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Abstract. In this paper, we introduce the generalized system nonlinear vari-
ational inclusions and prove the existence of its solution in normed spaces.
We provide examples of applications related to a system nonlinear variational
inclusions in the sense of Verma, a coupled fixed point problem, considered
by Bhaskar and Lakshmikantham, a coupled coincidence point considered by
Lakshmikantham and Ćirić. Also, we generalized coupled best approximations
theorem.

1. Introduction and preliminaries

In the sequel, if not otherwise stated, let I be any finite index set. For each
i ∈ I, let Ki be a nonempty subset of a real topological vector space Xi, si : K →
Xi be a mapping and Mi : Ki ( Xi be a multivalued mapping with nonempty
values, where K =

∏
i∈I Ki and X =

∏
i∈I Xi. For each x ∈ X denoted by

x = (xi)i∈I where xi the ith coordinate.
In this paper, we study the following system of general nonlinear variational

inclusion problem:
(SGNVI) Find x = (xi)i∈I ∈ K such that for each i ∈ I,

0 ∈ si(x) +Mi(xi). (1.1)

Below are some special cases of problem (1.1).

(1) If Xi = R and Mi(xi) = (−∞,−mi(xi)], where mi(·) is a mapping mi :
Ki → R then problem SGNVI reduces to finding x ∈ K such that for each
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i ∈ I,
si(x) ≥ mi(xi).

(2) If Xi = R and Mi(xi) = {−mi(xi)}, then problem SGNVI reduces to
finding x ∈ K such that for each i ∈ I,

si(x) = mi(xi).

(3) If
I = {1, 2}, X = X1 = X2, K = K1 = K2,

s1(x1, x2) = −F (x1, x2), s2(x1, x2) = −F (x2, x1),

M1(x1) = G(x1),M2(x2) = G(x2) for all x1, x2 ∈ K then (1.1) reduces to
finding (x1, x2) ∈ K ×K, such that

F (x1, x2) ∈ G(x1), F (x2, x1) ∈ G(x2), (1.2)

which is a multivalued coupled coincidence point problem.
(4) If G is a single-valued mapping and G(x) = {g(x)} then (1.2) reduces to

finding (x1, x2) ∈ K ×K, such that

F (x, y) = g(x), F (y, x) = g(y).

which is a coupled coincidence point problem considered by Lakshmikan-
tham and Ćirić [9].

(5) If G(x) = {x} is an identity mapping, then (1.2) is equivalent to finding
(x1, x1) ∈ X ×X, such that

F (x1, x2) = x1, F (x2, x1) = x1,

which is known as a coupled fixed point problem, considered by Bhaskar
and Lakshmikantham [3].

(6) In the paper [15] Verma introduced the system of nonlinear variational
inclusion (SNVI) problem: finding (x0, y0) ∈ H1 ×H2 such that

0 ∈ S(x0, y0) +M(x0), 0 ∈ T (x0, y0) +N(y0), (1.3)

where H1 and H2 are real Hilbert spaces,

S : H1 ×H2 → H1, T : H1 ×H2 → H2

any mappings and M : H1 ( H1, N : H2 ( H2 any multivalued map-
pings. If I = {1, 2} then (1.1) reduces to (1.3).

(i) If M(·) = ∂f(·) and N(·) = ∂g(·) where ∂f(·) is the subdifferential
of a proper, convex and lower semicontinuous functions,

f, g : X → R ∪ {+∞}
then problem SNVI reduces to finding (x0, y0) ∈ K1 ×K2 such that

〈S(x0, y0), x− x0〉+ f(x)− f(x0) ≥ 0 for all x ∈ K1,

〈T (x0, y0), y − y0〉+ g(x)− g(x0) ≥ 0 for all y ∈ K2,

where K1 and K2, respectively, are nonempty closed convex subsets of H1

and H2.
(ii) When M(x) = ∂K1(x) and ∂K2 denote indicator functions of K1 and
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K2, respectively, the SNVI problem (1.3) reduces to system of nonlinear
variational inequalities problem: finding (x0, y0) ∈ K1 ×K2 such that

〈S(x0, y0), x− x0〉 ≥ 0 for all x ∈ K1,

〈T (x0, y0), y − y0〉 ≥ 0 for all y ∈ K2.

The aim of this paper is to obtain the results of existence a solution of SGNVI
problem (1.1) using the KKM technique.

We need the following definitions and results.
Let X and Y be real vector spaces, F : X ( Y is a multivalued mapping from

a set X into the power set of a set Y . For A ⊆ X, let

F (A) = ∪{F (x) : x ∈ A}.

For any B ⊆ Y , the lower inverse and upper inverse of B under F are defined by

F−(B) = {x ∈ X : F (x) ∩B 6= ∅} and F+(B) = {x ∈ X : F (x) ⊆ B},

respectively.
A mapping F is upper (lower) semicontinuous on X if and only if for every

open V ⊆ Y , the set F+(V ) ( F−(V )) is open. A mapping F is continuous if and
only if it is upper and lower semicontinuous. A mapping F with compact values
is continuous if and only if F is a continuous mapping in the Hausdorff distance,
see for example [4].

Let X be a normed space. If A and B are nonempty subsets of X, we define

A+B = {a+ b : a ∈ A, b ∈ B} and ||A|| = inf{||a|| : a ∈ A}.

We using the notion a C-convex map for multivalued maps.

Definition 1.1. (Borwein, [5]) Let X and Y be real vector spaces, K a nonempty
convex subset of X and C is a cone in Y . A multivalued mapping F : K ( Y is
said to be C-convex if,

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C (1.4)

for all x1, x2 ∈ K and all λ ∈ [0, 1].

A mapping F is convex if it satisfies condition (1.4) with C = {0} (see for
example, Nikodem [11], Nikodem and Popa [12]). If F is a single-valued mapping,
Y = R and C = [0,+∞), we obtain the standard definition of convex functions.
The convex multivalued mappings play an important role in convex analysis,
economic theory and convex optimization problems see for example [1, 2, 5, 14].

Lemma 1.2. (Nikodem, [11]) If a multivalued mapping F : K ( Y is C-convex,
then

λ1F (x1) + . . .+ λnF (xn) ⊂ F (λ1x1 + . . .+ λnxn) + C,

for all n ∈ N, x1, . . . , xn ∈ K and λ1, . . . , λn ∈ [0, 1] such that λ1 + . . .+ λn = 1.
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Lemma 1.3. Let K be a convex subset of normed space X and a multivalued
mapping F : K ( X is convex, then

||F (
n∑

i=1

λixi) + u|| ≤
n∑

i=1

λi||F (xi) + u|| (1.5)

for all n ∈ N, x1, . . . , xn ∈ K, u ∈ X and λ1, . . . , λn ∈ [0, 1] such that λ1 + . . . +
λn = 1.

Remark 1.4. If F : K → K is single valued and almost-affine mapping (see for
example Prolla [13] ) then the condition (1.5) is hold.

Definition 1.5. (Dugundji and Granas [6, Definition 1.1]) Let K be a nonempty
subset of topological vector space a X. A multivalued mapping H : K ( X is
called a KKM mapping if, for every finite subset {x1, x2, . . . , xn} of K,

co{x1, x2, . . . , xn} ⊂
n⋃

i=1

H(xi),

where co denotes the convex hull.

Lemma 1.6. (Ky Fan [7], Lemma 1.) Let X be a topological vector space, K
be a nonempty subset of X and H : K ( X a mapping with closed values and
KKM mapping. If H(x) is compact for at least one x ∈ K then

⋂
x∈K

H(x) 6= ∅.

2. Main results

Theorem 2.1. For each i ∈ I, suppose that

(1) Ki is a nonempty convex compact subset of a normed space Xi,
(2) si : K → Xi continuous mapping,
(3) Mi : Ki ( Xi continuous convex multivalued mapping with compact val-

ues.

Then there exists x ∈ K such that∑
i∈I

||Mi(xi) + si(x)|| = inf
x∈K

∑
i∈I

||Mi(xi) + si(x)||.

Proof. Define a multivalued mapping H : K ( K by

H(y) = {x ∈ K :
∑
i∈I

||Mi(xi) + si(x)|| ≤
∑
i∈I

||Mi(yi) + si(x)||}

for each y = (yi)i∈I ∈ K.
We have that y ∈ H(y), hence H(y) is nonempty for all y ∈ K.
The mappings si and Mi are continuous and we have that H(y) is closed for

each y ∈ K.
Since K is a compact set we have that H(y) is compact for each y ∈ K.
Mapping H is a KKM map. Namely, suppose for any yj ∈ K, j ∈ J, where J

finite subset of N, there exists

y0 ∈ co{yj : j ∈ J}, (2.1)
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such that
y0 /∈

⋃
j∈J

H(yj). (2.2)

From (2.1) we obtain that there exist λj ≥ 0, j ∈ J, such that

y0 =
∑
j∈J

λjy
j and

∑
j∈J

λj = 1.

From condition (2.2) we obtain that∑
i∈I

||Mi(y
0
i ) + si(y

0)|| >
∑
i∈I

||Mi(y
j
i ) + si(y

0)|| for each j ∈ J. (2.3)

From (2.3) we obtain,∑
j∈J

λj
∑
i∈I

||Mi(y
0
i ) + si(y

0)|| >
∑
j∈J

λj
∑
i∈I

||Mi(y
j
i ) + si(y

0)||,

so, we have ∑
i∈I

||Mi(y
0
i ) + si(y

0)|| >
∑
i∈I

∑
j∈J

λj||Mi(y
j
i ) + si(y

0)||.

Since Mi is convex mapping for each i ∈ I from Lemma 1.3, we obtain

||Mi(
∑
j∈J

λjy
j
i ) + si(y

0)|| ≤
∑
j∈J

λj||Mi(y
j
i ) + si(y

0)|| for each i ∈ I,

and ∑
i∈I

||Mi(
∑
j∈J

λjy
j
i ) + si(y

0)|| ≤
∑
i∈I

∑
j∈J

λj||Mi(y
j
i ) + si(y

0)||

This is a contradiction with (2.3) and H is KKM mapping. From Lemma 1.6
it follows that there exists x ∈ K such that

x ∈ H(x) for all x ∈ K.
So, ∑

i∈I

||Mi(xi) + si(x)|| ≤
∑
i∈I

||Mi(xi) + si(x)|| for all x ∈ K.

�

3. Some Applications

3.1. Existence solutions the SNVI problem. Applying Theorem 2.1, we
have the following theorem on existence solutions the SNVI problem (1.3).

Theorem 3.1. Let X be a normed space, K a nonempty convex compact subset
of X, S, T : K ×K → X continuous mappings and M,N : K ( X continuous
convex mappings with compact values such that for every (x, y) ∈ K ×K

0 ∈M(K) + S(x, y) and 0 ∈ N(K) + T (x, y). (3.1)

Then there exists (x0, y0) ∈ K ×K such that

0 ∈ S(x0, y0) +M(x0) and 0 ∈ T (x0, y0) +N(y0).
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Proof. From Theorem 2.1, we have that there exists (x0, y0) ∈ K ×K such that

||M(x0) + S(x0, y0)||+ ||N(y0) + T (x0, y0)|| =

inf
(x,y)∈K×K

{||M(x) + S(x0, y0)||+ ||N(y) + T (x0, y0)||}.

From condition (3.1) we obtain that

inf
(x,y)∈K×K

{||M(x) + S(x0, y0)||+ ||N(y) + T (x0, y0)||} = 0,

so, we have

||M(x0) + S(x0, y0)||+ ||N(y0) + T (x0, y0)|| = 0,

hence,

0 ∈M(x0) + S(x0, y0) and 0 ∈ N(y0) + T (x0, y0).

�

3.2. A Coupled Coincidence Point.

Theorem 3.2. Let X be a normed space, K a nonempty convex compact subset
of X, F : K ×K → X continuous mapping and G : K ( X continuous convex
mapping with compact values such that F (K ×K) ⊆ G(K). Then F and G have
a multivalued coupled coincidence point.

Proof. Put

S(x, y) = −F (x, y), T (x, y) = −F (y, x) for x, y ∈ K,

M(x) = G(x), N(y) = G(y) for x, y ∈ K.
Then S, T,M and N satisfies all of the requirements of Theorem 3.1. Therefore,
there exists (x0, y0) ∈ K such that

0 ∈ −F (x0, y0) +G(x0) and 0 ∈ −F (y0, x0) +G(y0)

i. e.

F (x0, y0) ∈ G(x0) and F (y0, x0) ∈ G(y0).

�

Corollary 3.3. Let X be a normed space, K a nonempty convex compact subset
of X, F : K ×K → X continuous mapping and g : K → X continuous convex
mapping such that F (K ×K) ⊆ g(K). Then F and g have a coupled coincidence
point.

Proof. Let G(x) = {g(x)} and apply Theorem 3.2. �

Corollary 3.4. ([10, Theorem 3.2]) Let X be a normed space, K a nonempty
convex compact subset of X, F : K ×K → K continuous mapping. Then F has
a coupled fixed point.

Proof. Let G(x) = {x} and apply Theorem 3.2. �
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3.3. A Coupled Best Approximations.

Theorem 3.5. Let X be a normed space, K a nonempty convex compact subset
of X, F : K ×K → X continuous mapping and G : K ( X continuous convex
mapping with compact values. Then there exists (x0, y0) ∈ K ×K such that

||G(x0)− F (x0, y0)||+ ||G(y0)− F (y0, x0)|| = (3.2)

inf
(x,y)∈K×K

{||G(x)− F (x0, y0)||+ ||G(y)− F (y0, x0)||}.

Proof. Put

S(x, y) = −F (x, y), T (x, y) = −F (y, x) for x, y ∈ K,

M(x) = G(x), N(y) = G(y) for x, y ∈ K.

Then S, T,M and N satisfies all of the requirements of Theorem 2.1. Therefore,
there exists (x0, y0) ∈ K ×K such that (3.2) holds. �

Corollary 3.6. Let X be a normed space, K a nonempty convex compact subset
of X, F : K ×K → X continuous mapping and g : K → X continuous almost-
affine mapping. Then there exists (x0, y0) ∈ K ×K such that

||g(x0)− F (x0, y0)||+ ||g(y0)− F (y0, x0)|| =

inf
(x,y)∈K×K

{||g(x)− F (x0, y0)||+ ||g(y)− F (y0, x0)||}.

Corollary 3.7. Let X be a normed space, K a nonempty convex compact subset
of X, F : K ×K → X continuous mapping. Then there exists (x0, y0) ∈ K ×K
such that

||x0−F (x0, y0)||+||y0−F (y0, x0)|| = inf
(x,y)∈K×K

{||x−F (x0, y0)||+||y−F (y0, x0)||}.

3.4. Applications on best approximations.

(1) (Ky Fan [8], Best approximation theorem.) Let K be a nonempty com-
pact, convex subset of a normed linear space X and f : K → X a contin-
uous function. Then there is an x0 ∈ K such that

||x0 − f(x0)|| = inf
x∈K
||x− f(x0)||.

(2) (Prolla [13], Best approximation theorem.) Let K be a nonempty com-
pact, convex subset of a normed linear space X and f : K → X a con-
tinuous function and g : K → X a continuous, almost-affine, onto map.
Then there is an x0 ∈ K such that

||g(x0)− f(x0)|| = inf
x∈K
||x− f(x0)||.
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2. C. Berge, Espaces Topologiques. Fonctions multivoques, Dunod, Paris, 1959.
3. T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric

spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379–1393.
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