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Abstract. A nonnegative real matrix R ∈ Mn,m with the property that all
its row sums are one is said to be row stochastic. For x, y ∈ Rn, we say x
is right matrix majorized by y (denoted by x ≺r y) if there exists an n-by-n
row stochastic matrix R such that x = yR. The relation ∼r on Rn is defined
as follows. x ∼r y if and only if x ≺r y ≺r x. In the present paper, we
characterize the linear preservers of ∼r on Rn, and answer the question raised
by F. Khalooei [Wavelet Linear Algebra 1 (2014), no. 1, 43–50].

1. Introduction and preliminaries

Let Mn,m be the set of all n-by-m real matrices. We denote by Rn (Rn) the
set of 1-by-n (n-by-1) real vectors. A matrix R = [rij] ∈ Mn,m with nonnegative
entries is called a row stochastic matrix if

∑n
j=1 rij = 1 for all i. For vectors

x, y ∈ Rn (resp. Rn), it is said that x is right (resp. left) matrix majorized by y
(denoted by x ≺r y (resp. x ≺l y)) if x = yR (resp. x = Ry) for some n-by-n
row stochastic matrix R. A linear function T : Mn,m → Mn,m preserves an order
relation ≺ in Mn,m, if TX ≺ TY whenever X ≺ Y .

In [3] and [4], the authors obtained all linear preservers of ≺r and ≺l on Rn

and Rn, respectively. Let x, y ∈ Rn (resp. Rn). We write x ∼r y (resp. x ∼l y) if
and only if x ≺r y ≺r x (resp. x ≺l y ≺l x).

In [6], the author characterized all linear preservers of ∼l from Rp to Rn. Here,
by specifying linear preservers of ∼r we will answer the question raised in [6]. For
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more information about linear preservers of majorization, we refer the reader to
[1, 2, 5]. Also, the reference [7] is precious book in this regard.

In this paper, we characterize all linear preservers of two-sided right matrix
majorization on Rn.

A nonnegative real matrix D is called doubly stochastic if the sum of entries
of every row and column of D is one.

The following conventions will be fixed throughout the paper.
We will denote by P(n) the collection of all n-by-n permutation matrices. The
collection of all n-by-n row stochastic matrices is denoted by RS(n). Also, the
collection of all n-by-n doubly stochastic matrices is denoted by DS(n). The
standard basis of Rn is denoted by {e1, . . . , en}, and e = (1, 1, . . . , 1) ∈ Rn. Also,
let At be the transpose of a given matrix A. Let [X1/ . . . /Xn] be the n-by-m
matrix with rows X1, . . . , Xn ∈ Rm. We denote by | A | the absolute of a given
matrix A.

For u ∈ R, let u+ =

{
u if u ≥ 0
0 if u < 0

, and u− =

{
0 if u ≥ 0
u if u < 0

.

For every x = (x1, . . . , xn) ∈ Rn we set Tr(x) :=
∑n

i=1 xi, Tr+(x) :=
∑n

i=1 x
+
i ,

and Tr−(x) :=
∑n

i=1 x
−
i .

For each x ∈ Rn let x∗ = Tr+(x)e1 + Tr−(x)e2, and ∥x∥1 =
∑n

i=1 | xi |.
Let [T ] be the matrix representation of a linear function T : Rn → Rn with
respect to the standard basis. In this case, Tx = xA, where A = [T ].

2. Main results

In this section, we pay attention to the two-sided right matrix majorization on
Rn. We obtain an equivalent condition for two-sided right matrix majorization
on Rn, and we characterize all of the linear functions T : Rn → Rn preserving
∼r.

We need the following lemma for finding some equivalent conditions for two-
sided right matrix majorization on Rn.

Lemma 2.1. Let x ∈ Rn. Then x ∼r x
∗.

Proof. We prove that x ∼r x
∗, for each x ∈ Rn. Suppose that x = (x1, . . . , xn) ∈

Rn. We define the matrices R = [R1, . . . , Rn] and S = [S1, . . . , Sn] as follows.
For each i (1 ≤ i ≤ n)

Ri :=

{
e1 xi ≥ 0

e2 xi < 0
, and

Si :=



1

Tr+(x)

∑
xj>0

xjej xi > 0

e1 xi = 0

1

Tr−(x)

∑
xj<0

xjej xi < 0

.

It is clear that R,S ∈ RS(n), x∗ = xR, and x = x∗S. Therefore, x ∼r x
∗. □
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The following proposition gives some equivalent conditions for two-sided right
matrix majorization on Rn.

Proposition 2.2. Let x, y ∈ Rn. Then the following conditions are equivalent.
(a) x ∼r y,
(b) Tr+(x) = Tr+(y), and Tr−(x) = Tr−(y),
(c) Tr(x) = Tr(y), and ∥x∥1 = ∥y∥1.

Proof. Let x, y ∈ Rn. First, we prove that (a) is equivalent to (b). We use Lemma
2.1.

If x ∼r y, then x∗ ∼r y
∗, and so x∗ = y∗. This follows that Tr+(x) = Tr+(y),

and Tr−(x) = Tr−(y).
If Tr+(x) = Tr+(y), and Tr−(x) = Tr−(y), then x∗ = y∗. Set z = x∗ = y∗.

Lemma 2.1 ensures x ∼r z and y ∼r z. It implies that Tr+(x) = Tr+(y), and
Tr−(x) = Tr−(y).
So (a) is equivalent to (b).

Now, the relations

Tr(x) = Tr+(x) + Tr−(x), and ∥x∥1 = Tr+(x)− Tr−(x)

ensure that (b) is equivalent to (c), too. □

Now, we express the non-invertible linear preservers of two-sided right matrix
majorization on Rn. In the case n = 1, any linear function can be a linear
preserver of ∼r.

Theorem 2.3. Let T be a non-invertible linear function on Rn. Then T preserves
∼r if and only if there exists some a ∈ Rn such that Tx = Tr(x)a for all x ∈ Rn.

Proof. First, assume that x, y ∈ Rn and x ∼r y. Proposition 2.2 ensures that
Tr(x) = Tr(y), and hence Tx ∼r Ty. It implies that T preserve ∼r.

Next, let T preserve ∼r. The case n = 1 is clear. Assume that n ≥ 2, and
[T ] = A = [A1/ . . . /An]. There exists some C ∈ Rn \ {0} such that TC = 0,
since T is not invertible. From C∗ ∼r C, we see TC∗ = 0. We know that
C∗ = αe1 + βe2, where β ≤ 0 ≤ α.

For r ̸= s, it follows from αer + βes ∼r C
∗ that T (αer + βes) ∼r TC

∗. Hence,
T (αer + βes) = 0. Let us consider two cases.

Case 1. Let α + β ̸= 0. Then

2(α+ β)Te1 = T (αe1 + βe2) + T (βe1 + αe2) = 0.

This shows that Te1 = 0. From Tei ∼r Te1, for each i (1 ≤ i ≤ n), we conclude
that Tei = 0, and so A = 0. In this case, the vector a is zero.

Case 2. Let α + β = 0. Then α = −β. Since C ∈ Rn \ {0}, we deduce α ̸= 0.
From

0 = T (αer + βes) = T (αer − αes) = α(Ar − As),

we have Ar = As, for each (r ̸= s). Here, we put a := A1 = · · · = An.
Therefore, in any cases there exists some a ∈ Rn such that Tx = Tr(x)a for all

x ∈ Rn. □
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Theorem 2.4. Let T : R2 → R2 be an invertible linear function. Then T
preserves ∼r if and only if there exist some α ∈ R \ {0}, and some invertible
matrix D ∈ DS(2) such that Tx = αxD for all x ∈ Rn.

Proof. As the sufficiency of the condition is easy to be verified, we only prove the

necessity of the condition. Assume that T preserves ∼r, and [T ] = A =

(
a b
c d

)
.

We know that Tx = xA, for each x ∈ R2.
If ab < 0; then

{Tr+(a, b),Tr−(a, b)} = {a, b}.
As e1 ∼r e2 and T preserves ∼r, we have Te1 ∼r Te2. This follows that

{Tr+(c, d),Tr−(c, d)} = {a, b}.

We conclude that a = d and b = c, since T is invertible. This means that

[T ] = A =

(
a b
b a

)
.

The relation e1 ∼r
1

2
e shows that

(a, b) ∼r (
a+ b

2
,
a+ b

2
),

whence

{a, b} = {Tr+(a, b),Tr−(a, b)}

= {Tr+(
a+ b

2
,
a+ b

2
),Tr−(

a+ b

2
,
a+ b

2
)}

= {0, a+ b}.

So a = 0 or b = 0, which is a contradiction, and thus ab ≥ 0.
Since −T preserves ∼r, without loss of generality, we may assume that a, b ≥ 0.

From e1 ∼r e2, we observe that Te1 ∼r Te2, and hence (a, b) ∼r (c, d). This
implies that

Tr−(c, d) = Tr−(a, b) = 0,

and hence c, d ≥ 0. Thus, the entries of A are nonnegative.
If ad = 0 and bc = 0, then from the invertibility of T we get

A =

(
a 0
0 d

)
, or A =

(
0 b
c 0

)
.

Now, Te1 ∼r Te2 ensures that a = d, or b = c, and hence,

A = a

(
1 0
0 1

)
, or A = b

(
0 1
1 0

)
,

as desired.
If ad ̸= 0 and bc ̸= 0; since PT preserves ∼r for each P ∈ P(2), without loss

of generality, we may assume that bc ̸= 0. To complete the proof, we show that



LINEAR PRESERVERS OF TWO-SIDED RIGHT MATRIX MAJORIZATION 455

a

c
=

d

b
. In this case, since a+ b = c+ d, we have a = d and b = c. Hence,

A =

(
a b
b a

)
= αD,

where

D =

 a

a+ b

b

a+ b
b

a+ b

a

a+ b

 ∈ DS(2), and α = a+ b ∈ R \ {0}.

We observe that D is invertible, since T is invertible.

If
a

c
<

d

b
; we conclude that

d

b
< 1, since a+ b = c+ d. So for each x ∈ R that

a

c
< x <

d

b
we have

0 = {Tr+(T (x,−1))} = {Tr+(T (−1, x))} = cx− a > 0,

a contradiction.

Similarly, by assuming
a

c
>

d

b
we will be contradictory, and it completes this

proof. □
Now, we state the previous theorem for n ≥ 3.

Theorem 2.5. Let T : Rn → Rn (n ≥ 3) be an invertible linear function. Then
T preserves ∼r if and only if there exist some α ∈ R \ {0} and a permutation
matrix P ∈ P(n) such that Tx = αxP, ∀x ∈ Rn.

Proof. We only need to prove the necessity of the condition. Assume that T is
invertible and T preserves ∼r for n ≥ 3. First, we prove that the linear function
| T | which is defined as [| T |] =| A | preserves ∼r. We show that each column
of A is either nonnegative or non-positive. For this purpose, we prove

| arj + asj |=| arj | + | asj |, for each r, s, j (1 ≤ r, s, j ≤ n).

Let 1 ≤ r, s ≤ n. From er ∼r es, as T preserves ∼r, we have Ter ∼r Tes, and
so ∥Ter∥1 = ∥Tes∥1. Since 2er ∼r er + es, this follows that T (2er) ∼r T (er + es).
Therefore, 2∥Ter∥1 = ∥Ter + Tes∥1. We observe that

Tr(| T | (x)) = Tr(x)Tr(A), (2.1)

and
∥ | T | (x)∥1 = ∥T (x)∥1. (2.2)

Observe that

2∥Ter∥1 = ∥Ter + Tes∥1
=

∑n
j=1 | arj + asj |

≤
∑n

j=1 | arj | +
∑n

j=1 | asj |

= ∥Ter∥1 + ∥Tes∥1
= 2∥Ter∥1.
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This implies that
n∑

j=1

| arj + asj |=
n∑

j=1

| arj | +
n∑

j=1

| asj |,

and hence for each j (1 ≤ j ≤ n)

| arj + asj |=| arj | + | asj | .
Fix

C+ = {1 ≤ j ≤ n | ejAt ≥ 0},
and

C− = {1 ≤ j ≤ n | ejAt ≤ 0}.
Also, as Ter ∼r Tes, we see that Tr+(Ter) = Tr+(Tes), Tr−(Ter) = Tr−(Tes),
and Tr(Ter) = Tr(Tes). So we can choose Tr+(A) = Tr+(Te1), Tr−(A) =
Tr−(Te1), and Tr(A) = Tr(Te1). Now, we show that for each x ∈ Rn we have

Tr(| T | (x)) = Tr(x)Tr(A), (2.3)

and
∥ | T | (x)∥1 = ∥T (x)∥1. (2.4)

Observe that

Tr(| T | (x)) =
∑n

j=1 x. | ejAt |

=
∑

j∈C+(A)

x. | ejAt | +
∑

j∈C−(A)

x. | ejAt |

=
∑

j∈C+(A)

x.ejA
t −

∑
j∈C−(A)

x.ejA
t

= x.
∑

j∈C+(A)

ejA
t − x.

∑
j∈C−(A)

ejA
t

= (
∑n

i=1 xi)
∑

j∈C+(A)

aij − (
n∑

i=1

xi)
∑

j∈C−(A)

aij

= Tr(x)(Tr+(A)− Tr−(A))

= Tr(x)Tr(A),

and this proves the relation (2.3).
To prove the relation (2.4) we have

∥ | T | (x)∥1 =
∑n

j=1 | x. | ejAt ||

=
∑

j∈C+(A)

| x.ejAt | +
∑

j∈C−(A)

| −x.ejA
t |

=
∑

j∈C+(A)

| x.ejAt | +
∑

j∈C−(A)

| x.ejAt |

=
∑n

j=1 | x.ejAt |

= ∥T (x)∥,
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as desired.
Now, let x, y ∈ Rn, and let x ∼r y. In this case, Tr(x) = Tr(y), and since T

preserves ∼r, we deduce Tx ∼r Ty. Therefore, ∥T (x)∥1 = ∥T (y)∥1. We conclude
from (2.3) and (2.4) that Tr(| T | (x)) = Tr(| T | (y)) and ∥ | T | (x)∥1 = ∥ | T |
(y)∥1, hence | T | (x) ∼r| T | (y), and finally that | T | preserves ∼r. So, without
loss of generality, we can assume that entries of [T ] are nonnegative.

Now, we claim that in each column of A there exists at most a nonzero entry.
Since T is invertible, if in a column, for example the jth column, there exists more
than a nonzero entry, then without loss of generality, we may assume a1j ̸= a2j
and a3j ̸= 0. Let us consider

α∗ = min{ a3k
a1k ++a2k

| a1k ̸= a2k, a3k ̸= 0, ∀1 ≤ k ≤ n},

and suppose j0 (1 ≤ j0 ≤ n) is such that α∗ =
a3j0

a1j0 ++a2j0
. We set the vectors

c,d ∈ Rn as follows.

c : =

{
2α∗e2 − e3 if a1j0 < a2j0

2α∗e1 − e3 if a1j0 > a2j0
, and

d : = α∗(e1 + e2)− e3.

From c ∼r d, we deduce Tc ∼r Td, then Tr+(Tc) = Tr+(Td). For each x ∈ R,
we have xe1 − e3 ∼r xe2 − e3. This gives

T (xe1 − e3) ∼r T (xe2 − e3),

and consequently,
Tr+T (xe1 − e3) ∼r Tr+T (xe2 − e3).

We choose x small enough such that

Tr+T (xe1 − e3) = x
∑
a3j=0

a1j,

and
Tr+T (xe2 − e3) = x

∑
a3j=0

a2j,

and so
(i)

∑
a3j=0 a1j =

∑
a3j=0 a2j.

We also have the following statements.

(ii) If a1j = a2j, then (Tc)j = (Td)j = 2αa1j − a3j,

(iii) If a1j ̸= a2j, and a3j ̸= 0, then (Td)j ≤ 0. Because

α∗(a1j + a2j)− a3j ≤
a3j

a1j + a2j
(a1j + a2j)− a3j = 0.

On the other hand, (Tc)j0 > 0. From (i), (ii), and (iii) we conclude Tr+(Tc) −
Tr+(Td) > 0, which is a contradiction. Therefore, in each column of A there is
at most one nonzero entry. As A is invertible, this implies that each column of
A has exactly one nonzero entry. Also, in each row of A, there should be exactly
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one nonzero entry. Suppose ai is the only nonzero entry (positive) in the ith row,
where i (1 ≤ i ≤ n).

For each i, j (1 ≤ i, j ≤ n) from Tei ∼r Tej it may be conclude that

Tr+(Tei) = Tr+(Tej),

and so
ai = Tr+(Tei) = Tr+(Tej) = aj.

Set α := a1 = · · · = an. Therefore, there exists some P ∈ P(n) such that
A = αP , as required.

□
We can summarize the theorems below. Remember that for n = 1 any linear

function can be a linear preserver of ∼r.

Theorem 2.6. Let T : Rn → Rn (n ≥ 2) be a linear function. Then T preserves
∼r if and only if one of the following conditions occur.

(a) T is non-invertible and there exists some a ∈ Rn such that Tx = Tr(x)a
for all x ∈ Rn.

(b) T is invertible and Tx = αxD, for some α ∈ R \ {0}, and some invertible
doubly stochastic matrix D ∈ DS(2), whenever n = 2.

(c) T is invertible and there exist some α ∈ R \ {0} and a permutation matrix
P ∈ P(n) such that Tx = αxP, ∀x ∈ Rn, whenever n ≥ 3.

The question that comes up here is getting the linear preservers of this relation
on matrices.
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