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Abstract. Let T : A −→ B be a surjective operator between two unital
semisimple commutative Banach algebras A and B with T1 = 1. We show that
if T satisfies the peripheral multiplicativity condition σπ(Tf.Tg) = σπ(f.g) for
all f and g in A, where σπ(f) shows the peripheral spectrum of f , then T is a
composition operator in modulus on the Šilov boundary of A in the sense that
|f(x)| = |Tf(τ(x))|, for each f ∈ A and x ∈ ∂(A) where τ : ∂(A) −→ ∂(B) is
a homeomorphism between Šilov boundaries of A and B.

1. introduction

Assume that A and B are algebras of continuous functions on Hausdorff spaces
X and Y respectively. A map T : A −→ B is called multiplicatively spectrum-
preserving if spB(T (f).T (g)) = spA(f.g), for all f and g in A, where spA(f)
shows the spectrum of an element f in A. If the spectrums of the elements of the
algebras A and B are bounded subsets of the plane then T : A −→ B is called
peripherally multiplicative if σπ(T (f).T (g)) = σπ(f.g), for all f and g in A, where
σπ(f), the peripheral spectrum of f , is defined by σπ(f) = {λ ∈ spA(f) : |λ| =
maxz∈spA(f)|z|}.

In 2002 Molnar [14] proved the following: If X is a first-countable compact
Hausdorff space, A = C(X), the space of all continuous functions on X and
T : A −→ A a multiplicatively spectrum-preserving surjection, then T (1) is a
signum function, i.e., (T (1))2 = 1, and there exists a homeomorphism τ of X onto
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itself such that T (f)(x) = T (1)(x)f(τ(x)) for all x ∈ X and f ∈ C(X). Molnar’s
Theorem motivated new researches about operators between algebras of contin-
uous functions which preserves multiplicatively the norm, range or spectrum of
algebra elements. For example in [5] authors extended Molnar’s Theorem to uni-
tal commutative semisimple Banach algebras. Some other extensions of Molnar’s
Theorem to diverse classes of Banach algebras can be found in [4, 8, 15, 16].

In 2006 Luttman and Tonev showed that it is not necessary that the entire
spectrum be preserved in order to completely determine the structures of function
algebras:
Theorem 1.1. [13] Let A and B be uniform algebras on compact Hausdorff
spaces X and Y respectively. If T : A −→ B is a surjective operator such that
σπ(T (f).T (g)) = σπ(f.g), for all f and g in A, then T (1) is a signum func-
tion and there exists a homeomorphism τ : c(B) −→ c(A) such that T (f)(x) =
T (1)(x)f(τ(x)) for all x ∈ c(B) and f ∈ A, where c(A) denotes the Choquet
boundary of A

The proof of the above Theorem depends basically on the fact that the Choquet
boundary c(A) of a uniform algebra A consists exactly of strong boundary points
of A. So extensions of the Theorem to unital commutative semisimple Banach
algebras are not always possible. On the other hand, if every point in the maximal
ideal space is a strong boundary point, then positive results exists. For instance,
in [10] it is proven that any unital peripherally multiplicative surjection between
Lipschitz algebras is an algebra isomorphism. Also there is a similar result for
additive peripherally multiplicative surjections between dense subsets of uniform
algebras [18].

In 2007 Lambert, Lutman and Tonev showed that Theorem 1.1 is valid under
a weaker condition σπ(T (f).T (g)) ∩ σπ(f.g) 6= ∅ if, in addition, T preserves the
peaking functions [11]. There are another extensions of Theorem 1.1 which can
be found in [9, 10, 18].

In [6] authors raised a question ” Is any unital peripherally multiplicative surjec-
tion between unital semisimple commutative Banach algebras an isomorphism?”.
In this paper by generalizing some of the results in [13] to Banach function alge-
bras and using the upper semicontinuity of the peripheral spectrum function, we
show that a peripherally multiplicative operator T : A −→ B between two unital
commutative semisimple Banach algebras A and B is injective. Also we show
that if T is, in addition, unital and surjective then it is a composition operator
in modulus on the Šilov boundary of A and induces a homeomorphism between
Šilov boundaries of A and B.

2. preliminaries

Given a compact Hausdorff space X, a function algebra A on X is a subalgebra
of C(X) which contains the constants and separates the points of X in the sense
that for each x, y ∈ X with x 6= y there exists a function f ∈ A such that
f(x) 6= f(y). A Banach function algebra A on X is a function algebra on X
which is a Banach algebra with respect to some norm. If the norm of a Banach
function algebra A on a compact Hausdorff space X is the sup-norm, i. e., if
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‖f‖X = supx∈X |f(x)| then A is called a uniform algebra on X. If A is a function
algebra on X, then Ā, the uniform closure of A, is a uniform algebra on X.

For a Banach function algebra A on a compact Hausdorff space X there exists
a natural embedding of X into MA, the maximal ideal space of A, through the
map J : x 7−→ ϕx, where ϕx is the evaluation homomorphism at x ∈ X. We say
that A is a natural Banach function algebra on X if the map J is also surjective.

If A is a unital commutative semisimple Banach algebra then the Gelfand trans-
form Γ : A −→ Â ⊆ C(MA); f 7−→ f̂ is an algebra isomorphism. So identifying A

with Â each unital commutative semisimple Banach algebra A can be considered
as a natural Banach function algebra on its maximal ideal space.

Let A be a function algebra on a compact Hausdorff space X. A function f
in A is a peaking function of A if ‖f‖X = 1 and |f(x)| < 1 for each x ∈ X with
f(x) 6= 1. For a peaking function f ∈ A, the set P (f) = {x ∈ X : f(x) = 1}
is called the peaking set (or peak set) of f . We denote the set of all peaking
functions of A by F(A). Also for a fixed point x ∈ X the set of all peaking
functions f ∈ A with x ∈ P (f) is denoted by Fx(A). For an element f ∈ A, the
maximal set Mf of f is defined by Mf = {x ∈ X : |f(x)| = ‖f‖X}. It is easy
to see that for each f ∈ A, if |f(x)| = ‖f‖X for some x ∈ X then the function
g = 1

2
(1 + f

f(x)
) is a peaking function with P (g) ⊆ Mf . A point x ∈ X is a

strong boundary point for A if for every neighborhood V of x there exists an
f ∈ A such that ‖f‖X = f(x) = 1 and |f(y)| < 1 if y ∈ X \ V . If we consider
1
2
(1 + f) instead of f , we can assume that the function f in the later definition is

a peaking function with x ∈ P (f) ⊆ V . A subset E of X is called a boundary for
A if every f ∈ A assumes its maximum modulus at some point of E. The unique
minimal closed boundary for A, which exists by [17, Theorem 7.4] is called the
Šilov boundary for A and is denoted by ∂(A). It is clear that x ∈ X is in ∂(A) if
and only if for each neighborhood V of x there exists f ∈ A such that Mf ⊂ V ,
or, in other words, there exists a peaking function f in A with P (f) ⊂ V .

If A is a commutative Banach algebra then Â is a function algebra on MA and
we shall refer to the Šilov boundary for Â as the Šilov boundary for A.

The Choquet boundary c(A) of a function algebra A on a compact Hausdorff
space X is the set of all x ∈ X for which ϕx is an extreme point of the unit ball
of the dual space of (A, ‖.‖X), so clearly c(A) = c(Ā). Also it is known that for a
function algebra A, ∂A is the closure of c(A) [1]. If A is a uniform algebra on a
compact Hausdorff space X then it is well known that c(A) consists of all strong
boundary points for A [17, Theorem 7.30].

In the following we state Bishop’s Lemma for function algebras. A similar
result is proven in [19]

Lemma 2.1. Let A be a function algebra on a compact Hausdorff space X and
E ⊆ X be a peak set for A. For each f ∈ A with f |E 6= 0 there exists a peaking
function h ∈ F(Ā) such that P (h) = E and

i) |f(z)h(z)| < maxx∈E|f(x)| for each z ∈ X \ E,
ii) h is a uniform limit of a sequence {hn} in F(A) with P (hn) = E.
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Proof. Without loss of generality we may assume that ‖f‖E = maxx∈E|f(x)| = 1.
As in [12, pag 161], Consider a peaking function g ∈ A with P (g) = E and open
sets Un = {x ∈ X : |f(x)| < 1 + 1

2n}, each of them containing E. So for each

n ∈ N there exists pn ∈ N such that maxX\Un|gpn| < 1
2n‖f‖X

. Let gn = gpn and

set h =
∑∞

k=1
gk

2k . Since ‖gn‖X = 1, the series converges uniformly and hence
h ∈ Ā. An argument similar to [12, page 161] shows that h is a peaking function
in Ā with P (h) = E and, moreover, fh attains its maximum modulus exclusively
within E.

To prove (ii) note that each gn is a peaking function in A and P (gn) = E. Set

sn =
∑n

k=1

gk
2k

and αn =
∑n

k=1

1

2k
. It is easy to see that hn = 1

αn
sn is a sequence

in F(A) converging uniformly to h and for each n ∈ N, P (hn) = E. �

3. peripheral spectrum of function algebra’s elements

In this Section by generalizing some of the results in [13] and using the upper
semicontinuity of the peripheral spectrum function, we show that any peripher-
ally multiplicative operator between two unital commutative semisimple Banach
algebras is injective.

The following Lemma follows from [19, Lemma 2.2] but we state it for the sake
of completness.

Lemma 3.1. Let A be a function algebra on a compact Hausdorff space X and
f, g ∈ A. If ‖fh‖X ≤ ‖gh‖X for all peaking functions h ∈ A, then |f(x)| ≤ |g(x)|
on ∂(A).

Proof. For the proof we modify the proof of [13, Lemma 2]. Suppose on the
contrary that there exists x0 ∈ ∂(A) such that |g(x0)| < |f(x0)|. Choose δ > 0
such that |g(x0)| < δ < |f(x0)|, and open neighborhoods V1 and V2 of x0 in X
such that |g(x)| < δ on V1 and |f(x)| > δ on V2. Set V = V1∩V2. Since x0 ∈ ∂(A),
there exists h ∈ F(A) such that P (h) ⊆ V . By choosing a sufficiently high power
of h we may assume that ‖gh‖X < δ. Obviously for each z ∈ P (h) we have

‖gh‖X < δ < |f(z)h(z)| ≤ ‖fh‖X ,

which contradicts the hypothesis. �

Corollary 3.2. Let A be a function algebra on a compact Hausdorff space X and
f, g ∈ A. If ‖fh‖X = ‖gh‖X for all peaking functions h ∈ A, then |f(x)| = |g(x)|
on ∂(A).

In the next Lemma, following the same method as in [2, Theorem 3.4.2] we
show that the peripheral spectrum function f 7→ σπ(f) is upper semicontinuous
on a unital commutative Banach algebra.

Lemma 3.3. Let A be a unital commutative Banach algebra with unit 1. Then
the peripheral spectrum function f 7→ σπ(f) is upper semicontinuous on A, that
is for every open set U containing σπ(f) there exists δ > 0 such that ‖f − g‖ < δ
implies that σπ(g) ⊆ U .
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Proof. We first note that σπ(f) = {λ ∈ spA(f) : |λ| = maxz∈spA(f)|z| = ‖f̂‖MA
},

for each f ∈ A. Now suppose on the contrary that there exist sequences {gn}
in A and {αn} in C such that limn→∞ gn = f and αn ∈ σπ(gn) ∩ (C \ U). Since

|αn| = ‖ĝn‖MA
and limn→∞ ‖ĝn‖MA

= ‖f̂‖MA
, the sequence {αn} is bounded and

consequently it has a limit point α. Without loss of generality we may assume that
{αn} converges to α. Clearly α /∈ U . Now if α /∈ spA(f) then α1− f is invertible
and so αn1 − gn will be invertible for n large enough, which is a contradiction.
Therefore α ∈ spA(f). On the other hand the equation |α| = ‖f̂‖MA

implies that
α ∈ σπ(f) ⊆ U which is again a contradiction. �

Remark 3.4. i) Let A be a Banach function algebra on a compact Hausdorff
space X. In [7] it is shown that if A is natural then M(A) = M(Ā). This clearly
implies that spA(f) = spĀ(f), for each f ∈ A. Consequently, for a natural Banach
function algebra A on a compact Hausdorff space X, the peripheral spectrums
of an element f ∈ A with respect to both algebras A and Ā are the same. Note
that for each f ∈ Ā, σπ(f) = Ranπ(f), where Ranπ(f) is the peripheral range of
f , that is, the set Ranπ(f) = f(X) ∩ {z ∈ C : |z| = ‖f‖X} [13, Lemma 1];

ii) If A and B are natural Banach function algebras on compact Hausdorff
spaces X and Y , respectively, and T : A −→ B is a peripherally multiplicative
operator then ‖T (f)T (g)‖Y = ‖fg‖X for each f, g ∈ A, since σπ(f) = Ranπ(f)
and T is peripherally multiplicative. Also it is easy to see that if T is unital and
surjective then T (F(A)) = F(B).

Lemma 3.5. Let A be a natural Banach function algebra on X. Let f, g ∈ A
and {hn} be a sequence in A which converges to an element h in Ā. If σπ(fhn)∩
σπ(ghn) 6= ∅, for each n ∈ N, then σπ(fh) ∩ σπ(gh) 6= ∅
Proof. Suppose on the contrary that σπ(fh)∩ σπ(gh) = ∅. So there exist disjoint
open sets U and V containing σπ(fh) and σπ(gh), respectively. Upper semicon-
tinuity of the peripheral spectrum function shows that there exists N ∈ N such
that σπ(fhn) ⊆ U and σπ(ghn) ⊆ V , for each n > N . But this contradicts to the
fact that σπ(fhn) ∩ σπ(ghn) 6= ∅. �

Using the above Lemma we can modify the proof of [13, Lemma 3] and get the
following result:

Lemma 3.6. Let A be a natural Banach function algebra on a compact Hausdorff
space X and f, g ∈ A. If σπ(fh) = σπ(gh) for all peaking functions h ∈ A, then
f = g on X.

Proof. Obviously ‖fh‖X = ‖gh‖X for all peaking functions h ∈ A. So by corollary
3.2 we have |f(x)| = |g(x)|, for each x ∈ ∂(A). Let x0 ∈ ∂(A). If f(x0) = 0 then
clearly f(x0) = g(x0). Otherwise choose a neighborhood V1 of x0 such that f 6= 0
on V1. For an arbitrary neighborhood V of x0 there exists a function k ∈ F(A)
such that P (k) ⊆ V ∩V1. By Lemma 2.1 we can find a function h ∈ F(Ā) with the
same peaking set as k, so that fh attains its maximum modulus exclusively within
P (h) and h is a uniform limit of a sequence {hn} of peaking functions in A with
P (hn) = P (k), for each n ∈ N. In fact we can choose h ∈ F(Ā) such that both
functions fh and gh attain their maximum modulus exclusively within P (h). By
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hypothesis σπ(fhn) = σπ(ghn) for each n ∈ N. This implies, by Lemma 3.5, that
σπ(fh) ∩ σπ(gh) 6= ∅. Let z ∈ σπ(fh) ∩ σπ(gh). Then |z| = ‖fh‖X = ‖gh‖X and
there exists x1, x2 ∈ X such that z = fh(x1) = gh(x2). Obviously x1, x2 ∈ P (h),
by the choice of h, and therefore f(x1) = g(x2). Since each neighborhood of x0

contains points x1 and x2 such that f(x1) = g(x2), we have f(x0) = g(x0) by the
continuity of f and g. So f = g on ∂(A) and Consequently f = g on X. �

Using Lemma 3.6 and an argument similar to [13, Proposition 1], we get the
following corollary:

Corollary 3.7. Let A and B be natural Banach function algebras on compact
Hausdorff spaces X and Y , respectively. Then every peripherally multiplicative
operator T : A −→ B is injective.

4. Main results

Let A be a Banach function algebra on a compact Hausdorff space X. Consider
the collection Ω of subsets of X which are nonempty intersection of peak sets for
A and order Ω by inclusion.

Definition 4.1. [3, Definition 4.1] A member of Ω which is minimal with respect
to the ordering is called a minimal set for A on X. The collection of all minimal
sets on X is denoted by ΣX .

Obviously ΣX is a collection of pairwise disjoint closed subsets of X. If Q ∈ ΣX

then every peak set either contains Q or is disjoint from it. So clearly for each
x ∈ Q we have Q =

⋂
f∈Fx(A) P (f). Since X is compact and every member of ΣX

is closed, it follows from finite intersection property and Zorn’s Lemma that every
peak set contains a minimal set and consequently every maximal set contains a
minimal set. A trivial minimal set is a minimal set which contains only one point.
A point x ∈ X is a strong boundary point for A if and only if {x} is a trivial
minimal set. Each minimal set in a uniform algebra is trivial but [3, example 4.3]
shows that non-trivial minimal sets exist.

Definition 4.2. Let {Qν}ν∈I be a net in ΣX . we say:

i) x ∈ X is a limit point of {Qν}ν∈I or {Qν}ν∈I converges to x if for each
neighborhood U of x there exists ν ∈ I such that Qω ⊆ U whenever
ω > υ.

ii) x ∈ X is an accumulation point of {Qν}ν∈I or {Qν}ν∈I accumulates at x
if there exists a subnet {Qα}α∈J of {Qν}ν∈I and a net {xα}α∈J such that
for each α ∈ J , xα ∈ Qα and {xα}α∈J converges to x.

We denote the set of all accumulation points of a net {Qν}ν∈I in ΣX by E{Qν}ν∈I
.

It is easy to see that a net {Qν}ν∈I converges to an element x ∈ X if and only if
E{Qν}ν∈I

= {x}

Lemma 4.3. For each x ∈ ∂(A) there exists a net in ΣX converging to x. Also
if x is not a strong boundary point for A then we can choose the mentioned net
such that it consists of infinitely many elements of ΣX .
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Proof. If x is a strong boundary point then the singleton {x} itself is a minimal
set. Otherwise there exists an open neighborhood U of x such that for each
f ∈ F(A) if P (f) ⊆ U then x /∈ P (f). Consider the set

I = {ν : ν is an open neighbourhood ofx contained in U}.
Obviously I is a directed set with respect to the inverse inclusion. Since x ∈ ∂(A),
each neighborhood of x contains a peak set and consequently contains a minimal
set. So for each ν ∈ I there exists a Qν ∈ ΣX with Qν ⊂ ν. Clearly {Qν}ν∈I
converges to x. Let Λ = {Qν : ν ∈ I}. If Λ is a finite set then ν ′ = U \

⋃
ν∈I Qν

belongs to I and Qν′ /∈ Λ, which is a contradiction. �

Remark 4.4. (i) Let x ∈ ∂(A) and {Qν}ν∈I be a net converging to x which consists
of finitely many elements in ΣX . By Definition 4.2 one can see that there exists
ν ∈ I such that Qω = Qν whenever ω > ν and Qν = {x}. So we conclude
that x ∈ ∂(A) is strong boundary point for A if and only if there exists a net
converging to x which consists of finitely many elements in ΣX .

(ii) Let {Qν}ν∈I be an arbitrary net in ΣX . Since for each ν ∈ I the minimal
set Qν intersects c(A) = c(Ā) and ∂(A) is a compact subset of X containing c(A),
so E{Qν}ν∈I

∩ ∂(A) is a nonempty subset of X. Note that if {Qν}ν∈I consists of
finitely many elements in ΣX then
E{Qν}ν∈I

= ∪{Qν : there exists a subnet {Qω}ω∈J of {Qν}ν∈I such that Qω =
Qν for each ω ∈ J}.

Our main result is the following:

Theorem 4.5. Let A and B be natural Banach function algebras on compact
Hausdorff spaces X and Y respectively, and T : A −→ B be a unital peripherally
multiplicative surjection. Then there exists a homeomorphism τ : ∂(A) −→ ∂(B)
such that |f(x)| = |Tf(τ(x))| for each f ∈ A and x ∈ ∂(A).

Proof. The proof of the Theorem is divided into the following steps. The proofs
of step1 and step2 is omitted since they are similar to the proofs of [8, Lemma
3.7], [8, Lemma 3.10] and [8, Lemma 3.9].

step1. If x is an element of a minimal set for A on X then
⋂
f∈Fx(A) P (Tf) is

a minimal set for B on Y .
step2. Let ψ : ΣX −→ ΣY be the function defined by ψ(Q) =

⋂
f∈Fx(A) P (Tf)

where x is an arbitrary element of Q. Then ψ is a bijection and ‖f‖Q = ‖Tf‖ψ(Q)

holds for all Q ∈ ΣX and f ∈ A, where ‖f‖Q is the sup-norm of f on Q as a
compact subset of X.

step3. Let x0 ∈ ∂(A) and {Qν}ν∈I be a net in ΣX converging to x0. Suppose
y0 ∈ E{ψ(Qν)}ν∈I

and k ∈ B. Then for each r > 0, |k(y0)| > r implies that
|T−1(k)(x0)| > r.

Choose r′ > 0 such that |k(y0)| > r′ > r and a neighborhood V of y0 in Y
such that |k(y)| > r′ on V . By Definition 4.2 there exists a subnet {ψ(Qβ)}β∈J
of {ψ(Qν)}ν∈I and a net {yβ}β∈J such that for each β ∈ J , yβ ∈ ψ(Qβ), and
{yβ}β∈J converges to y0. So we can find α ∈ J such that yβ ∈ V whenever β > α.
By step2 for each β > α we have ‖T−1(k)‖Qβ

= ‖k‖ψ(Qβ) ≥ |k(yβ)| > r′. Since
the net {Qβ}β∈I converges to x0 we have |T−1(k)(x0)| ≥ r′ > r
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step4. Let x0 ∈ ∂(A) and {Qν}ν∈I be a net in ΣX converging to x0. Sup-
pose y0 ∈ E{ψ(Qν)}ν∈I

∩ ∂B. If {Pα}α∈Γ is a net in ΣY converging to y0 then
E{ψ−1(Pα)}α∈Γ

= {x0}.
By Remark 4.4, E{ψ−1(Pα)}α∈Γ

∩ ∂(A) is a nonempty subset of X. Now suppose
that there exists x′ ∈ E{ψ−1(Pα)}α∈Γ

such that x′ 6= x0. since A is a function
algebra on X, there exists an f ∈ A such that f(x′) = 1 and f(x0) = 0. Fix two
positive real numbers r and r′ such that 0 < r < r′ < 1. There exists an open
neighborhood V of x′ such that |f(x)| > r′ > r on V and x0 ∈ X \ V . Since
x′ ∈ E{ψ−1(Pα)}α∈Γ

, there exists a subnet {ψ−1(Pβ)}β∈J of {ψ−1(Pα)}α∈Γ and a net
{x′β}β∈J in X such that x′β ∈ ψ−1(Pβ) for each β ∈ J and {x′β}β∈J converges to
x′. So we can find γ ∈ J such that x′β ∈ V whenever β ∈ J and β > γ. Therefore
for each β ∈ J with β > γ we have ‖Tf‖Pβ

= ‖f‖ψ−1(Pβ) ≥ |f(x′β)| > r′ > r.
Note that {Pβ}β∈J is a subnet of {Pα}α∈Γ and so converges to y0. Therefore
|Tf(y0)| ≥ r′ > r. On the other hand y0 ∈ E{ψ(Qν)}ν∈I

so by previous step
|T−1(Tf)(x0)| = |f(x0)| > r which is a contradiction since f(x0) = 0 . Hence
x′ = x0 .

Note that if y0 is a strong boundary point for B then we can choose {Pα}α∈Γ

such that Pα = {y0} for each α ∈ Γ so by Remark 4.4 we have E{ψ−1(Pα)}α∈Γ
=

ψ−1({y0}) = {x0}. This shows that, in this case, x0 is in fact a strong boundary
point for A.

step5. Let x0 ∈ ∂(A) and {Qν}ν∈I be a net in ΣX converging to x0. Then
the set E{ψ(Qν)}ν∈I

is a singleton that belongs to ∂(B). Furtheremore if x0 is
a strong boundary point for A then ψ({x0}) is a singletone which consists of a
strong boundary point for B.

By Remark 4.4 E{ψ(Qν)}ν∈I
∩ ∂B 6= ∅. Let y0 ∈ E{ψ(Qν)}ν∈I

∩ ∂B. Suppose on
the contrary that there exists y1 ∈ E{ψ(Qν)}ν∈I

such that y1 6= y0. Since B is a
function algebra, we can find k ∈ B such that k(y0) = 0 and k(y1) = 1. For
each ε > 0 consider a neighbourhood V of y0 such that |k(y)| < ε on V . Now
by Lemma 4.3 there exists a net {Pα}α∈J in ΣY converging to y0. So we can find
α ∈ J such that for each β ∈ J if β > α then ‖T−1(k)‖ψ−1(Pβ) = ‖k‖Pβ

< ε. By

the previous step E{ψ−1(Pα)}α∈J
= {x0} so |T−1(k)(x0)| ≤ ε. On the othere hand

1 = |k(y1)| > r, for some 1 > r > ε. So by step3, |T−1(k)(x0)| > r > ε which is
a contradiction.

Now suppose that x0 is a strong boundary point for A. We can choose {Qν}ν∈I
such that Qν = {x0} for each ν ∈ I. So by Remark 4.4 E{ψ(Qν)}ν∈I

= ψ({x0})
and since the minimal set ψ({x0}) is a singleton, by the first part of the proof,
so it consists of a strong boundary point for B.

step6. Let x ∈ ∂A. If {Qν}ν∈I and {Q′
ν}ν∈J are two different nets converging

to x then E{ψ(Qν)}ν∈I
= E{ψ(Q′ν)}ν∈J

Let E{ψ(Qν)}ν∈I
= {y0} and E{ψ(Q′ν)}ν∈J

= {y1}. Suppose on the contrary that
y0 6= y1. Consider the function k ∈ B such that k(y0) = 0 and k(y1) = 1. Fix
ε > 0. There exists α ∈ I such that ‖T−1(k)‖Qβ

= ‖k‖ψ(Qβ) < ε whenever β ∈ I
and β > α. Therefore |T−1(k)(x)| < ε, since {Qν}ν∈I converges to x. On the
other hand step3 shows that |T−1(k)(x)| > ε, since 1 = |k(y1)| > ε, which is a
contradiction.
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step7. Let τ : ∂(A) −→ ∂(B) be the function defined by {τ(x)} = E{ψ(Qν)}ν∈I

where {Qν}ν∈I is an arbitrary net in ΣX converging to x. Then τ is a homeomor-
phism and for each f ∈ A and x ∈ ∂(A)

|f(x)| = |Tf(τ(x))|. (4.1)

It is easy to see that equation (4.1) is valid for each f ∈ A and x ∈ ∂(A),
by step 2 and definition of the function τ . Now let x1, x2 ∈ ∂(A) and τ(x1) =
τ(x2). Clearly Tf(τ(x1)) = Tf(τ(x2)) for each f ∈ A. So by equation (4.1),
|f(x1)| = |f(x2)| and consequently x1 = x2 since A is a function algebra. So τ
is injective. To prove the surjectivity of τ we first note that T is bijective and
since the peripheral multiplicativity property is symmetric with respect to f and
T (f), it holds also for the inverse operator T−1. On the other hand step2 shows
that ψ is a bijection. Let y ∈ ∂(B) and {Pν}ν∈I be a net in ΣY converging to
y. Considering the peripheral multiplicative operator T−1 : B −→ A and the
bijection ψ−1 : ΣY −→ ΣX , according to step5, E{ψ−1(Pν)}ν∈I

consists of just
one element, say x, in ∂(A). Obviously {ψ−1(Pν)}ν∈I converges to x and so
{τ(x)} = E{ψ(ψ−1(Pν))}ν∈I

= E{Pν}ν∈I
= {y}, that is τ is surjective.

Now let x ∈ ∂(A) and {xα}α∈I be a net in ∂(A) converging to x. Since ∂(B)
is compact, we can assume that {τ(xα)}α∈I converges to an element y in ∂(B).
If τ(x) 6= y then we can consider a function f ∈ A such that Tf(τ(x)) = 1 and
Tf(y) = 0. According to equation (4.1), |f(x)| = 1. Let r > 0. Since {xα}α∈I
converges to x, there exists α ∈ I such that |f(xβ)| > r whenever β > α. Using
equation (4.1) once more we conclude that |Tf(τ(xβ))| > r for each β > α. On the
other hand {τ(xα)}α∈I converges to y and Tf is continuous, so |Tf(y)| ≥ r which
is a contradiction. Consequently τ is continuous. If we consider T−1 : B −→ A
and the corresponding mapping τ−1 : ∂(B) −→ ∂(A), the same argument shows
that τ−1 is also continuous, that is, τ is a homeomorphism. �

Remark 4.6. (i) Note that if x ∈ X is a strong boundary point for A then τ(x) ∈ Y
is a strong boundary point for B. Consequently if f ∈ Fx(A) then Tf ∈ Fτ(x)(B)
since {τ(x)} = ψ({x}) =

⋂
f∈Fx(A) P (Tf).

(ii) Suppose that f ∈ A is invertible. By equation (4.1) we have

|T (f−1)(τ(x)| = |f−1(x)| = 1/|f(x)| = 1/|Tf(τ(x)|.
Consequently |T (f−1)(y).T f(y)| = 1 on τ(∂(A)) = ∂(B). On the other hand
σπ(T (f−1).T f) = σπ(f

−1.f) = {1}. So T (f−1)(y).T f(y) = 1 on ∂(B) which
clearly implies that Tf is invertible and T (f−1) = (Tf)−1.
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