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ABSTRACT. It is well-known that the Heron mean is a linear interpolation be-

tween the arithmetic and the geometric means while the matrix power mean
—1/2 5 g—1/24¢\ 1/
P,(A,B) = A'/? (w AY2 interpolates between the har-

monic, the geometric, and the arithmetic means. In this article, we establish
several comparisons between the matrix power mean, the Heron mean, and the
Heinz mean. Therefore, we have a deeper understanding about the distribution
of these matrix means.

1. INTRODUCTION

The main result in Kubo and Ando theory of operator means [6] is that there
exists an affine-isomorphism between operator means and operator monotone
functions on [0,00). More precisely, for each operator mean o there exists a
unique operator monotone functions f, on [0, 00) such that

AcB = A1/2fU(A_1/2BA_1/2)A1/2

whenever positive definite matrices A and B. The function f, is called the repre-
senting function of o and satisfies f,(x) = lox. In this fashion, for (14 1z)/2, /&
and 2x/(1 4+ z) we have the corresponding arithmetic, geometric, and harmonic
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means for matrices given by
A+ B

5

respectively. Under this isomorphism, we can compare two Kubo-Ando means via

their representing functions. For example, the well-known harmonic-arithmetic-
geometric mean inequality (HAGM inequality) for positive numbers,

Nz <1fr < 1Vzx

AVE = A#B = AVP(ATVPBATVR)RA2 AR = (AT'VBT) T

implies the matrix analog
A'B < A#B < AVB. (1.1)

There is a vast amount of literature devoted to different refinements of the
previous inequality on the cone of positive definite matrices (see [2, 3] and the
references therein). For the arithmetic and the geometric means, an easy refine-
ment can be obtained via a linear interpolation, namely the Heron means

Hi(A,B)=(1—-t)AVB +tAtB, te][0,1].
It follows immediately from (1.1) that,
A#B < Hy(A, B) < AVB.

Another well-known refinement of the AGM inequality is provided by the Heinz
means

G4, B) = EEEEIE e o)

where Af; B := AY?(A71/2BA~1/2)t AY/2 In this case,
A#B < Gy(A, B) < AVB.

A less well-known example of such a refinement is provided by the power means
of numbers whose representing function is f;(x) = (1th)1/ !

ing Kubo-Ando extension is given by

_ _ 1/t
I+(A™°BA WY) L
. .

It is known [7] that P is increasing on t and lim; .o P,(A, B) = A#B. Hence the
family of power means provides an interpolation of the harmonic, the geometric,
and the arithmetic means.

The matrix power means and the matrix Heinz mean can be thought as para-
metric curves in the Riemannian manifold of positive definite matrices that pass
through the geometric and the arithmetic means. In the case of the power means,
the curve also contains the harmonic mean. Therefore, it is important and in-
teresting to understand the behavior of these curves and the relations between
one another. As such, in this paper, with respect to the Loewner order on this
manifold we compare these families of means at each point . In addition, we
also consider linear interpolations between the harmonic, the geometric, and the
arithmetic means.

. And its correspond-

P,(A, B) := AY? (
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2. COMPARISON OF THE POWER MEAN AND LINEAR INTERPOLATIONS

2.1. Heron Means and Power Means. It is worth to noting that, recently,
the matrix Heron mean

H(A B) — 128

+ (1 — t)A#B

and the matrix power means have been heavily studied [4, 5, 7]. In this section,
we consider the linear interpolation between the arithmetic and the geometric
means by the Heron mean.

Lemma 2.1. For any x >0 and t € [0,1/2],
1 £\ 1/t 1
< J;x ) < t% + (1 —t)z!/2. (2.1)

The inequality is reversed if t € [1/2,1].

Proof. In [8], it is shown that

In2
inf Pi(1l,z) i = —
inf {t | P,(1,z) is concave on t} 5

1
sup {t | P;(1,x) is convex on t} = —.
>0 2

Moreover, their proof also shows that the inflection point is unique. Note that
(2.1) can be rephrased in terms of the power means for numbers as

P(l,z) > tP(1,z) + (1 —t)Py(1,x)

for 0 < ¢t < 1/2 and reversed for 1/2 < ¢t < 1. Since equality occurs for
t = 0,1/2,1 and right-hand-side is linear, the result follows from the follow-
ing facts: P(1,z) is a concave function of ¢ on [1/2,1] for any = > 0, P,(1,z)
is monotonically increasing on t for any z > 0, P,(1,x) has a unique inflection
point, and P (1, z) is convex for some subset of [0, 1/2]. O

Theorem 2.2. Fort € [0,1/2] and positive matrices A and B,
Hi(A,B) > P(A, B). (2.2)

For t € [1/2,1] the inequality is reversed. Furthermore, equality occurs only for
te{0,1/2,1}.

Proof. For t € [0,1/2], applying Lemma 2.1 for X = A~Y/2BA~Y2 and multiply-
ing on the left and the right of the inequality (2.1) by A2 we obtain (2.2). O

2.2. Harmonic-Geometric Interpolation and Power Means. In this sec-
tion we consider the harmonic-geometric linear interpolation

|
Fy(A,B) = tA'TB + (1 —t)A#B.

We obtain a similar result as in Theorem 2.2 relating this interpolation and the
power means.
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FIGURE 1. Graphs of A\(K(A, B)) (purple) and Xo(P(A, B))
(light orange) on t € [—1,1], Ao(F_4(A, B)) (blue) on [—1,0], and
Xao(H(A, B)) (dark orange) on ¢ € [0,1] for two 3 x 3 positive
definite matrices A and B.

Theorem 2.3. Fort € [0,1] and positive matrices A and B,
Ft(Av B) Z P—t(Av B)
Proof. Tt suffices to show that

1 £\ 1/t
”) . (2.3)

tl+z ) '+ (1 -tz > ( 5

For a,b > 0, the power mean P(a,b) is a convex function of s on R~ (see, for
example, [1]); that is, for any p,¢q < 0 and for any ¢ € [0, 1],

tPy(a, ) + (1 = t)Fy(a,b) = Pyi-ne(a,b). (2.4)
The inequality (2.3) follows from (2.4) by setting p = —1 and letting ¢ — 0~. O

Remark 2.4. From the convexity of the power mean in (2.4) we have the following
inequality: for positive definite matrices A and B, for p,q < 0 and ¢ € [0, 1],

Pypi1i-ng(A, B) < tP,(A, B) + (1 — t)P,(A, B).

Up to this point we have compared the power means with the linear interpola-
tions between the harmonic and geometric means and between the geometric and
arithmetic mean. Now, we define the linear interpolation between the harmonic
and arithmetic mean with the parameter t € [—1, 1]

t+1 A+ B 11—t
2 ( 2 ) * 2
Figure 1 shows the fact (Theorem 2.5) that this interpolation is greater than
the rest, pictorially.
Theorem 2.5. Let A and B be positive definite matrices. Then,
(i) Forte [1/2,1],

K,(A, B) = AlB.

K,(A, B) > P,(A, B).
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(ii) Fort € [-1,0],
Kt(A7 B) > Fft(Aa B)
(ili) Fort € [0,1/2],
K,(A,B) > Hy(A, B).
Proof. (i). It suffices to show that for x > 0 and ¢ € [1/2,1],

%(1;x>+(1—t) +1—( th) (2.5)

The function on right-hand-side is concave for ¢ € [1/2, 1] (see, for example, [8]).
Therefore, it is bounded above by its tangent line at t = 1,

1 r+1 r+1
y—§<xlnx—(x+1)ln 5 )(t—l)—i— 5

Hence, (2.5) follows from the following inequality

t+1/1
-I— ( —|—x> 1—t) T
2 r+1

1 1 1
Zi(xlnx—(x—i—l)lnx;_ )(t—l)—i—x;— :
or, equivalently,
1 2 1
—gm _iL‘—fl <$1n:13—(:U+1)lnx_2F

Notice at x = 1 both left-hand-side and right-hand-side are equal. So, it suffices

to show that . 5 )
T

- — > 1 0<x<1

2 (1—|—x)2_n3c+1 (O<w<l)

and
1 2

- — <In
2 (14?2~
Since the functions agree at x = 1, it suffices to show that the derivatives satisfy
4 1

(1+z)? = (x4 1)

(x >1).

which is obvious.
Now we show (ii). The inequality in (iii) can be established by the same
arguments. It suffices to show that for x > 0 and —1 <t <0,

%(1;x)+(1—t) (xil) 2—2t(xi1>+(1+t)\/5.

Since both sides are linear on t and equal at t = —1, it suffices to show that

1 /1+x x
— > X
2( 2 )+($+1)_\/§
1+2x 2x

This is just the arithmetic geometric mean inequality for 5 and 1
x




652 T.H. DINH, R. DUMITRU, J.A. FRANCO

FIGURE 2. Graphs of \y(G(A, B)) (dark orange), Ao(Ho—1(A, B))
(light orange), and A\ao(Py_1(A, B)) (blue) on ¢t € [0,1] for two
3 x 3 positive definite matrices A and B.

\V%

3. COMPARISON OF THE POWER MEANS AND NONLINEAR INTERPOLATIONS

3.1. Heinz Means and Power Means. In this subsection, using similar ideas
as the ones in the previous sections, we can derive the following relation between
the Heinz means and the power means.

Theorem 3.1. For positive definite matrices A and B and t € [1/2,1],
Gt(Aa B) < P2t71(A7 B)
Proof. Tt suffices to show that for z > 0,

ot it 1+ 21 1/(2t-1)
i e
—<(t)

or, equivalently,

e(2t=1y/2 4 o=(t-1)y/2 - (e—(%—l)y/2 + e(2t—1)y/2) 1/(2t-1)
2 = 5 :
where x = €Y. That is,
cosh((2t — 1)y/2) < cosh((2t — 1)y/2)Y/ 1.
The last inequality is obviously true as cosh((2t —1)y/2) > 1 and 1/(2t —1) > 1
on (1/2,1]. -

3.2. Heinz Means, Heron Means, and Power Means. In this subsection we
show how these three means relate to each other on the interval [1/2, 1]. Figure 2
shows a graphic representation of this relation for the second largest eigenvalues
of the means of positive definite matrices.

Theorem 3.2. For positive definite matrices A and B and for t € [1/4,3/4],
Gi(A,B) < Poi—1(A,B) < Hjg—1)(A, B)



THE MATRIX POWER MEANS AND INTERPOLATIONS 653

and fort € [0,1/4] U [3/4, 1],

Gi(A,B) < Hjgi—1)(A, B) < Poy_1)(A, B).
Proof. All is left to show is that for ¢t € [1/2,1],

Gi(A, B) < Hy—1(A, B).

The proof for ¢ € [0,1/2] follows by symmetry. Using the simplification as before,
this reduces to show the following inequality,

2t — 1 xt 4+ a2t

2 2

for t € [1/2,1] and = > 0. By dividing by z'/? and substituting = by ¥, (3.1)
becomes

(1+z)+(2-20)z'? > (3.1)

(2t — 1) cosh (g) + (2 — 2t) > cosh (g(% — 1)) :

By the concavity of the function z — 2*~! on this interval,

. <y>2t1 ev/2 1 e=y/2 21
cosh ( = =(——
2 2

@t-1)g/2 | ,—(2t—1)y/2
> (e +26 ) = cosh (g(% — 1)) :

So, the desired inequality follows if we show

(2t — 1) cosh (g) + (2 — 2t) > cosh <%>2t_1 :

Equivalently,
za+(1—2z)>a*

or
zla—1)+1>a*

for any positive real a and 0 < z < 1. However, this is just Bernoulli’s inequality,
(x+1)" <14+rz

for x = a+ 1 and z = r. This completes the proof. 0
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