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ABSTRACT. In this paper, we introduce the generalized system nonlinear vari-
ational inclusions and prove the existence of its solution in normed spaces.
We provide examples of applications related to a system nonlinear variational
inclusions in the sense of Verma, a coupled fixed point problem, considered
by Bhaskar and Lakshmikantham, a coupled coincidence point considered by
Lakshmikantham and Ciri¢. Also, we generalized coupled best approximations
theorem.

1. INTRODUCTION AND PRELIMINARIES

In the sequel, if not otherwise stated, let I be any finite index set. For each
1 € I, let K; be a nonempty subset of a real topological vector space X;, s; : K —
X; be a mapping and M, : K; — X; be a multivalued mapping with nonempty
values, where K = [[,., K; and X = [[,.; X;. For each z € X denoted by
x = (x;);e; where x; the ith coordinate.

In this paper, we study the following system of general nonlinear variational

inclusion problem:
(SGNVI) Find T = (7;)ier € K such that for each ¢ € I,

0 € s;(T) + M(T). (1.1)

Below are some special cases of problem (1.1).

(1) If X; = R and M;(z;) = (—o0, —m;(x;)], where m;(-) is a mapping m; :
K; — R then problem SGNVI reduces to finding # € K such that for each
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iel,
If X; =R and M;(z;) = {—m;(z;)}, then problem SGNVI reduces to
finding * € K such that for each i € I,
If
] - {1,2},X - X1 - XQ,K - K1 - KQ,
s1(x1,22) = —F(21,22), 52(21, 02) = —F (22, 1),

M (z1) = G(x1), Ma(xe) = G(z3) for all x1, 29 € K then (1.1) reduces to
finding (z1,25) € K x K, such that

F(CL’l, Ig) € G(C(]l), F(ZEQ,JZl) € G(ZEQ), (12)

which is a multivalued coupled coincidence point problem.
If G is a single-valued mapping and G(z) = {g(x)} then (1.2) reduces to
finding (z1,25) € K x K, such that

F(z,y) = g(z), F(y,z) = g(y).
which is a coupled coincidence point problem considered by Lakshmikan-
tham and Cirié¢ [9].
If G(x) = {z} is an identity mapping, then (1.2) is equivalent to finding
(x1,21) € X x X, such that

F(.flfl,l'Q) = I, F($2ax1) = I,

which is known as a coupled fixed point problem, considered by Bhaskar
and Lakshmikantham [3].

In the paper [15] Verma introduced the system of nonlinear variational
inclusion (SNVI) problem: finding (zo,v0) € Hy x Hs such that
0 € S(xo,y0) + M(zo), 0 € T(z0,90) + N(yo), (1.3)

where H; and H, are real Hilbert spaces,
S:H1XH2—>H1,TZH1XH2—>HQ

any mappings and M : Hy — H{, N : Hy — H, any multivalued map-
pings. If 7 = {1,2} then (1.1) reduces to (1.3).

(2) If M(-) =0f(-) and N(-) = 0g(-) where Of(-) is the subdifferential
of a proper, convex and lower semicontinuous functions,

fr9: X > RU{+o0}
then problem SNVI reduces to finding (xg,yo) € K; x Ky such that
(S(x0,90),x — wo) + f(x) — f(xo) = 0 for all x € Ki,

(T(x0,Y0),y — Yo) + g(x) — g(xo) > 0 for all y € Ko,
where K, and K, respectively, are nonempty closed convex subsets of H;
and HQ.
(i7) When M (x) = Ok, (x) and Ok, denote indicator functions of K; and
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K5, respectively, the SNVI problem (1.3) reduces to system of nonlinear
variational inequalities problem: finding (xg, o) € K; X K3 such that

(S(xo,y0), T — x0) >0 for all z € Ky,

(T'(x0,10),y — yo) > 0 for all y € K.

The aim of this paper is to obtain the results of existence a solution of SGNVI
problem (1.1) using the KKM technique.

We need the following definitions and results.

Let X and Y be real vector spaces, F' : X —o Y is a multivalued mapping from
a set X into the power set of a set Y. For A C X, let

F(A) =U{F(z):xz € A}.
For any B C Y, the lower inverse and upper inverse of B under F' are defined by
F (By={re X :F(x)NB#0} and F'(B)={z € X : F(x) C B},

respectively.

A mapping F is upper (lower) semicontinuous on X if and only if for every
open V C Y the set F* (V) ( F~(V)) is open. A mapping F is continuous if and
only if it is upper and lower semicontinuous. A mapping F' with compact values
is continuous if and only if F is a continuous mapping in the Hausdorff distance,
see for example [1].

Let X be a normed space. If A and B are nonempty subsets of X, we define

A+B={a+b:a€c Abe B} and ||4|| = inf{||a]| : a € A}.
We using the notion a C-convex map for multivalued maps.

Definition 1.1. (Borwein, [5]) Let X and Y be real vector spaces, K a nonempty
convex subset of X and C' is a cone in Y. A multivalued mapping F': K — Y is
said to be C-convex if,

AF(x1) + (1 = AN F(x2) C F(Az1 + (1 — N)aa) +C (1.4)
for all z1,29 € K and all A € [0, 1].

A mapping F' is convex if it satisfies condition (1.4) with C' = {0} (see for
example, Nikodem [11], Nikodem and Popa [12]). If F'is a single-valued mapping,
Y =R and C' = [0,400), we obtain the standard definition of convex functions.
The convex multivalued mappings play an important role in convex analysis,
economic theory and convex optimization problems see for example [1, 2, 5, 14].

Lemma 1.2. (Nikodem, [11]) If a multivalued mapping F : K — Y is C-convet,
then

ME(z1) + ...+ NF(x,) CF(Mz + ...+ Azy) + C,
forallm e Njzy,...,x, € K and Ay, ..., \, € [0,1] such that \y + ...+ X\, = 1.
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Lemma 1.3. Let K be a convex subset of normed space X and a multivalued
mapping F': K — X is convex, then

IFCY dw) + ull < D2 AIIF(e:) + ul (15)

foralln € Nyxq,...,x, € K,u € X and Ay,..., A\, € [0,1] such that \; + ...+
Ap = 1.

Remark 1.4. If F: K — K is single valued and almost-affine mapping (see for
example Prolla [13] ) then the condition (1.5) is hold.

Definition 1.5. (Dugundji and Granas [0, Definition 1.1]) Let K be a nonempty
subset of topological vector space a X. A multivalued mapping H : K — X is
called a KKM mapping if, for every finite subset {1, xs,...,2,} of K,

n
CO{J}l,{L‘Q, B 71:71} - U H(‘TZ)7
i=1

where co denotes the convex hull.

Lemma 1.6. (Ky Fan [7], Lemma 1.) Let X be a topological vector space, K
be a nonempty subset of X and H : K — X a mapping with closed values and

KKM mapping. If H(z) is compact for at least one v € K then (| H(x) # (.
zeK

2. MAIN RESULTS

Theorem 2.1. For each i € I, suppose that
(1) K; is a nonempty convex compact subset of a normed space X;,
(2) s;: K — X; continuous mapping,
(3) M; : K; — X; continuous convex multivalued mapping with compact val-
ues.

Then there exists T € K such that
; |M;i(T;) + s:(T)|| = ingc; |[Mi(2;) + si(2)]].

Proof. Define a multivalued mapping H : K —o K by
H(y) ={z € K: ) [[Mi(z:) + ()] <D [[Mi(y:) + ss()|[}

i€l el

for each y = (y;)ier € K.

We have that y € H(y), hence H(y) is nonempty for all y € K.

The mappings s; and M, are continuous and we have that H(y) is closed for
each y € K.

Since K is a compact set we have that H(y) is compact for each y € K.

Mapping H is a KKM map. Namely, suppose for any v/ € K,j € J, where J
finite subset of N, there exists

Y’ € co{y’ 1 j € J}, (2.1)
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such that '
v ¢ JHW). (2.2)
jeJ
From (2.1) we obtain that there exist A\; > 0,j € J, such that
yo = Zx\jyj and Z/\j =1.
jed jeJ
From condition (2.2) we obtain that
S IMGE) + s > Y IM) + sl foreach j € S (23)
iel iel
From (2.3) we obtain,
DN IM) + s> DA D M) + sy,
jeJ el jeJ el
so, we have
Z |Mi(y]) + s:i(y°)]| > Z Z NlIMi(yl) + si(y°)]].
icl iel jeJ

Since M; is convex mapping for each i € I from Lemma 1.3, we obtain

1M Agyl) + sl < D NlIMiy]) + si(y”)]] for eachi € 1,

JjeJ JjeJ
and ‘ '
ST M) + Ol < 3OS MM + s
icl jeJ iel jeJ

This is a contradiction with (2.3) and H is KKM mapping. From Lemma 1.6
it follows that there exists ¥ € K such that

T € H(x) for all z € K.
So,
Z || M;(T;) + s:(T)]| < Z || M;(x;) + s;(T)|| for all x € K.

el il

3. SOME APPLICATIONS

3.1. Existence solutions the SNVI problem. Applying Theorem 2.1, we
have the following theorem on existence solutions the SNVI problem (1.3).

Theorem 3.1. Let X be a normed space, K a nonempty conver compact subset
of X, S, T : K x K = X continuous mappings and M, N : K — X continuous
conver mappings with compact values such that for every (z,y) € K x K

0e M(K)+ S(z,y) and 0 € N(K) + T (z,vy). (3.1)
Then there ezists (xo,vo) € K x K such that
0 € S(xo,90) + M(xg) and 0 € T(xo,v0) + N(yo)-
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Proof. From Theorem 2.1, we have that there exists (xg,y0) € K x K such that
1M (o) + S (o, yo)ll + [|N (o) + T (o, yo)l| =
inf  {[[M(z) + 5o, yo)|| + [IN(y) + (0, yo)[|}-

(z,y)e KX K

From condition (3.1) we obtain that

inf  {[|M(z) + S(@o, yo)|| + [|N(y) + T(wo,y0)|[} =0,
(z,y)EK XK

so, we have

[ M (20) + S0, yo)|| + [|N(yo) + (0, yo)|| = 0,
hence,

0 € M(xo) + S(z0,90) and 0 € N(yo) + T'(0, yo)-

3.2. A Coupled Coincidence Point.

Theorem 3.2. Let X be a normed space, K a nonempty convexr compact subset
of X, F: K x K — X continuous mapping and G : K — X continuous convex
mapping with compact values such that F(K x K) C G(K). Then F' and G have
a multivalued coupled coincidence point.

Proof. Put
S(l‘,y) = _F(:Evy)7 T(l‘,y) = _F(yax) for T,y € K7

M(z) = G(z), N(y) = G(y) for z,y € K.

Then S,T, M and N satisfies all of the requirements of Theorem 3.1. Therefore,
there exists (zo,y0) € K such that

0 € —F(xo,9) + G(x) and 0 € —F(yo, zo) + G(yo)

F(zo,y0) € G(zo) and F(yo,z0) € G(y0o)-
]

Corollary 3.3. Let X be a normed space, K a nonempty convexr compact subset
of X, F: K x K — X continuous mapping and g : K — X continuous convex
mapping such that F(K x K) C g(K). Then F and g have a coupled coincidence
point.

Proof. Let G(z) = {g(x)} and apply Theorem 3.2. O

Corollary 3.4. ([10, Theorem 3.2]) Let X be a normed space, K a nonempty
convexr compact subset of X, F': K x K — K continuous mapping. Then F has
a coupled fixed point.

Proof. Let G(z) = {z} and apply Theorem 3.2. O
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3.3. A Coupled Best Approximations.

Theorem 3.5. Let X be a normed space, K a nonempty convexr compact subset
of X, F: K x K — X continuous mapping and G : K — X continuous convex
mapping with compact values. Then there exists (xg,y0) € K X K such that

|G (20) — F(w0,y0)|| + |G (y0) — F(yo, 0)l| = (3.2)

inf ~ {[|G(x) = F(zo,50)[| + [IG(y) — F(yo, xo)l[}-

(z,y)eKxK

Proof. Put

S(x,y) = —F(z,y), T(z,y) = —F(y, ) for z,y € K,

M(z) = G(z), N(y) = G(y) for z,y € K.

Then S, T, M and N satisfies all of the requirements of Theorem 2.1. Therefore,
there exists (29, o) € K x K such that (3.2) holds. O

Corollary 3.6. Let X be a normed space, K a nonempty convexr compact subset
of X, F: K x K — X continuous mapping and g : K — X continuous almost-
affine mapping. Then there exists (xg,yo) € K X K such that

g (o) = F(zo, yo)l| + 1l9(%0) = F'(yo, z0)|| =

inf  {llg(x) = F(xo,90)ll + llg(y) — F(yo, z0)|[}-

(z,y)eKXK

Corollary 3.7. Let X be a normed space, K a nonempty convexr compact subset
of X, F: K x K — X continuous mapping. Then there ezists (xo,y0) € K x K
such that

|lzo— F'(z0, yo) ||+ |[yo— F(yo, z0)[| = inf  {|[z—F(zo,y0)l|+|ly—F(yo, 0)l[}-
(z,y)EK XK

3.4. Applications on best approximations.

(1) (Ky Fan [3], Best approximation theorem.) Let K be a nonempty com-
pact, convex subset of a normed linear space X and f : K — X a contin-
uous function. Then there is an zy € K such that

eo = F(zo)ll = inf [z — f(zo)l|.

(2) (Prolla [13], Best approximation theorem.) Let K be a nonempty com-
pact, convex subset of a normed linear space X and f : K — X a con-
tinuous function and g : K — X a continuous, almost-affine, onto map.
Then there is an ¢y € K such that

lg(o) = o)l = inf [l — (o)l
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