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HARDY-TYPE INEQUALITIES ON THE WEIGHTED CONES
OF QUASI-CONCAVE FUNCTIONS

L.-E. PERSSON'*, G. E. SHAMBILOVA? AND V. D. STEPANOV?

Communicated by L. Castro

ABSTRACT. The complete characterization of the Hardy-type LP — L? inequal-
ities on the weighted cones of quasi-concave functions for all 0 < p,q < oo is
given.

1. INTRODUCTION

Let R, := [0, 00). Denote 9 the set of all measurable functions on R, MM* C
9 the subset of all non-negative functions and 9 c MM C MT) is the
cone of all non-increasing (non-decreasing) functions. Let ¢ € 9" be a smooth
strictly increasing function such that ¢(0) = 0, p(c0) = co. Then we say, that ¢
is admissible. The cone of p—quasi-concave functions is defined by

Q¢,::{f€9ﬁT:£€9ﬁl}.

Numerous papers were recently devoted to analysis of classical operators on the
weighted cones of quasi-monotone and quasi-concave functions (see, for instance,
recent survey [7], the paper [11], and literature given there). In particular, it
plays an important role in the Lorentz spaces (see [1], [13], [3]).
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Let u,v,w € M, 0 < p,q < co. One of the challenging problems is to charac-
terize the inequalities

(/ooo[Af(“f)]q“(x)dm) f<y (/Ooo[f(x)]l’v(x)dx) "req, (L1

and
(/ooo[Bf@)]qu(ﬁf)dx); < Cp (/Ooo[f(x)]%(x)dx> Cofeq, (12)
where
Af(z) = /Ox fy)w(y)dy
and

Bf(x) = / " Fyywly)dy.

In a perfect form characterization of (1.1) and (1.2) means sharp two-sided es-
timates of the (least possible) constants C'4 and Cp, respectively, by integral
functionals depending on weights and parameters of summation, so that finitness
of the functional implies the validity of the inequality and vice versa. Also, this
problem is closely related to the boundedness of the Hardy-Littlewood maximal
operator in weighted Lorentz I'—spaces and during last two decades it was solved

for all parameters 0 < p,q < oo except 0 < g < 1 (see [4], [14],[L1]). In the
present paper we fill up the gap. Moreover, we use alternative method, which
brings explicit criteria rather different from [141] and [11] and from implicit results
of [1] and [5].

Section 2 is devoted to preliminaries. The main results are given in the Section
3.

We use signs := and =: for determining new quantities and Z for the set of all
integers. For positive functionals F' and G we write F' < G, if F' < ¢G with some
positive constant ¢, which depends only on irrelevant parameters. F' =~ G means
F <GS For F=cG. xg denotes the characteristic function (indicator) of a

x

set E/. Uncertainties of the form 0 - oo, 22 and 8 are taken to be zero. [ stands
for the end of a proof.

2. PRELIMINARIES

Denote

t
Qo= {femﬁ:%esml}, 0 <p<oo.
It is well known ([2], Proposition 2.5.10), that for any f € €, there is a concave
function f such that

Licr<y

DO |
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and it was shown in ([11], Lemma 2.3), that for every concave function there
exists a sequence {h,} € 9" such that

o) = [y [T R

feQ, & fleh) € Qo

Also, observe that

and for 0 < p < o0
feQ, & ffely.
Thus, repeating the argument of ([11], Lemma 2.3) we obtain the following.

LemNma 2.1. Let 0 < p < oo and ¢ is admissible. Then for any f € Q. there
are f(x) = [f(2)]P and a sequence {h,} € MT such that

w@ = [y [T e

If 0 <p<ooandwveM" we define

1= {h €M : |11l = ( / ) |h<a:>|pv<x>das)’l’ < oo}

and we write L? when v = 1. Let 0 < ¢ < oo and w € 9", Consider operators T
and S of the form

i ([ () )

s~ (f o ([ ) )

Let u,v,w € MT be weights, 1 < p < 00, 0 < r < co. The following inequalities

and

TR, < Crlibllg, hem, (2.1)

and
1Shllp, < Cs bz, h €M’ (2.2)

have been characterized in [%] and [9] for the operator 7" and in [12] for the both.
The criteria in [8] and [9] were found by the discretization method [0] in a more
complicated form than in [12]. Below we give the related results from [12] in a
slightly improved form.

We suppose for simplicity that 0 < ftoou < oo for all t > 0 and define the
functions ¢ : [0,00) — [0,00), ¢ : [0,00) — [0, 0) by

C(w)::sup{y>0:/yoou2%/:ou},
() ::sup{y>0:/yoou22/:ou}.
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Here sup@ = 0. Let (2:=(1(¢""). For 0 < c<d < oo and h € M we put
¢(d)
(Hoaf)e) = xa@) [ 1
(Haf)(s) = x0a(@) [ b

(L)) = Xeea) [

(H; ) () = X0 (2) / .

Theorem 2.2. ([12], Theorems 4 and 5.) Let 1 <p < o00,0<r <oo,0<qg< o0

1.1 _1
and;.—;—l—)forr<p.

(a) For wvalidity of the inequality (2.1) it is necessary and sufficient that the

imequality
(/ o) ([To) ([ ) do:) < Aollhllzg,
0 0 T

holds for all h € MM and the constant

© Ny
sup ([ ) Wedoeae, p<r
te(0,00) t

( [T () ||H41<x>,<(x>||zg%gudx> <
0 T

is finite. Moreover, Cr =~ Ay + Aj.
(b) The inequality (2.2) is true if and only if the inequality

([ (o) (L) ) = aame

holds for all h € MM and the constant

1
© \ 7
sup ( / u) VE s p<r
te(0,00) t

1
oo oo % s
( [T (") HHzl@,m\|ngLgvd:c> e

is finite. Moreover, Cs =~ Ag+ A;.

Q3

W =

A1 =

Analogously, to solve the inequality (1.2) we need sublinear positive operators
7T and S of the form

rige) = ([ wto /Oth)th)ihm
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Sh(z) := (/:Ow(t) (/tooh)th);,heaw

and weighted inequalities

1T h|L;, < (2.3)

|Shllz; < Csllhllz. h e 2", (2.4)

where u,v € M+, 1 < p < 00, 0 <1 < oo, which have been characterized in [12].
Below we give the related results from [12].

We suppose for simplicity that 0 < f "u < o0 for all t > 0 and define the
functions o : [0; 00) — [0;00) , 07! : [0;00) — [0; 00),

o(x) = 1nf{y>0/u>2/ }
o (z) ::inf{y>0:/0yu2%/0xu}.

Let 0% :=0(0). For 0 < ¢ < d < 0o and h € M* we put

Hoh(2) i= X2 [
0

Heah(x) == X[e,a) (x)/ h,

o 1(0)

H:h(l’) = X[c,oo)(x)/ h7

o(d)
H;‘}dh(x) = Xled) (w)/ h.
Theorem 2.3. ([12], Theorems 2 and 3.) Let 1 < p < 00,0 < r < 00,0 < ¢ < 00

and%:%—%fm’r<p.
(a) For wvalidity of the inequality (2.3) it is necessary and sufficient that the

inequality
(o) () 4) em([ ) e
0 x 0 0
SUPy~q <fo > |Ht||]f’ L p=r;

holds for all h € MM and the constant
(0 wte) ()7 (Mo

1s finite. Moreover, Ct ~ By + B;.

Qs
3=
=

B1 =

b d:v) , r<p,
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(b) For walidity of the inequality (2.4) it is necessary and sufficient that the
inequality

00 o?(x) g oo r % (9] %
/ u(z) / w (/ h) dr | < By (/ hpv> ,h e Mt
0 x o2(z) 0

holds for all h € MM and the constant

1

t T
SUPy¢~0 (fo u) ||HI||L€—>L;IU ) P

(5 vt (5 I

is finite. Moreover, Cs ~ By + Bj.

B1 =

Hio-1(2).0(2)

LY —LY

3. MAIN RESULTS

Suppose that & : MT — IMT is a positive monotone operator, that is for all
{gn} COMT, g € M" such that g, T g it implies &g, T Sg.

Lemma 3.1. Let 0 < p,q < oo; u,v € M", ¢ be admissible and let & : MT —
M* be a positive monotone operator. Then the inequality

(/OOO[Gf(I)]qU(I)dw); <Cs </Ooo[f($)]pv(ﬂf)da:) L fen, (3.1)

18 equivalent to

< /0 M[G(Bwh);(:c)]qu(:c)dx) Qe /0 T h@)V(@)dr, hemt,  (3.2)
where B.A) = [ol@P /00 h(z)dz
re o [e(@)P+ [p(2)]P’
[ Je(2)]Pu(z)dz
Vo = [ Lo o
and Cg =~ C.

Proof. The proof follows by change f? — f in (3.1), applying Lemma 2.1 and the
equivalence

P e pde 0 h(p())de(2)))
/0 dy/y : “’M'””/o P@P + PP

O

Theorem 3.2. Let 0 < p,q < oo and u,v,w € M. Then for the best constant
C'a of the inequality (1.1) we have

CamAg+ A1+ Ag+ Ay,
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where the constants on the right-hand side are given or estimated by the following:

(Jiute) (J7 ow)" da)”

BT popve PR &
and
a~ ([ Heorvir
x(/Ou@(/Oswyds)%@(/Otw)th)p’,M 5
Ay = sup e <vfi§($) 2 ) | <4 (3.5)
and for ¢ < p
e [ (P () e
If p < q, then
A= sup (/t u)q%, 0<p<l, (3.7)
and
S ([ ) | </ (wngg@) : “O(S>w(s)d8> R
e

for0 <p<1and

( [ ([70)
(/cl(m) (fg ') wg)) B

go(t)w(t)dt) dx (3.10)

forp>1.
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When p < q
o0 i ft w
A, = sup / u) sup ———, 0<p<l1
te(0,00) t s€(0,t) [V(s)]E
and
o) 1 t 3 TL i
A; ~ sup (/ u)q / J, w(s)ds p>1
! te(0,00) t 0 V(S) ’
Let g < p. Then
s (YN \F
A= / u(z) (/ u) sup - dx
0 T s€(¢~Hx),((x)) V(S)
if0<p<1and
Al ~ / u(x) (/ u) pP—q o
0 T
a(p=1) T

¢(x) ¢(x) = b
X / Jy w(s)ds dx
@\ V()

Proof. By Lemma 3.1 and applying

Bobia) % el [~ S [

we see, that (1.1) is equivalent to the pair of inequalities:

forp>1.

Y

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

</ooo l/ </Oo h) % g0<y>w<y>dy] qu<x>dw>z <o / * WolPV, b o,

and

(I

governing by Theorem 2.2, so we have
Ci~ Ay + 44

and
CQ ~ A() -+ Al,

where A is the least constant of the inequality

(/Ooou(:r) (/;Smu)q (/:O h)’q’ d:n)S . Ag/ooo h(2)[p(2)]PV (2)dz

/Ox (/Oy h) z w(?/)dy] qU(x)dx) q <Y /Ooo KV, h € mt,

(3.16)
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for all h € MM and A; is defined by
oo (") e, p<a
tE(0,00) t L[v]pVHLg@w -
, d:):) , q<p.
(3.17)

Allj = o 0
P—q ﬁ
(/ u(z) (/ U) 1 He=1(z),c0)
0 x L[lw]pvﬁwa

Analogously, A is the best possible constant in the inequality
p

T q ¢ 2(x) % a )
w) / h de| < A” / WV, he m*
*() 0 0

fo(]

and A; is determined from
N
sup (") Wz, p<a
te(0,00) t Ly, —Ly
a B4 (3.18)
1d:z:> , q<p.
P

A? = . o Nt }
u(x u HE vy el 70
(/0 ( )</x > e @aell,”

If k(z,y) > 0 is a measurable kernel on R} x R, and

Kf(e) = [ bl f)dy,
0
], Chapter XI, § 1.5, Theorem 4, see also [7],

then by well known results (]
Theorem 1.1)
1
0 X
| K||pi—p» = sup (/ [k:(w,t)])‘dx) , 1 <A< oo
>0 \Jo
Applying this result to the inequality (3.16) with A\ = 1 and

k2, y) = X0 (¥) [U(ﬁ;)]g%?)

Y

we find (3.3). If
If(z) = p(l‘)/ f(y)=(y)dy

], Theorem 3.3) we have
1—X
A

then by the dual version of (]

Ll = ( [ st ([ 1) p(x)daz>

y>x
1 applying to (3.16) we obtain (3.4) for ¢ < p. Analo-

By this result with A = L
gously, we find (3.5) and (3.6). Again, applying ([10], Chapter XI, § 1.5, Theorem

4) and ([15], Theorem 3.3) we obtain
(Jo pw)”
H 1 = sup —————+—, 0<p<1
P S ) 40

[p(]PV (=)
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and
p—1

¢ 12w "
H LA 20 1
L (/ (Girro) “”“)“’(S)ds) et

so that (3.17) brings (3.7) and (3.8). Similarly,

s p
(fc—l(m W)

HH_lm,zH 1 = sup —7O<p§1
e Ligaypvisn—Léw  se(C~1(z),((2)) [p(s)]PV ()
and
@ ([ = "
’ ¢1(z) PW
|Hes o ca [0 () e ] e
M =t e \pOPV(E)

Hence, (3.17) implies (3.9) and (3.10).
By the same way,

H; 1= sup ———%—
| tHLlVaLﬁ sct) V(s)

and
p—1

t ftw plfl
H; ~ = d > 1.
i, g~ () weds)

Now, (3.11) and (3.12) follow from (3.18). Moreover, we have

(fSC(J»‘) w)p

| H: -1y el 1= sup ,0<p<1
GOl ey V()
and
1 p—1
¢(x) fC(:v) w P
1ol ([ (% w(s)ds|  p>1
¢H)(=) L%/—>L£ () V(S)

Thus, from (3.18) we find (3.13) and (3.14) and the relations (3.3)-(3.14) are
proved. Il

Remark 3.3. The diagonal case p(t) = t, u = v, 1 < p = ¢ < oo was solved in

[16].

Theorem 3.4. Let 0 < p,q < oo and u,v,w € M. Then for the best constant
Cg of the inequality (1.2) we have

Cp~ Bo+ B1+ By + By,
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where the constants on the right-hand side are determined or sandwiched by the
following relations.

o 2(t) o?(x) 7 q
B = suplV(1) ! (/ () (/ W) da:> p<q  (319)

and

By~ [ W

(L[ o) ) T ([ ) @)
for q < p.

g =swpve) ([ ([Tu) @) p<a @

« </toou(x) </:Ow>qu)p_qu(t) (/toow)th>q,q<p. (3.22)

-

By =sup (/Ot U> q igg[sop(S)V(S)]Pl (/t sow) ,0<p<1, (3.23)

wesp () ([ (i) om0

and for q < p
B, = / u(x) (/ u)p_q X
0 0
(fa*l(m) ‘Pw)
X sup -/ dx ,0<p<1, (3.25)

o~ 1l(z)<s<o(z) (pp(S)V(S)
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p—gq
1 (p—1)q Pq
fS pP—q

o(x) p—1
X /1( | (W) o(s)w(s)ds dx (3.26)

ifp>1. Forp<gq
1
t q 00
By = sup (/ u) sup[V(s)]T1 (/ w) ,0<p <1, (3.27)
t>0 0 s>t s
RN
By ~ sup (/ u>
t>0 0

—
3
VR
<l
ol 8
N— S
N———
=
i
s
=
jo )
V)
\_/
hd\
=
\V4
J—‘
=
[\
X

and for q < p
o) T fiq (f:(x) U))p v "
B, = / u(z (/ u) sup -~ dx . (3.29)
! 0 ( ) 0 o~ l(z)<s<o(x) V(S)

when 0 < p <1 and

Blz(/ju@ ([)
-

o(x) f"(x) w ﬁ pd
= d d > 1. 3.30
AL ( o) weas] | (3:30)

Proof. By Lemma 3.1 and applying (3.15) we see, that (1.2) is equivalent to
validity of the pair of inequalities

</000 [/:O (/yoo h); S0<y>“)(@/)cly] qU(x)dx>Z <CY /0 %
I o) s

for all h € MM+, described by Theorem 2.3, so we have

C, =By +B;
and

Cy =~ By + By,
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where By is the least constant of the inequality

oo a?(x) 0o % % CS)
/ u(x) / ow </ h) dv | < Bg/ hePV, h € M*.
0 z o2(z) 0

and Bj is defined by

D
t *
SUP;~ (fo u) "I HLl L, P =g

Analogously, By is the least constant of the inequality

o] e ¢] q x % g [e’e]
/ u(x) (/ w> </ h) de | < Bg/ hV, h € M*
0 @ 0 0

and Bj is defined by

q

p._
Bl T 9
p—q 1

1 dx) , q<p.
Lt ﬂng

PPV

Ho1(@).0()

P
SUDP4~0 (fot U> ’ ||Ht|lL%,—>L§, : p< ¢
By := L
_4q _q
Joow@) (Jg w) " [ Horwow|77 sdr ) a<p.
Ly, —Ly

Again, arguing as in the proof of Theorem 3.2 we obtain (3.19)—(3.30) and theorem
is proved. 0
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