −sn) ≤

∑∞
k=n+1 Lip(gk) ‖ek‖ for all n ∈ N. Then {sn}n∈N also

converges to f in the Lip-norm by Proposition 4.1 (i), and therefore f is Lipschitz
compact. Indeed, since Lip(sn−f) = ‖Tsn − Tf‖ and Tsn is a finite-rank bounded
linear operator from F(X) to E by [9, Theorem 1.2 and Proposition 2.4], it follows
that Tf is a compact linear operator from F(X) to E and then, by [9, Proposition
2.1], f is Lipschitz compact. �

We now see that the transpose Lipschitz operator of a Lipschitz nuclear oper-
ator is nuclear.

Proposition 4.3. If f ∈ Lip0N(X,E), then f t ∈ N (E∗, X#) and ‖f t‖N ≤
LipN(f).

Proof. Let f ∈ Lip0N(X,E) and take
∑

n∈N gn · en, a Lipschitz nuclear represen-
tation for f . Using that the map f 7→ f t is a continuous linear operator from
Lip0(X,E) to L(E∗, X#), we obtain that

f t =
∞∑
n=1

(gn · en)t =
∞∑
n=1

κE(en) · gn.

This implies that f t ∈ N (E∗, X#) with ‖f t‖N ≤
∑∞

n=1 ‖κE(en)‖Lip(gn) =∑∞
n=1 ‖en‖Lip(gn), from which ‖f t‖N ≤ LipN(f). �

The three following results unit the work of Section 3 with the current study.

Proposition 4.4. Every Lipschitz nuclear operator f from X to E is Lipschitz
P-integral and LipPI(f) ≤ LipN(f).

Proof. Suppose that f =
∑∞

n=1 gn · en, where {gn}n∈N and {en}n∈N are bounded
sequences in X# and E respectively satisfying

∑∞
n=1 Lip(gn) ‖en‖ <∞. Let Σ be

the Borel σ-algebra of BX# with its weak* topology and define µ : Σ→ E by

µ(G) =
∞∑
n=1

Lip(gn)δgn/Lip(gn)(G)en,

where δg denotes the point mass concentrated at g. It is easy to check that µ is
a vector measure with variation norm ‖µ‖1 := |µ|1(BX#) ≤

∑∞
n=1 Lip(gn) ‖en‖.

Moreover, for all x ∈ X, we have

f(x) =

∫
B
X#

g(x) dµ(g).

Define the bounded linear operator V : Cw∗(BX#)→ E by

V (h) =

∫
B
X#

h(g) dµ(g).

Since µ is of bounded variation, then V is a P-integral operator of Cw∗(BX#) into
E with ‖V ‖PI = ‖µ‖1 by [11, Proposition 5.28]. Hence V is a Lipschitz P-integral
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operator with LipPI(V ) ≤ ‖V ‖PI . Now, if iX is the natural injection of X into
Cw∗(BX#), we have

V iX(x) =

∫
B
X#

g(x) dµ(g) = f(x)

for all x ∈ X. Then, by Theorem 3.1 and Proposition 3.2 (iv), f ∈ Lip0PI(X,E)
and LipPI(f) ≤ LipPI(V ) ≤ ‖µ‖1 ≤

∑∞
n=1 Lip(gn) ‖en‖. Passing to the infimum

we arrive at LipPI(f) ≤ LipN(f). �

A converse of Proposition 4.4 is the following.

Proposition 4.5. Let X be a pointed metric space and E a Banach space. Sup-
pose that E has the Radon–Nikodým property. Then every Lipschitz P-integral
operator f from X to E is Lipschitz nuclear and LipN(f) ≤ LipPI(f).

Proof. Let f ∈ Lip0PI(X,E). By Theorem 3.1, there exist a positive regular
Borel measure ν on the Borel σ-algebra of BX# with the weak* topology and an

operator Ã ∈ L(L1(ν), E) with LipPI(f) = ||Ã||ν(BX#) such that

f = Ãj1iX : X
iX→ Cw∗(BX#)

j1→ L1(ν)
Ã→ E.

Now take the canonical map j∞ : Cw∗(BX#)→ L∞(ν) and factor j1 in the form

j1 = I∞,1j∞ : Cw∗(BX#)
j∞→ L∞(ν)

I∞,1→ L1(ν).

Put U = ÃI∞,1j∞ : Cw∗(BX#) → E. Clearly, U is a P-integral operator and

‖U‖PI ≤ ||Ã||ν(BX#). Since E has the Radon–Nikodým property, then U is a
nuclear operator and ‖U‖N = ‖U‖PI by [11, Theorem 5.32]. Hence U is also
Lipschitz nuclear and LipN(U) ≤ ‖U‖N . Since f = UiX , we conclude that
f ∈ Lip0N(X,E) with LipN(f) ≤ LipN(U) by Proposition 4.1 (iv). Moreover,
LipN(f) ≤ LipPI(f). �

When E is a Banach space such that E∗ has the Radon–Nikodým property, we
can identify the space of Lipschitz nuclear operators from X to E∗ with the dual
of F(X)⊗̂εE.

Corollary 4.6. Let X be a pointed metric space and E a Banach space. Sup-
pose that E∗ has the Radon–Nikodým property. Then a Lipschitz operator f ∈
Lip0(X,E∗) is a Lipschitz nuclear operator if and only if the associate linear func-
tional Γ(f) on F(X) ⊗ E is continuous on F(X)⊗̂εE. The mapping f 7→ Γ(f)
is an isometric isomorphism from (Lip0N(X,E∗),LipN) onto (F(X)⊗̂εE)∗.

Proof. Propositions 4.5 and 3.3 provide that Lip0N(X,E∗) = Lip0PI(X,E
∗) =

Lip0GI(X,E
∗) and LipN(f) = LipPI(f) = LipGI(f) for all f ∈ Lip0N(X,E∗).

Then the corollary follows by applying Theorem 3.5. �

Our ultimate goal is to characterize Lipschitz G-integral operators as Lipschitz
weak operator limits of LipN -bounded nets of Lipschitz nuclear operators.
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Definition 5. The Lipschitz weak operator topology (in short, LWOT) on the
space Lip0(X,E) is the locally convex topology induced by the set of linear func-
tionals:

f 7→ 〈φ, f(x)〉 (φ ∈ E∗, x ∈ X) .

We will need two lemmas. First, it is shown that a LWOT-limit of a LipGI-
bounded net of Lipschitz G-integral operators is again Lipschitz G-integral.

Lemma 4.7. If {fγ}γ∈Γ is a LipGI-bounded net of Lipschitz G-integral operators
from X to E which converges in the Lipschitz weak operator topology to a Lipschitz
operator f ∈ Lip0(X,E), then f is Lipschitz G-integral.

Proof. Let Γ(κEf) and Γ(κEfγ) be the continuous functionals on F(X)⊗̂πE∗
associated to f and fγ, respectively. Moreover, since fγ ∈ Lip0GI(X,E), then
Γ(κEfγ) is also continuous on F(X)⊗̂εE∗ with LipGI(fγ) = ‖Γ(κEfγ)‖ by Theo-
rem 2.2.

By hypothesis, supγ∈Γ LipGI(fγ) ≤ k for some constant k > 0 and 〈φ, fγ(x)〉
converges to 〈φ, f(x)〉 for all φ ∈ E∗ and x ∈ X.

Next we check that Γ(κEf) is continuous on F(X)⊗̂εE∗. Let
∑n

i=1 δxi ⊗ φi ∈
F(X)⊗̂εE∗. Then, given δ > 0, there exists a γ ∈ Γ such that∣∣∣∣∣

n∑
i=1

〈φi, f(xi)〉

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

〈φi, fγ(xi)〉

∣∣∣∣∣+ δ.

This means that∣∣∣∣∣
〈

Γ(κEf),
n∑
i=1

δxi ⊗ φi

〉∣∣∣∣∣ ≤
∣∣∣∣∣
〈

Γ(κEfγ),
n∑
i=1

δxi ⊗ φi

〉∣∣∣∣∣+ δ

≤ kε

(
n∑
i=1

δxi ⊗ φi

)
+ δ.

By the arbitrariness of δ, it follows that∣∣∣∣∣
〈

Γ(κEf),
n∑
i=1

δxi ⊗ φi

〉∣∣∣∣∣ ≤ kε

(
n∑
i=1

δxi ⊗ φi

)
.

Hence Γ(κEf) is continuous on F(X)⊗̂εE∗. Then f ∈ Lip0GI(X,E) by Theorem
2.2. �

Let us recall that a mapping between Banach spaces Q : E → F is a quotient
mapping if Q is surjective and ‖f‖ = inf {‖e‖ : e ∈ E, Q(e) = f} for every f ∈ F .

By [11, Proposition 2.8], if E and F are Banach spaces, then every element
T ∈ E⊗̂πF admits a representation T =

∑∞
n=1 xn⊗yn where {xn}n∈N and {yn}n∈N

are bounded sequences in E,F respectively such that
∑∞

n=1 ‖xn‖ ‖ ‖yn‖ < ∞.
Moreover,

π(T ) = inf

{
∞∑
n=1

‖xn‖ ‖yn‖ :
∞∑
n=1

‖xn‖ ‖yn‖ <∞, T =
∞∑
n=1

xn ⊗ yn

}
,
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the infimum being taken over all the representations of T ∈ E⊗̂πF as described
above.

Lemma 4.8. Let X be a pointed metric space and E a Banach space. Let
J : X#⊗̂πE → Lip0N(X,E) be the formal identity defined for all pairs of bounded
sequences {gn}n∈N in X# and {en}n∈N in E such that

∑∞
n=1 Lip(gn) ‖en‖ <∞ as

J

(
∞∑
n=1

gn ⊗ en

)
=
∞∑
n=1

gn · en.

Then J is a well-defined quotient mapping.

Proof. Let T ∈ X#⊗̂πE. We claim that J(T ) ∈ Lip0N(X,E) is independent
of the chosen representation as above for T . It is known that (X#⊗̂πE)∗ is
isometrically isomorphic to L(X#, E∗), with the duality pairing given by〈

S,
∞∑
n=1

gn ⊗ en

〉
=
∞∑
n=1

〈S(gn), en〉

for
∑∞

n=1 gn ⊗ en ∈ X#⊗̂πE and S ∈ L(X#, E∗). If T =
∑∞

n=1 gn ⊗ en =∑∞
n=1 g

′
n ⊗ e′n, where {gn}n∈N and {g′n}n∈N in X# and {en}n∈N and {e′n}n∈N in E

are bounded sequences satisfying (
∑∞

n=1 Lip(gn) ‖en‖) (
∑∞

n=1 Lip(g′n) ‖e′n‖) <∞,
then 〈S, T 〉 =

∑∞
n=1 〈S(gn), en〉 =

∑∞
n=1 〈S(g′n), e′n〉 for all S ∈ L(X#, E∗). In

particular, if x ∈ X and φ ∈ E∗, taking S(x,φ) in L(X#, E∗) defined by〈
S(x,φ)(g), e

〉
= g(x)φ(e)

(
g ∈ X#, e ∈ E

)
,

we obtain that
∑∞

n=1 gn(x)φ(en) =
∑∞

n=1 g
′
n(x)φ(e′n) for all x ∈ X and φ ∈ E∗.

From this we deduce that J(T ) =
∑∞

n=1 gn · en =
∑∞

n=1 g
′
n · e′n, which proves the

claim.
Let f ∈ Lip0N(X,E) and let

∑∞
n=1 gn · en be a Lipschitz nuclear representation

of f . Take T =
∑∞

n=1 gn ⊗ en. Clearly, T ∈ X#⊗̂πE and J(T ) = f . Hence J is
surjective and π(T ) ≤

∑∞
n=1 Lip(gn) ‖en‖. It follows that π(T ) ≤ LipN(f), and

so

inf
{
π(T ) : T ∈ X#⊗̂πE, J(T ) = f

}
≤ LipN(f).

To get the converse inequality, take T ∈ X#⊗̂πE such that J(T ) = f . Let∑∞
n=1 g

′
n⊗ e′n be an arbitrary representation of T where {g′n}n∈N and {e′n}n∈N are

bounded sequences in X# and E respectively such that
∑∞

n=1 Lip(g′n)‖ ‖e′n‖ <∞.
Then

∑∞
n=1 g

′
n · e′n is a Lipschitz nuclear representation for f and thus LipN(f) ≤∑∞

n=1 Lip(g′n) ‖e′n‖. Hence LipN(f) ≤ π(T ) and so

LipN(f) ≤ inf
{
π(T ) : T ∈ X#⊗̂πE, J(T ) = f

}
.

�

We now are ready to obtain the announced result.

Theorem 4.9. A Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz G-integral
operator if and only if f is the limit in the Lipschitz weak operator topology on
Lip0(X,E) of a LipN -bounded net of Lipschitz nuclear operators from X to E.



56 M.G. CABRERA-PADILLA, A. JIMÉNEZ-VARGAS

Proof. Assume that f is the LWOT-limit of a LipN -bounded net of operators in
Lip0N(X,E). Then f is the LWOT-limit of a LipGI-bounded net of operators in
Lip0GI(X,E) by Propositions 4.4 and 3.2. Hence f ∈ Lip0GI(X,E) by Lemma
4.7.

Conversely, let f ∈ Lip0GI(X,E). Then the linear functional Γ(κEf) defined
on F(X)⊗ E∗ by

〈Γ(κEf), δx ⊗ φ〉 = 〈φ, f(x)〉
is continuous on F(X)⊗̂εE∗. It is not hard that the map j : F(X) ⊗ε E∗ →
(X#⊗̂πE)∗, defined by〈

j

(
n∑
i=1

δxi ⊗ φi

)
,
∞∑
k=1

gk ⊗ ek

〉
=
∞∑
k=1

n∑
i=1

gk(xi)φi(ek),

is a linear isometry and therefore so is its extension, denoted also by j, to
F(X)⊗̂εE∗. Then the adjoint map j∗ : (X#⊗̂πE)∗∗ → (F(X)⊗̂εE∗)∗ is surjec-
tive. Therefore there is a T ∈ (X#⊗̂πE)∗∗ such that j∗(T ) = Γ(κEf). Denote by
κA the canonical injection from X#⊗̂πE into its bidual. By Goldstine theorem’s
there exists a net {Tγ}γ∈Γ in X#⊗̂πE such that supγ∈Γ π(Tγ) ≤ ‖T‖ < ∞ and

〈κA(Tγ), v〉 → 〈T, v〉 for all v ∈ (X#⊗̂πE)∗. Hence 〈κA(Tγ), j(u)〉 → 〈T, j(u)〉
for all u ∈ F(X)⊗̂εE∗. In particular, 〈κA(Tγ), j(δx ⊗ φ)〉 → 〈T, j(δx ⊗ φ)〉 for all
x ∈ X and φ ∈ E∗. If Tγ =

∑∞
k=1 gγ,k ⊗ eγ,k, where {gγ,k}k∈N and {eγ,k}k∈N are

bounded sequences in X#, E respectively such that
∑∞

k=1 Lip(gγ,k) ‖eγ,k‖ < ∞,
notice that

〈κA(Tγ), j(δx ⊗ φ)〉 = 〈j(δx ⊗ φ), Tγ〉 =
∞∑
k=1

gγ,k(x)φ(eγ,k)

=

〈
φ,
∞∑
k=1

gγ,k(x)eγ,k

〉
= 〈φ, J(Tγ)(x)〉 ,

where J : X#⊗̂πE → Lip0N(X,E) is the formal identity given in Lemma 4.8, and
also

〈T, j(δx ⊗ φ)〉 = 〈j∗(T ), δx ⊗ φ〉 = 〈Γ(κEf), δx ⊗ φ〉 = 〈φ, f(x)〉 .
So 〈φ, J(Tγ)(x)〉 → 〈φ, f(x)〉 for all x ∈ X and φ ∈ E∗. Since {J(Tγ)}γ∈Γ is a
LipN -bounded net in Lip0N(X,E) by Lemma 4.8, the proof is complete. �

Since Lip0F (X,E) is LipN -dense in Lip0N(X,E) by Proposition 4.2, we obtain
the next refinement of Theorem 4.9.

Corollary 4.10. A Lipschitz operator f ∈ Lip0(X,E) is a Lipschitz G-integral
operator if and only if f is the limit in the Lipschitz weak operator topology on
Lip0(X,E) of a LipN -bounded net of Lipschitz finite-rank operators from X to E.
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E-mail address: m gador@hotmail.com

E-mail address: ajimenez@ual.es


	Introduction
	1. Preliminaries
	2. Lipschitz Grothendieck-integral operators
	3. Lipschitz Pietsch-integral operators
	4. Lipschitz nuclear operators
	References

