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Abstract. Using a ‘local’ integral representation of a matrix connection of
order n corresponding to an interpolation function of the same order, for each
integer n, we can describe an injective map from the class of matrix connections
of order n to the class of positive n-monotone functions on (0,∞) and the range
of this corresponding covers the class of interpolation functions of order 2n. In
particular, the space of symmetric connections is isomorphic to the space of
symmetric positive n-monotone functions. Moreover, we show that, for each
n, the class of n-connections extremely contains that of (n + 2)-connections.

1. Introduction

Throughout the paper, let us denote R+ the subset (0,∞) of the real line R,
Mn the algebra of square matrices of order n with coefficients in C and M+

n the
cone of positive semi-definite matrices in Mn. The order relation A ≤ B on the
set of all self-adjoint matrices means that B − A ≥ 0. A n-monotone function
on [0,∞) is a function which preserves the order on the set of all n× n positive
semi-definite matrices. Moreover, if f is n-monotone for all n ∈ N, then f is
called operator monotone.

With a view to studying electrical network connections, Anderson and Duffin
[5] introduced the concept of parallel sum of two positive semi-definite matrices.
Subsequently, in [6] Anderson and Trapp have extended the notions of parallel
addition and shorted operation to bounded linear positive operators on a Hilbert
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space H and showed their important applications in operator theory. In the
paper [12] Kubo and Ando developed an axiomatic theory of operator means.
This theory has found a number of applications in operator theory and quantum
information theory. In particular, Petz [17] connected the theory of monotone
metrics with the theory of operator means by Kubo and Ando. He proved that
an operator monotone function f : [0,∞) −→ [0,∞) satisfying the symmetry
condition

f(t) = tf(t−1), t ≥ 0 (1.1)

is related to a Morozova-Chentsov function which gives a monotone metric on
the quantum state which consists of n× n density matrices.

Restricting the definition of operator means from [12] on the set of positive
matrices of order n, we can consider matrix means of positive matrices of order
n.

Definition 1.1. A binary operation σ on M+
n , (A, B) 7→ AσB is called a matrix

connection of order n (or n-connection) if it satisfies the following properties:

(I) A ≤ C and B ≤ D imply AσB ≤ CσD.
(II) C(AσB)C ≤ (CAC)σ(CBC).

(III) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB

where An ↓ A means that A1 ≥ A2 ≥ . . . and An converges strongly to A.
A mean is a normalized connection, i.e. 1σ1 = 1. An operator connection

means a connection of every order. A n-semi-connection is a binary operation on
M+

n satisfying the conditions (II) and (III).

In [12], by using the representation of operator monotone functions on [0,∞),
Kubo and Ando showed that there exists an affine order-isomorphism from the
class of connections onto the class of positive operator monotone functions. The
following natural question is one of the motivations of our study: Does there exist
an injective affine order-homomorphism from the class of n-connections to the
class of positive n-monotone functions on [0,∞)? To study this question, the
approach in [12] could not be used, since it is not clear if there is an integral
representation of n-monotone functions. We need another candidates replacing
n-monotone functions.

A function f : R+ → R+ is called an interpolation function of order n ([1]) if
for any T, A ∈ Mn with A > 0 and T ∗T ≤ 1

T ∗AT ≤ A =⇒ T ∗f(A)T ≤ f(A).

We denote by Cn the class of all interpolation functions of order n on R+.

Remark 1.2. Let P (R+) be a set of all Pick functions on R+, P ′ the set of all
positive Pick functions on R+, i.e., functions of the form

h(s) =

∫
[0,∞]

(1 + t)s

1 + ts
dρ(t), s > 0,

where ρ is some positive Radon measure on [0,∞]. For n ∈ N denote by P ′
n the

set of all strictly positive n-monotone functions. The following properties can be
found in [1], [2],[3], [11], [14] or [4], :
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(i) P ′ = ∩∞n=1P
′
n , P ′ = ∩∞n=1Cn ;

(ii) Cn+1 ⊆ Cn;
(iii) P ′

n+1 ⊆ C2n+1 ⊆ C2n ⊆ P ′
n, P ′

n ( Cn

(iv) C2n ( P ′
n [16];

(v) A function f : R+ → R+ belongs to Cn if and only if
t

f(t)
belongs to Cn

[4, Proposition 3.5].

The following useful characterization of a function in Cn is due to Donoghue
(see [9], [8]), and to Ameur (see [1]).

Theorem 1.3. [4, Corollary 2.4] A function f : R+ → R+ belongs to Cn if and
only if for every n-set {λi}n

i=1 ⊂ R+ there exists a positive Pick function h on R,
such that

f(λi) = h(λi) for i = 1, . . . , n.

As a consequence, Ameur gave a ‘local’ integral representation of every function
in Cn as follows.

Theorem 1.4. [2, Theorem 7.1] Let A be a positive definite matrix in Mn and
f ∈ Cn. Then there exists a positive Radon measure ρσ(A) on [0,∞] such that

f(A) =

∫
[0,∞]

A(1 + s)(A + s)−1dρσ(A)(s),

where σ(A) is the set of eigenvalues of A.

Applying this representation, we give a ‘local’ integral formula for a connection
of order n corresponding to a n-monotone function on (0,∞) (hence, an inter-
polation function of order n) via the formula (2.1) (Lemma 2.1). Furthermore,
this ‘local’ formula also establishes, for each interpolation function f of order
2n, a connection σ of order n corresponding to the given interpolation function
f . Therefore, it shows that the map from the n-connections to the interpola-
tion functions of order n is injective with the range containing the interpolation
functions of order 2n. Moreover, we also show that the class of 1-connections
is isomorphic to the class of interpolation functions of order 2 and as much as
properties we know in the space of n-connections also hold in the space C2n of
interpolation functions of order 2n (Proposition 3.1 and Proposition 2.8). This
gives a hope that the class of n-connections is isomorphic to the class C2n.

An interesting and well-studied class of n-connections is the symmetric one,
since the corresponding representation functions f should satisfy (1.1). Using
the definition of symmetric connections, we can also give a corresponding concept
for interpolation functions and n-monotone functions. It is shown that the space
of n-connections is strictly subset of the space of positive n-monotone functions
on (0,∞) (Corollary 2.9). However, restricting on the symmetric functions, the
space of symmetric n-monotone functions is the same as that of symmetric n-
connections (Theorem 2.10).
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2. Interpolation functions and Means of positive matrices

In [12], there is an affine order-isomorphism from the set of connections onto
the set of operator monotone functions. In this section, we describe the similar
relation between the connections of order n and Cn ) C2n. Note that every
positive semi-definite matrix can be obtained as a limit of a decreasing sequence
of positive definite matrices, from now on, we can always assume that connections
are defined on positive definite matrices.

2.1. From n-connections to P
′
n. For any n-connection σ, the matrix Inσ(tIn)

is a scalar by [12, Theorem 3.2], and so we can define a function f on (0,∞) by

f(t)In = Inσ(tIn),

where In is the identity in Mn.
Claim: f ∈ P

′
n ( Cn. Indeed, as in the proof of [12, Theorem 3.2], using the

property (I) of the definition of connection, f is a n-monotone function on (0,∞).
Injectivity: Let σ1 and σ2 be two n-connections. Then there correspond two

functions f1 and f2 belonging to Cn, where fi(t)In = Inσi(tIn) (i = 1, 2). Suppose
that f1 = f2 then we have, for any A > 0 and B > 0 of order n,

Aσ1B = A
1
2 (Inσ1A

−1
2 BA

−1
2 )A

1
2 ([12, (3.8)])

= A
1
2 f1(A

−1
2 BA

−1
2 )A

1
2

= A
1
2 f2(A

−1
2 BA

−1
2 )A

1
2

= Aσ2B.

Hence, σ1 = σ2 by the continuity of means.

2.2. From C2n to n-connections. Let f be a function belonging to Cn. We can
define a binary operation σ on positive definite matrices in Mn by:

AσB = A
1
2 f [A

−1
2 BA

−1
2 ]A

1
2 , ∀A, B > 0. (2.1)

This operation satisfies the property (III) of the definition of connection. Indeed,
let An and Bn be two decreasing sequences which converge strongly to A and B,
respectively. Then A−1

n and B−1
n converge strongly to A−1 and B−1, respectively.

Therefore, A
−1
2

n BnA
−1
2

n converges strongly to A
−1
2 BA

−1
2 and by the continuity of f

we get the property (III). In [12], if f is an operator monotone, then the operation
σ defined above can be represented as:

AσB =

∫
[0,∞]

1 + s

s
{(sA) : B}dρ(s), (2.2)

where ρ is the Radon measure on [0,∞] corresponding to f (see [12, Theorem
3.4]). Unfortunately, in the case f belongs to Cn considered here, we do not know
the existence of the measure ρ satisfying the representation (2.2). However, we
can have such the representation of σ at “locally” as follows.

Lemma 2.1. Let f be a function in Cn and A, B positive matrices of order n.
Then there exists a Radon measure on the spectrum of A

−1
2 BA

−1
2 such that the

binary operation σ determined by (2.1) can be represented as the integral (2.2).
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Proof. By Theorem 1.4, there exists a Radon measure ρ = ρ
σ(A

−1
2 BA

−1
2 )

on [0,∞]

such that

f [A
−1
2 BA

−1
2 ] =

∫ ∞

0

A
−1
2 BA

−1
2 (1 + s)(A

−1
2 BA

−1
2 + s)−1dρ(s),

where σ(A
−1
2 BA

−1
2 ) is the set of eigenvalues of A

−1
2 BA

−1
2 . Substituting this

equality into (2.1), we have

AσB = A
1
2

∫ ∞

0

[A
−1
2 BA

−1
2 ](1 + s)(A

−1
2 BA

−1
2 + s)−1dρ(s)A

1
2

=

∫ ∞

0

BA
−1
2 (1 + s)(A

−1
2 BA

−1
2 + s)−1A

1
2 dρ(s)

=

∫ ∞

0

(1 + s)
(
A

−1
2 (A

−1
2 BA

−1
2 + s)A

1
2 B−1

)−1

dρ(s)

=

∫ ∞

0

(1 + s)(A−1 + sB−1)−1dρ(s)

=

∫ ∞

0

1 + s

s
{(sA) : B}dρ(s).

�

Corollary 2.2. Let f be a positive function on (0,∞) belonging to Cn. Then
there is a semi-connection of order n, σ, such that f(t)In = Inσ(tIn) for t > 0.

Proof. We can define a binary σ by the formula (2.1). Because of the continuity of
f (see Remark 2.3 below), we imply that σ has the property (III) in the definition.
By Lemma 2.1, there exists a Radon measure ρ such that

AσB =

∫
[0,∞]

1 + s

s
{(sA) : B}dρ(s)

For any positive definite matrix C of order n,

C(AσB)C =

∫
[0,∞]

1 + s

s
C{(sA) : B}Cdρ(s)

=

∫
[0,∞]

1 + s

s
{(sCAC) : CBC}dρ(s)

= (CAC)σ(CBC).

�

In the proof above, we need the continuity of f ∈ Cn. Actually, we follow the
definition of interpolation function in [4] and the continuity is the prior assump-
tion for any function. However, even if we did not assume the continuity of the
functions under consideration, we have

Remark 2.3. If f ∈ Cn(I) for n > 2 then f is continuous on I.

Proof. In order to prove the remark, we use the following facts.

(i) Any convex function on an open interval is continuous. (c.f. [15, Theo-
rem 1.3.3]) We may assume that I = (−1, 1).
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(ii) If f ∈ C3, then g(t) = (t + 1)f(t) is convex (see the below), and f is
continous.

To prove the remark, we do the same step in the proof of [7, Theorem V. 3.6].
Indeed, since f ∈ C3, for a finite set S of any three points t1, t2, λt1+(1−λ)t2 ∈ I

(0 < λ < 1) there exists an operator monotone function h such that f = h on S.
Since g1(t) = (t + 1)h(t) is operator convex on (−1, 1) by [7, Lemma V. 3. 5], we
have

g(λt1 + (1− λ)t2) = g1(λt1 + (1− λ)t2)

≤ λg1(t1) + (1− λ)g1(t2)

= λg(t1) + (1− λ)g(t2)

and g(t) = (t + 1)f(t) is convex. So, g(t) = (t + 1)f(t) is continuous. Since
(t + 1) is positive on (−1, 1), f is continuous on (−1, 1).

�

Now we can state the main theorem of this section.

Theorem 2.4. For any natural number n there is an injective map Σ from the
set of matrix connections of order n to P

′
n ⊃ C2n associating each connection σ

to the function fσ such that fσ(t)In = Inσ(tIn) for t > 0. Furthermore, the range
of this map contains C2n.

Proof. We have only to prove that the range of the map Σ contains C2n. For
any f ∈ C2n, since C2n ⊂ Cn, by Corollary 2.2, there is a semi-connection σf

defined by the formula (2.1) and f(t)In = Inσf (tIn) on (0,∞). Since f ∈ C2n,
by Theorem 1.4 we have that for any 0 < A ≤ C and 0 < B ≤ D there exists a
Radon measure ρ on σ(A

−1
2 BA

−1
2 ) ∪ σ(C

−1
2 DC

−1
2 ) such that

AσfB =

∫
[0,∞]

1 + s

s
{(sA) : B}dρ(s),

CσfD =

∫
[0,∞]

1 + s

s
{(sC) : D}dρ(s).

Since {(sA) : B} ≤ {(sC) : D}, the condition (I) satisfies. Hence σf is a connec-
tion of order n. Since Σ(σf )(t)In = Inσf (tIn) = f(t)In for any t ∈ R+, we are
done.

�

Remark 2.5. Since P
′
n ( Cn, the map associating each connection of order n to a

function in Cn as above is not surjective.

2.3. Decreasing inclusion of the connections of order n. Via the usual
embedding of Mn into Mn+1, it is straightforward to check that the classes of
connections of order n is decreasing. It is natural to ask the following question:
Is there a matrix mean σn of the order n on Mn such that σn is not of order n+1?

The following observation gives partially affirmative data to the above question.

Proposition 2.6.
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(1) For any n ≥ 2 there is a matrix mean σn of order n which is not of order
n + 2.

(2) There is a matrix mean σ1 of order 1 which is not of order 2.

Proof. (1): Take f ∈ C2n \ P ′
n+2 (actually, we take f ∈ P ′

n+1 \ P ′
n+2). Note that

we can take such a function as f(0) = 0. Then we have a matrix mean σf of
order n such that f(t)In = Inσf (tIn) for t ∈ R+ by Theorem 2.4. Suppose on the
contrary that σf is a matrix mean of order (n + 2).

From Theorem 2.4 there is a (n+2)-monotone function g such that g(s)In+2 =
In+2σf (sIn+2) for s ∈ R+. For any A ∈ M+

n we set Ã = diag(A, O2) ∈ M+
n+2.

Then g(Ã) = diag(g(A), g(O2)). Therefore

diag(g(A), O2) = diag(In, O2)g(Ã) diag(In, O2)

= diag(In, O2)(In+2σf Ã) diag(In, O2)

= diag(In, O2)In+2σf Ã diag(In, O2) ([12, (3.6)])

= diag(Inf(A), O2) (f(0) = 0)

= diag(f(A), O2)

This means that f(x) = g(x) for x ∈ R+, hence f ∈ P ′
n+2. This is a contradic-

tion to the assumption that f /∈ P ′
n+2.

(2): Take f ∈ C2\P ′
2 (see [4, Proposition 3.4]).

From Corollary 3.3 there is a mean σf of order 1. We know, then, σf is
not of order 2. Indeed, if σf is of order 2, there is a 2-monotone h such that
h(t)I2 = I2σf (tI2) from the argument in Section 3.1. Then since f(t) = h(t) for
t ∈ R+, f is 2-monotone, and a contradiction. Therefore, σf is not of order 2. �

We can give here another proof of Proposition 2.6.

Proof. Denote by Σn the image of the class of connections of order n via the
map in Theorem 2.4 for each n. Therefore, Σn is isomorphic to the class of n-
connections (so the sequence {Σn} is decreasing) and Σn ⊆ P

′
n. From now on, we

will identify the space of n-connections with Σn.
(1): On account of Remark 1.2 and Theorem 2.4, we obtain the following

inclusion:

Σn+2 ⊆ P
′

n+2 ⊆ C2(n+1)+1 ⊆ C2(n+1) ⊆ Σn+1

⊆ P
′

n+1 ⊆ C2n+1 ⊆ C2n ⊆ Σn.

And since P
′
n+2 ( P

′
n+1, we imply that Σn+2 ( Σn.

(2): Using Remark 1.2 again and Corollary 3.3, we get

Σ2 ⊆ P
′

2 ⊆ C3 ⊆ C2 = Σ1.

By P
′
2 6= C3 [4, Proposition 3.14], we then have the statement. �

Remark 2.7. From the second proof of Proposition 2.6, we highlight the inclusion:
For each natural number n,

C2(n+1) ⊆ Σn+1 ⊆ P
′

n+1 ⊆ C2n+1 ⊆ C2n ⊆ Σn ⊆ P
′

n.
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2.4. Symmetric connections. As the same in [12], we can recall some notations
and properties of connections as follows. Let σ be a n-connection. The transpose
σ′, the adjoint σ∗ and the dual σ⊥ of σ are defined by

Aσ′B = BσA, Aσ∗B = (A−1σB−1)−1, σ⊥ = σ′∗.

A connection is called symmetric if it equals to its transpose. Denoted by
Σsym

n the set of n-monotone representing functions of symmetric n-connections,
i.e., Σsym

n is the image of the set of all symmetric n-connections via the canonical
map in Theorem 2.4. Then, using the same argument as in [12], we can state the
following properties for any n-connection:

(1) σ + σ′ and σ(:)σ′ are symmetric.
(2) ωl(σ)ωr = σ; ωr(σ)ωl = σ′, where AωlB = A and AωrB = B.
(3) The n-monotone representing function of the n-connection σ(τ)ρ is indeed

f(x)g[h(x)/f(x)], where f, g, h are the representing functions of σ, τ, ρ in
Theorem 2.4, respectively.

(4) σ is symmetric if and only if its n-monotone representing function f is
symmetric, that is, f(x) = xf(x−1).

Each n-connection corresponds to a positive n-monotone function belonging to
Σn by Theorem 2.4. Therefore, combining with the observation above, we get the
following.

Proposition 2.8. Let f(x), g(x), h(x) belong to Σn. Then the following state-
ments hold true:

(i) k(x) = xf(x−1), f ∗(x) = f(x−1)−1, x
f(x)

, f(x)g[h(x)/f(x)], af(x) + bg(x)

all belong to Σn;

(ii) f(x) + k(x), f(x)k(x)
f(x)+k(x)

all belong to Σsym
n .

Proof. By the hypothesis, there are n-connections σ, τ, ρ such that their repre-
senting functions are f(x), g(x), h(x), respectively. Then the statements follow
from the the fact that the functions k(x) = xf(x−1), f ∗(x) = f(x−1)−1, x

f(x)
,

af(x) + bg(x), f(x)g[h(x)/f(x)], f(x) + k(x), f(x)k(x)
f(x)+k(x)

are the representing func-

tions of n-connections σ′, σ∗, σ⊥, aσ + bτ , σ(τ)ρ, σ + σ′, σ(:)σ′, respectively. �

Corollary 2.9.
C2n ⊆ Σn ( P ′

n.

Proof. We only need to show that Σn 6= P ′
n for n > 1. Suppose on the contrary

that Σn = P ′
n. Let

p(x) =
2n−1∑
k=1

1

k!
xk.

Then p(x) belongs to P ′
n(0, αn) for some αn > 0 (see [13]). Let φ be the operator

monotone isomorphism from (0, αn) to (0,∞) defined by

φ(x) =
x

αn − x
.

Then p ◦ φ−1 belongs to P ′
n. By the assumption, p ◦ φ−1 ∈ Σn. Then
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x(p ◦ φ−1)(x−1) = xp(
αn

1 + x
) =

2n−1∑
k=1

αk
n

k!

x

(1 + x)k

is in Σn by Proposition 2.8. In particular, xp( αn

1+x
) is monotone; this is impossible

if n > 1. Indeed, the first derivative of the function
x

(1 + x)k
is

1 + (1− k)x

(1 + x)k+1
and

is negative for sufficiently large x when k ≥ 2. �

But if we restrict our attention to the class of the symmetric, we get the
following equality.

Theorem 2.10.
Σsym

n = P ′sym
n ,

where P ′sym
n is the set of all symmetric functions in P ′

n.

Proof. The inclusion Σsym
n ⊂ P ′sym

n is trivial by Theorem 2.4.
Let f be a symmetric function in P ′

n. We can define a binary operation on
positive definite matrices of order n by

AσB = A
1
2 f [A

−1
2 BA

−1
2 ]A

1
2 .

For any B ≤ D, then A
−1
2 BA

−1
2 ≤ A

−1
2 DA

−1
2 . Since f is n-monotone and the

conjugate action preserves the order on self-adjoint matrices, we obtain

A
1
2 f [A

−1
2 BA

−1
2 ]A

1
2 ≤ A

1
2 f [A

−1
2 DA

−1
2 ]A

1
2 .

This means AσB ≤ AσD. Since f is symmetric, we also have

AσD = D
1
2 f [D

−1
2 AD

−1
2 ]D

1
2 .

Using this identity, we can also show that AσD ≤ CσD whenever A ≤ C. Thus,
AσB ≤ AσD ≤ CσD for any positive matrices A, B, C,D with A ≤ C and
B ≤ D. �

Remark 2.11. We would like to mention that even P ′
n+1 ( P ′

n, but we still do not
know whether P ′sym

n+1 ( P ′sym
n holds or not. As the first thought, we can obtain

a symmetric function from the polynomial in P ′
n+1 but not in P ′

n and such a
function is a candidate to show P ′sym

n+1 ( P ′sym
n . Unfortunately, this is not true as

the following example.

Example 2.12. Let p(x) = x + 1
2
x2 + 1

6
x3 be a polynomial which belongs to

P ′
2(0, α) but does not belong to P ′

3(0, α) for some α > 0 (see [13]). Let q(x) be
the symmetrization of p by

q(x) = p(x) + xp(x−1).

Then q is symmetric. However, we can show that q does not belong to P ′
2(0, α).

Indeed, the matrix (
q′(x) 1

2
q′′(x)

1
2
q′′(x) 1

6
q′′′(x)

)
is not positive semi-definite for every x > 0.
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Remark 2.13. Note that a function f on an interval I is n-monotone if and only
if the n× n matrix

[f (i+j−1)(t)/(i + j − 1)!]

is positive for any t ∈ I (for example see [10, VII Theorem VI and VIII Theo-
rem V]).

3. Toward the conjecture C2n = Σn

We know that C2n ⊆ Σn ⊆ P
′
n and C2 = Σ1 (see Corollary 3.3). Therefore, we

may give a conjecture that, for any positive integer n,

C2n = Σn and Σsym
n = Csym

2n .

Even we still do not know whether C2n = Σn or not, but they have some
similar properties. In particular, the properties of the space Σn represented in
Proposition 2.8 also hold true when we replace Σn(resp. Σsym

n ) by C2n (resp.
Csym

2n ). That is,

Proposition 3.1. The statements in Proposition 2.8 hold if we replace Σn (resp.
Σsym

n ) by C2n (resp. Csym
2n ).

Proof. (i): Let S be a subset of (0,∞) consisting 2n points. There exists an
operator monotone function p(x) such that p are identified with f on S. Set
p1(x) = p(x−1)−1, then p1 is an operator monotone function and p1 equals to f ∗

on S. Hence, the function x/k(x) = f ∗(x) ∈ C2n. This implies that k(x) belongs
to C2n by Remark 1.2 (v). It is routine to check that af(x) + bg(x) belongs to
C2n.

In order to show that f(x)g[h(x)/f(x)] belongs to C2n, by Theorem 1.3, we
have only to show that this function is equal to an operator monotone function
on any 2n-point subset S of (0,∞). Since f, g, h belong to C2n, they are identified
with operator monotone functions on S, without confusing let us still assume that
these monotone functions are f, g, h respectively. Therefore, in order to complete
the proof, we will show that the function f(x)g[h(x)/f(x)] is operator monotone
whenever f, g, h are operator monotone. Indeed, the function f(x)g[h(x)/f(x)]
was taken up as an issue of practice to be operator monotone due to [12, Theorem
3.2 and Lemma 4.1]. However, we can give here a more elementary proof by using
the fact that a positive function F , which is strictly positive on R+ is operator
monotone if and only if 0 < arg F (z) ≤ arg z for any z in the upper half plane.
This comes from [7, V(53)] and from the fact that 0 < arg(z + a) < arg(z) for

a > 0 and z in the upper half plane. Note that −π < arg h(z)
f(z)

< π if 0 < arg z < π.
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When 0 < arg h(z)
f(z)

< π, we have

0 < arg f(z)g

(
h(z)

f(z)

)
= arg f(z) + arg g

(
h(z)

f(z)

)
≤ arg f(z) + arg

h(z)

f(z)

≤ arg f(z) + arg h(z)− arg f(z)

≤ arg h(z)

≤ arg(z).

When −π < arg h(z)
f(z)

< 0, we have

0 < arg h(z) = arg f(z) + arg
h(z)

f(z)

≤ arg f(z) + arg g

(
h(z)

f(z)

)
= arg f(z)g

(
h(z)

f(z)

)
< arg f(z) < π.

Hence f(x)g(h(x)
f(x)

) belongs to C2n.

(ii): If f(x) ∈ C2n, by (i), k(x) ∈ C2n and hence f(x) + k(x) belongs to

Csym
2n . To show that f(x)k(x)

f(x)+k(x)
belongs to Csym

2n , we apply the fact from (i) that

f(x)g[h(x)/f(x)] belongs to C2n with g(x) = x/(1 + x) and h(x) = k(x). �

Note that Proposition 3.1 still holds true in the space Cn.
We have the application of Proposition 3.1 to the following well-known result

(see [7, Exercise V. 4.15]).

Corollary 3.2. If a polynomial of degree m

p(x) =
m∑

i=0

aix
i, am 6= 0

belongs to P ′, then m ≤ 1.

Proof. Since p is monotone, am > 0. A function in P ′ belongs to C2n for every n,
so by Proposition 3.1, xp(x−1) also belongs to C2n for every n. Hence, xp(x−1)
belongs to P ′. This implies that xp(x−1) is monotone and this property holds
only when the degree of p(x) is not more than 1. �

3.1. Matrix means of order one. We recall the results in [4] for the sets C1, C2

as follows.

• C1 is the set of all positive functions on (0,∞).
• C2 consists of all quasi-concave functions (i.e., f(s) ≤ f(t) max {1, s

t
} for

all s, t > 0).



INTERPOLATION CLASSES AND MATRIX MEANS 151

For any connection σ of order 1, then the corresponding function f belongs to
C2. Indeed, for any numbers 0 < t ≤ s, we have

f(t) max {1, s

t
} = (1σt)

s

t
=

s

t
σs

≥ 1σs = f(s), and,

f(s) max {1, t

s
} = (1σs)

≥ 1σt = f(t).

Combining this property with Theorem 2.4, we obtain:

Corollary 3.3.

(1) Every connection σ of order 1 can be determined uniquely by

xσy = xf(
y

x
) ∀x, y > 0,

where f is an interpolation function in C2.
(2) Every function f in C2 can be represented uniquely by

f(x) = 1σx ∀x > 0,

where σ is a connection of order 1.

From this corollary, we can easily get the functions in C2 from the corresponding
connections and vise versa. For example, the functions in C2 which correspond to
arithmetic mean, harmonic mean and the geometric mean are 1+x

2
, 2

1+x
and x

1
2 ;

and any (positive) linear combination of these functions also belongs to C2.

If we take the function f(x) = 2 x
1+x

+
(

x
1+x

)2 ∈ C2\C3 in [4, Example 3.13], we
have a connection σf of order 1 which is not of order 2 as follows:

xσfy = xf(
y

x
)

= 2
xy

x + y
+

xy2

(x + y)2

for x, y ∈ R+.
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