

Banach J. Math. Anal. 9 (2015), no. 2, 248–252 http://doi.org/10.15352/bjma/09-2-16 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

WEAK APPROXIMATION PROPERTIES OF SUBSPACES

JU MYUNG KIM¹ AND KEUN YOUNG LEE*²

Communicated by D. E. Alspach

ABSTRACT. The paper is concerned with weak approximation properties which are weaker than the classical approximation property. For $\lambda \geq 1$, we prove that a Banach space X has the λ -bounded weak approximation property (λ -BWAP) if and only if every locally 1-complemented subspace of X has the λ -BWAP, and that if X has the λ -BWAP and Z is a locally μ -complemented subspace of X, then Z has the $(2\mu+4)\mu\lambda$ -BWAP. It also follows that X has the weak approximation property (WAP) if and only if every locally complemented subspace of X has the WAP.

1. INTRODUCTION AND MAIN RESULTS

A Banach space X is said to have the approximation property (AP) if for every compact subset K of X and every $\varepsilon > 0$, there exists a finite rank and continuous linear map (operator) S on X such that $\sup_{x \in K} ||Sx - x|| \leq \varepsilon$, briefly, $id_X \in \overline{\mathcal{F}(X)}^{\tau_c}$, where id_X is the identity map on X, $\mathcal{F}(X)$ is the space of all finite rank operators on X and τ_c is the topology of uniformly compact convergence on the space $\mathcal{L}(X)$ of all operators on X. For $\lambda \geq 1$, if $id_X \in \{S \in \mathcal{F}(X) : ||S|| \leq \lambda\}^{\tau_c}$, then we say that X has the λ -bounded approximation property (λ -BAP). Choi and the first author [1, 7] introduced and studied weaker forms of the AP. A Banach space X is said to have the weak approximation property (WAP) if $\mathcal{K}(X) \subset \overline{\mathcal{F}(X)}^{\tau_c}$, where $\mathcal{K}(X)$ is the space of all compact operators on X. For $\lambda \geq 1$,

Date: Received: Jul. 4, 2014; Revised: Aug. 11, 2014; Accepted: Aug. 27, 2014. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B28; Secondary 47L20.

Key words and phrases. Approximation property, weak approximation property, bounded weak approximation property.

we say that X has the λ -bounded weak approximation property (λ -BWAP) if for every $T \in \mathcal{K}(X)$, we have $T \in \overline{\{S \in \mathcal{F}(X) : \|S\| \leq \lambda \|T\|\}}^{\tau_c}$.

For $\mu \geq 1$, a closed subspace Z of a Banach space X is called *locally* μ complemented in X if for every finite-dimensional subspace E of X and every $\varepsilon > 0$, there exists an operator $T : E \to Z$ with $||T|| \leq \mu + \varepsilon$ such that Tx = x for all $x \in E \cap Z$. It is well known that the AP and the BAP are inherited by locally complemented subspaces (cf. [3, Theorem 2.4]). The first author [7, Theorem 1.4] obtained the analogue for the WAP and the BWAP under an assumption. In this paper, we have:

Theorem 1.1. If X has the λ -BWAP and Z is a locally μ -complemented subspace of X, then Z has the $(2\mu + 4)\mu\lambda$ -BWAP.

For a closed subspace Z of a Banach space X, a map $\Phi : Z^* \to X^*$ is called an *extension operator* if $(\Phi z^*)(z) = z^*(z)$ for every $z^* \in Z^*$ and $z \in Z$. A closed subspace Z of X is called an *ideal* if there exists an extension operator Φ from Z^* to X^* with $\|\Phi\| = 1$. The operator Φ is called a *Hahn-Banach extension operator*. It is well known that Z is an ideal in X if and only if Z is locally 1-complemented in X (cf. Lemma 2.2), and that X has the λ -BAP (resp. AP) if and only if every ideal in X has the λ -BAP (resp. AP) (cf. [8, Proposition 4.3 and Theorem 2.2] and [3, Theorem 2.4]). In this paper, we have:

Theorem 1.2. Let $\lambda \geq 1$. The following statements are equivalent.

- (a) X has the λ -BWAP.
- (b) Every ideal in X has the λ -BWAP.
- (c) If for every separable closed subspace Y of X, there exists a separable closed subspace Z of X with $Y \subset Z$ such that Z has the λ -BWAP.

Theorem 1.3. The following statements are equivalent.

- (a) X has the WAP.
- (b) Every locally complemented subspace of X has the WAP.
- (c) Every ideal in X has the WAP.
- (d) If for every separable closed subspace Y of X, there exists a separable closed subspace Z of X with $Y \subset Z$ such that Z has the WAP.

2. Proof of Theorem 1.1

Lemma 2.1. [5, Lemma 3.2] If Z is a locally μ -complemented subspace of X, then for every closed subspace Y of X containing Z with dim $Y/Z < \infty$, there exists a projection P from Y onto Z with $||P|| \le 2\mu + 4$.

The following lemma is a simple extension of [5, Theorem 3.4 and Theorem 3.5] (cf. [2]).

Lemma 2.2. Let Z be a closed subspace of X and let $\mu \ge 1$. The following statements are equivalent.

- (a) For every Banach space Y and every $T \in \mathcal{K}(Z, Y)$, there exists a $\widetilde{T} \in \mathcal{K}(X, Y)$ with $\|\widetilde{T}\| \leq \mu \|T\|$ such that $\widetilde{T}x = Tx$ for all $x \in Z$.
- (b) Z is locally μ -complemented in X.

Proof of Theorem 1.1. Let $T \in \mathcal{K}(Z)$. Let K be a compact subset of Z and let $\varepsilon > 0$ be given. Since Z is locally μ -complemented in X, by Lemma 2.2 there exists a $\widetilde{T} \in \mathcal{K}(X, Z)$ with $\|\widetilde{T}\| \leq \mu \|T\|$, which is an extension of T. Since X has the λ -BWAP, there exists an $S_0 \in \mathcal{F}(X)$ with $\|S_0\| \leq \lambda \|i\widetilde{T}\|$, where $i: Z \to X$ is the inclusion map, such that

$$\sup_{z \in K} \|S_0 z - iTz\| \le \frac{\varepsilon}{2\mu + 4}.$$

Put $Y := Z + S_0(X)$. Then $\dim Y/Z < \infty$. By Lemma 2.1 there exists a projection P from Y onto Z with $||P|| \leq 2\mu + 4$. Let $S := PS_0|_Z$. Then $S \in \mathcal{F}(Z)$ and for every $z \in K$

$$\|Sz - Tz\| = \|PS_0z - PTz\| \le \varepsilon$$

and we also have

$$||S|| \le (2\mu + 4)\lambda ||T|| \le (2\mu + 4)\mu\lambda ||T||,$$

hence Z has the $(2\mu + 4)\mu\lambda$ -BWAP.

3. Proofs of Theorems 1.2 and 1.3

We denote by $\|\cdot\|_{\pi}$ and $\|\cdot\|_{\mathcal{I}}$, respectively, the projective tensor norm and the integral ideal norm. The following lemmas are needed to prove Theorem 1.2.

Lemma 3.1. [6, Theorem 2.5] Let $T \in \mathcal{L}(X)$ and let $\lambda \geq 1$. The following statements are equivalent.

(a) $T \in \overline{\{S \in \mathcal{F}(X) : \|S\| \le \lambda \|T\|\}}^{\tau_c}$.

(b) $||TS||_{\pi} \leq \lambda ||T|| ||S||_{\mathcal{I}}$ for every $S \in \mathcal{F}(X)$.

(c) $||TS||_{\pi} \leq \lambda ||T|| ||S||_{\mathcal{I}}$ for every Banach space Y and every $S \in \mathcal{F}(Y, X)$.

Lemma 3.2. Let $\mathcal{A}(X)$ be a subset of $\mathcal{L}(X)$. Let $T \in \mathcal{L}(X)$ and let $\lambda \geq 1$. Then $T \in \overline{\{S \in \mathcal{A}(X) : \|S\| \leq \lambda \|T\|\}}^{\tau_c}$ if and only if for every finite-dimensional subspace F of X and every $\varepsilon > 0$, there exists an $S \in \mathcal{A}(X)$ with $\|S\| \leq \lambda \|T\|$ such that $\|Sx - Tx\| \leq \varepsilon \|x\|$ for every $x \in F$.

Proof of Theorem 1.2. (a) \Rightarrow (b) Let Z be an ideal in X. Let $T \in \mathcal{K}(Z)$. We use Lemma 3.1(b) to prove that $T \in \overline{\{S \in \mathcal{F}(Z) : \|S\| \leq \lambda \|T\|\}}^{\tau_c}$. Let $j : Z \to X$ be the inclusion map and let $\Phi : Z^* \to X^*$ be a Hahn–Banach extension operator. For a Banach space B, we denote by i_B the canonical isometry from B to B^{**} .

Now, since the operator $T^*: Z^* \to Z^*$ is weak^{*} to weak continuous, T^{**} maps from Z^{**} into $i_Z(Z)$. Thus the operator $i_Z^{-1}T^{**}\Phi^*i_X: X \to Z$ is well defined and we claim that

$$i_Z^{-1}T^{**}\Phi^*i_Xj = T.$$

Indeed, for every $z \in Z$ and $z^* \in Z^*$,

$$\Phi^* i_X j(z)(z^*) = i_X j(z)(\Phi(z^*)) = z^*(z) = i_Z(z)(z^*).$$

Then for every $z \in Z$, we have

$$i_Z^{-1}T^{**}\Phi^*i_Xj(z) = i_Z^{-1}T^{**}i_Z(z) = Tz.$$

Now, let $S \in \mathcal{F}(Z)$. Since Z is an ideal in $X, Z^* \hat{\otimes}_{\pi} Z$ is a closed subspace of $Z^* \hat{\otimes}_{\pi} X$ (cf. [10, Theorem 3.4]). Thus $||TS||_{\pi} = ||ji_Z^{-1}T^{**}\Phi^*i_XjS||_{\pi}$. Since X has the λ -BWAP, by Lemma 3.1(c) we have

$$\begin{aligned} \|TS\|_{\pi} &= \|ji_{Z}^{-1}T^{**}\Phi^{*}i_{X}jS\|_{\pi} \\ &\leq \lambda \|ji_{Z}^{-1}T^{**}\Phi^{*}i_{X}\|\|jS\|_{\mathcal{I}(Z,X)} \\ &\leq \lambda \|T\|\|S\|_{\mathcal{I}(Z,Z)}. \end{aligned}$$

(b) \Rightarrow (c) Let Y be a separable closed subspace of X. Then by [11, Theorem] there exists a separable ideal Z in X such that $Y \subset Z$. Hence by (b) Z has the λ -BWAP.

(c) \Rightarrow (a) This proof is due to the one of [4, Lemma 3(b)]. Let $T \in \mathcal{K}(X)$. We use Lemma 3.2 to prove that $T \in \overline{\{S \in \mathcal{F}(X) : \|S\| \leq \lambda \|T\|\}}^{\tau_c}$. Let F be a finite-dimensional subspace of X and let $\varepsilon > 0$ be given. Then by [9, Lemma 1] we see that there exists a separable subspace Y of X such that for every finite-dimensional subspace E of X with $F \subset E$ there exists an operator $T_E : E \to Y$ satisfying that $\|T_E\| \leq 1 + 1/\dim E$ and the restriction $T_E|_F$ is the identity map. Consider the separable subspace $\overline{\text{span}}(T(X) \cup Y)$ of X. Then by (c) there exists a separable closed subspace Z of X with $\overline{\text{span}}(T(X) \cup Y) \subset Z$ such that Z has the λ -BWAP. Since the restriction $T|_Z \in \mathcal{K}(Z)$, there exists an $S \in \mathcal{F}(Z)$ with $\|S\| \leq \lambda \|T\|$ such that

$$\|Sf - Tf\| \le \varepsilon \|f\|$$

for every $f \in F$. We define the map $S_E : X \to X$ by

$$S_E x = ST_E x$$
 if $x \in E$, $S_E = 0$ otherwise.

for every finite-dimensional subspace E of X with $F \subset E$. By compactness, there is a subnet which converges pointwise to a finite rank linear operator \tilde{S} on X with $\|\tilde{S}\| \leq \lambda \|T\|$ and for every $f \in F$, we have

$$\|\bar{S}f - Tf\| = \lim_{G} \|S_{G}f - Tf\| = \lim_{G} \|ST_{G}f - Tf\| = \|Sf - Tf\| \le \varepsilon \|f\|.$$

Remark 3.3. In view of the proof of Theorem 1.2(a) \Rightarrow (b), we see that for every $T \in \mathcal{W}(X)$, the space of all weakly compact operators on X,

$$T \in \overline{\{S \in \mathcal{F}(X) : \|S\| \le \lambda \|T\|\}}^{\tau_c}$$

if and only if for every ideal Z in X, for every $T \in \mathcal{W}(Z)$,

$$T \in \overline{\{S \in \mathcal{F}(Z) : \|S\| \le \lambda \|T\|\}}^{\tau_c}$$

Proof of Theorem 1.3. (a) \Rightarrow (b) follows from the proof of Theorem 1.1. (b) \Rightarrow (c) is trivial. The proof of (c) \Rightarrow (d) is similar to (b) \Rightarrow (c) in Theorem 1.2.

(d) \Rightarrow (a) This result was inspired from [4, Lemma 3(a)]. Let $T \in \mathcal{K}(X)$. Let K be a compact subset of X and let $\varepsilon > 0$ be given. Consider the separable subspace $\overline{\text{span}}(K \cup T(X))$ of X. Then by (c) there exists a separable closed subspace Z

of X with $\overline{\text{span}}(K \cup T(X)) \subset Z$ such that Z has the WAP. Since the restriction $T|_Z \in \mathcal{K}(Z)$, there exists an $S \in \mathcal{F}(Z)$ such that

$$\sup_{x \in K} \|Sx - Tx\| \le \varepsilon.$$

Then by an application of the Hahn–Banach theorem there exists an extension $\widehat{S}: X \to Z$ of S. Then $j\widehat{S} \in \mathcal{F}(X)$, where $j: Z \to X$ is the inclusion map, and

$$\sup_{x \in K} \|j\widehat{S}x - Tx\| = \sup_{x \in K} \|Sx - Tx\| \le \varepsilon.$$

Hence X has the WAP.

Acknowledgement. The authors would like to thank the referee for valuable comments. The first author was supported by NRF-2013R1A1A2A10058087 funded by the Korean Government.

References

- C. Choi and J.M. Kim, Weak and quasi approximation properties in Banach spaces, J. Math. Anal. Appl. **316** (2006), 722–735.
- H. Fakhoury, Sélections linéaires associées au théorème de Hanh-Banach, J. Funct. Anal. 11 (1972), 436–452.
- G. Godefroy and P.D. Saphar, Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105 (1989), 70–75.
- W.B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301–310.
- N.J. Kalton, Locally complemented subspaces and L_p-spaces for 0 115 (1984), 71–97.
- J.M. Kim, A bounded approximation of weakly compact operators, J. Math. Anal. Appl. 401 (2013), 154–159.
- J.M. Kim, On relations between weak approximation properties and their inheritances to subspaces, J. Math. Anal. Appl. 324 (2006), 721–727.
- Å. Lima, V. Lima and E. Oja, Bounded approximation properties via integral and nuclear operators, Proc. Amer. Math. Soc. 138 (2010), 287–297.
- J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967–970.
- E. Oja, Operators that are nuclear whenever they are nuclear for a larger range space, Proc. Edinburgh Math. Soc. 47 (2004), 679-694.
- B. Sims and D. Yost, *Linear Hanh-Banach extension operators*, Proc. Edinburgh Math. Soc. **32** (1989), 53–57.

¹Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea.

E-mail address: kjm21@kaist.ac.kr

²Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, Korea.

E-mail address: northstar@kaist.ac.kr