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Abstract. The aim of this paper is to show that any continuous ∗-homomorphism
of L1(Cn)(with twisted convolution as multiplication) into B(L2(Rn)) is essentially
a Weyl transform. From this we deduce a similar characterisation for the group
Fourier transform on the Heisenberg group, in terms of convolution.

1. Introduction and preliminaries

The behaviour of the Fourier transform under translations, dilations, modula-
tions and differentiation is well known. It is an interesting fact that a few of these
properties are characteristic of the Fourier transform. Several characterisations
of the Fourier transform were done in [3, 4, 8, 9, 10]. A well known property of the
Fourier transform is that it takes convolution product into pointwise product.
Conversely, is there any relation between the Fourier transform and a map which
converts convolution product into pointwise product? Recently, a characterisa-
tion for the Fourier transform on Rn was done in [1, 2] without assuming the
map to be linear or continuous. In [7], Jaming proved such characterisations for
the groups Z/nZ and Z([7], Theorem 2.1), Rn and Tn ([7], Theorem 3.1). We
state below the result of Jaming for the case Rn and Tn:

Theorem 1.1. Let n ≥ 1 be an integer and G = Rn or G = Tn. Let T be a

continuous linear operator L1(G) → C(Ĝ)(here Ĝ denotes the dual group of G)

such that T (f ∗ g) = T (f) T (g). Then there exists a set E ⊂ Ĝ and a function

ϕ : Ĝ→ Ĝ such that T (f)(ξ) = χE(ξ) f̂(ϕ(ξ)).
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In the same paper([7]) he posed a question, which leads to that of the char-
acterisation of the Weyl transform in terms of the twisted convolution. Here
we attempt to prove such a characterisation and deduce a similar one for the
Heisenberg group Fourier transform. An extensive study of Fourier analysis on
the Heisenberg group was done in [6]. Before stating our results, we recall a few
standard notations and terminology as in [5, 12, 13].

2. Notations and preliminaries

The (2n + 1)− dimensional Heisenberg group Hn is the nilpotent Lie group
whose underlying manifold is Cn×R. Hn forms a noncommutative group under
the operation

(z, t)(w, s) =

(
z + w, t+ s+

1

2
Im(z.w)

)
, (z, t), (w, s) ∈ Hn.

The Haar measure on Hn is the Lebesgue measure dz dt on Cn × R. By the
Stone-von Neumann theorem, all the infinite-dimensional irreducible unitary
representations of Hn, acting on L2(Rn), are parametrised by λ ∈ R∗, and are
given by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x·ξ+
1
2
x·y) ϕ(ξ + y), ξ ∈ Rn, ϕ ∈ L2(Rn),

and z = x+ iy ∈ Cn. The group Fourier transform of an integrable function f on
Hn is defined as

f̂(λ) =

∫
Hn
f(z, t) πλ(z, t) dz dt, λ ∈ R∗.

Let B(L2(Rn)) be the space of bounded linear operators on L2(Rn). Then we

have f̂(λ) ∈ B(L2(Rn)), with ‖f̂(λ)‖op ≤ ‖f‖1.

The convolution f ∗ g of functions f, g on Hn is defined by

(f ∗ g)(z, t) =

∫
Hn
f((z, t)(−w,−s)) g(w, s) dw ds, (z, t) ∈ Hn,

whenever the integral exists.

Then the group Fourier transform satisfies

Property 1. (f̂ ∗)(λ) = f̂(λ)∗ for all λ ∈ R∗, where

f ∗(z, t) = f(−z,−t) and (f̂(λ))∗ is the adjoint of the operator in B(L2(Rn)).

Property 2. (f ∗ g)̂(λ) = f̂(λ) ĝ(λ), λ ∈ R∗, f, g ∈ L1(Hn).

Property 3. (R(z,t)f )̂ (λ) = f̂(λ) πλ(z, t)
∗, (z, t) ∈ Hn, where R(z,t) denotes

the right translation given by

(R(z,t)f)(w, s) = f((w, s)(z, t)), (w, s) ∈ Hn.

We shall prove in Section 3 that the above properties characterise the group
Fourier transform on Hn.
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For f ∈ L1(Hn) we denote by fλ(z), the inverse Fourier transform of f in the
t-variable, i.e.,

fλ(z) =

∫
R
f(z, t) eiλt dt, z ∈ Cn.

We write πλ(z) = πλ(z, 0) so that πλ(z, t) = eiλt πλ(z) and

f̂(λ) =

∫
Cn
fλ(z) πλ(z) dz.

For λ ∈ R∗ and g ∈ L1(Cn), consider the operator

Wλ(g) =

∫
Cn
g(z) πλ(z) dz.

When λ = 1, we call this the Weyl transform of g. The λ-twisted convolution of
functions f, g ∈ L1(Cn) is defined as

(f ∗λ g)(z) =

∫
Cn
f(z − w) g(w) ei

λ
2
Im(z.w) dw, z ∈ Cn.

The convolution of functions on Hn, and the λ-twisted convolution of functions
on Cn, are related as

(f ∗ g)λ(z) = (fλ ∗λ gλ)(z), z ∈ Cn.

The operators Wλ are continuous, linear and map L1(Cn) into B(L2(Rn)). Also,
they satisfy the following properties:

Property A. Wλ(f
∗) = Wλ(f)∗, f ∈ L1(Cn), where f ∗(z) = f(−z).

Property B. Wλ(f ∗λ g) = Wλ(f) Wλ(g), f, g ∈ L1(Cn),

i.e., Wλ is a continuous ∗-homomorphism from L1(Cn) into B(L2(Rn)). In Section
3, we shall prove the converse that any continuous ∗-homomorphism from L1(Cn)
into B(L2(Rn)) is essentially a Weyl transform.

We now recall a few properties of the Hermite and special Hermite functions
which will be of much use in proving this characterisation.
For k ∈ N = {0, 1, 2, ...}, let

hk(x) = (−1)k (2k k!
√
π)(−1/2)

(
dk

dxk
e−x

2

)
ex

2/2, x ∈ R,

denote the normalised Hermite functions on R. The multi-dimensional Hermite
functions are defined as

Φα(x) =
n∏
j=1

hαj(xj), x = (x1, ..., xn) ∈ Rn, α = (α1, ..., αn) ∈ Nn.

The collection {Φα : α ∈ Nn} forms an orthonormal basis for L2(Rn) and their
linear span is dense in Lp(Rn) for 1 ≤ p < ∞. For λ ∈ R∗, Suppose that
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Φλ
α(z) = |λ|n4 Φα(

√
|λ|x). Then the scaled special Hermite functions are defined

by

Φλ
αβ(z) = (2π)−

n
2 |λ|

n
2

(
πλ(z) Φλ

α,Φ
λ
β

)
, z ∈ Cn,

and they form an orthonormal basis for L2(Cn). Further finite linear combinations
of special Hermite functions are dense in Lp(Cn) for 1 ≤ p <∞. Also they satisfy

Φ
λ

αβ ∗λ Φ
λ

µν(z) = (2π)
n
2 |λ|−n δαν Φ

λ

µβ(z), α, β, µ, ν ∈ Nn. (2.1)

We refer to [12, 13] for these properties. We now proceed to prove our main
results.

3. Characterisation of the Weyl transform

As recalled in Section 2, the Weyl transform is a continuous linear map from
L1(Cn) into B(L2(Rn)) taking twisted convolution into composition of operators.
We shall now prove the converse, thus answering a modified version of Jaming’s
question. We remark that the proof of the following theorem is similar to that
of the Stone-von Neumann theorem as in [5]. Indeed, if ρλ is a primary repre-
sentation of Hn with central character eiλt, then the operator defined on L1(Cn)
by

Tλ(f) =

∫
Cn

f(z) ρλ(z, 0) dz

satisfies the hypothesis of the following theorem. By the Stone-von Neumann
theorem ρλ(z, t) is a direct sum of representations each of which is unitarily
equivalent to πλ(z, t). The proof makes use of the relations

Tλf ρλ(z, 0) = Tλ(τ
λ
z f), ρλ(z, 0) Tλ f = Tλ(τ

−λ
z f)

where

τλz f(w) = f(w − z) e−i
λ
2
=(w.z)

is the λ−twisted translation. The proof given below shows that we really do not
need these extra properties in order to prove Stone-von Neumann theorem.

The following theorem can also be proved using the Stone-von Neumann
theorem and the representation theory of locally compact groups. We attempt
to prove it without using these techniques.

Theorem 3.1. Let T : (L1(Cn), ∗λ)→ B(L2(Rn)) be a nonzero continuous homo-
morphism. Then there is a subspace Hλ of L2(Rn) and a unitary representation
ρλ of Hn on Hλ such that

T (f) =

∫
Cn
f(z) ρλ(z, 0) dz, on Hλ,

and there is a decomposition L2(Rn) = Hλ
⊕

V λ, where

V λ := {v ∈ L2(Rn) : (Tf)(v) = 0 for all f ∈ L1(Cn)}.
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Proof. It suffices to prove the result when λ = 1 as the general case follows sim-
ilarly. We let f × g := f ∗λ g and we will drop all subscripts and superscripts
involving λ(= 1).

For α, β ∈ Nn, let Qαβ = (2π)−
n
2 T (Φαβ). Then

Qαβ Qµν = (2π)−n T (Φαβ × Φµν) (by hypothesis)

= δαν (2π)−
n
2 T (Φµβ) (by (2.1))

i.e., Qαβ Qµν = δαν Qµβ. (3.1)

For α, β ∈ Nn and v, w ∈ L2(Rn),

(2π)
n
2 (Qαβ v, w) = (v, T (Φαβ)∗ w)

= (v, T (Φβα) w)

i.e., Qαβ
∗ = Qβα, α, β ∈ Nn. (3.2)

Note that for each α ∈ Nn, Qαα 6= 0. To see this suppose Qαα = 0 for some
α ∈ Nn. Then

Qβα u = Qαα Qβα u = 0 for any β ∈ Nn, u ∈ L2(Rn).

Similarly,

Qαγ u = Qαγ Qαα u = 0 for any γ ∈ Nn, u ∈ L2(Rn).

For arbitrary β, γ ∈ Nn, u ∈ L2(Rn),

Qβγ u = Qαγ Qβα u = 0.

This implies T = 0, a contradiction. Thus Qαα 6= 0 for any α ∈ Nn.

Let α ∈ Nn. Then the range R(Qαα) of Qαα is non-zero. Let {ujα}∞j=1 be an
orthonormal basis of R(Qαα). For β ∈ Nn, define
vjα,β = Qαβ u

j
α. Then

(vjα,β, v
k
α,γ) = (Qγα Qαβ u

j
α, u

k
α) (by (3.2))

= δβγ (Qαα u
j
α, u

k
α) (by (3.1))

= δβγ δjk. (3.3)

In particular, {vjα,β}β∈Nn is an orthonormal set.

Let Hj
α be the Hilbert space with {vjα,β}β∈Nn as an orthonormal basis. Define

U j
α : L2(Rn)→ Hj

α by U j
α(Φβ) = vjα,β, β ∈ Nn. Let

Sjα(f) = U j
α W (f) U j∗

α , f ∈ L1(Cn).
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For v =
∑

β cβ v
j
α,β ∈ Hj

α, using the relation W (Φµν) Φβ = (2π)
n
2 δβµ Φν , we

have

Sjα(Φµν)v = U j
α W (Φµν)

(∑
β

cβ Φβ

)
= (2π)

n
2 U j

α cµ Φν

i.e., Sjα(Φµν)v = (2π)
n
2 cµ v

j
α,ν (3.4)

On the other hand

T (Φµν)v = (2π)
n
2

∑
β

cβ Qµν Qαβ u
j
α

= (2π)
n
2 cµ Qαν u

j
α (by (3.1))

i.e., T (Φµν)v = (2π)
n
2 cµ v

j
α,ν (3.5)

From (3.4) and (3.5), we get

T (Φµν)v = (U j
α W (Φµν) U

j∗
α ) v, for all v ∈ Hj

α, µ, ν ∈ Nn.

This gives

T (f)|Hjα =

∫
Cn
f(z) U j

α π1(z) U j∗
α dz, f ∈ L1(Cn). (3.6)

Note that (3.3) implies that the spaces Hj
α and Hk

α are orthogonal to each other
when j 6= k.

Let Hα =
⊕∞

j=1 Hj
α and write L2(Rn) = Hα

⊕
V1. Equation (3.6) gives a

complete description of T on Hα and our next task is to obtain one for T |H⊥
α

. For
this we first show that the range R(Qαβ) ⊆ Hα for all β ∈ Nn. If v ∈ R(Qαβ),
then using (3.1) we get

v = Qαβ u = Qαβ Qαα u for some u ∈ L2(Rn).

Since Qαα u ∈ R(Qαα), Qαα u =
∑

j cj u
j
α and so

v = Qαβ Qαα u =
∑
j

cj v
j
α,β ∈ Hα.

Thus R(Qαβ) ⊆ Hα for all β ∈ Nn. For v ∈ H⊥α and u ∈ L2(Rn), this gives
(v,Qαβ u) = 0 for all β ∈ Nn, which implies Qβα v = 0 by (3.2). Thus

Qβα = 0 on H⊥α for all β ∈ Nn.

By (3.1), for v ∈ H⊥α , β ∈ Nn, Qββ v = Qαβ Qβα v = 0. Thus

Qββ = 0 on H⊥α for all β ∈ Nn.

Again for v ∈ H⊥α and u ∈ L2(Rn),

(Qαβ v, u) = (v,Qβα u) = (v,Qαα Qβα u) = 0.

Thus Qαβ = 0 on H⊥α for all β ∈ Nn. Finally, for any v ∈ H⊥α ,
µ, ν ∈ Nn, Qµν v = Qαν Qµα v = 0. This gives T |H⊥

α
= 0.
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We have thus obtained a collection {Hj
α}j=1,2,... of mutually orthogonal sub-

spaces of L2(Rn) and unitary representations ρjα (z, t) = U j
α π1(z, t) U

j∗
α of Hn,

on Hj
α such that

T (f)|Hjα =

∫
Cn
f(z) ρjα(z, 0) dz, f ∈ L1(Cn).

Then ρα =
⊕∞

j=1 ρjα is a unitary representation of Hn on Hα and

T (f)|Hα =

∫
Cn

f(z) ρα(z, 0) dz, f ∈ L1(Cn),

which is the required characterisation. �

The following remarks are in order. (Lp(Cn), ∗λ) is an algebra as long as 1 ≤
p ≤ 2 and for f ∈ Lp(Cn),Wλ(f) is still a bounded linear operator on L2(Rn)
and satisfies

‖Wλ(f)‖ ≤ C‖f‖p.
This follows from the fact that for ϕ, ψ ∈ L2(Rn) the function (πλ(z, 0)ϕ, ψ)
belongs to Lp

′
(Cn) whose norm is bounded by ‖ϕ‖2‖ψ‖2. It is therefore natural to

ask if an anlaogue of the above theorem is true for 1 < p ≤ 2. A close examination
of the proof shows that Theorem 3.1 is true for (Lp(Cn), ∗λ) with 1 ≤ p ≤ 2.

Let S2 be the algebra of Hilbert-Schmidt operators on L2(Rn). In the special
case when T maps L2(Cn) into S2, the decomposition of Hλ, obtained in the
above result reduces to a finite sum.

Corollary 3.2. Let T : (L2(Cn), ∗λ)→ S2 be a nonzero continuous homomorphism.
Then there is a subspace Hλ of L2(Rn) and a unitary representation ρλ of Hn on
Hλ such that

T (f) =

∫
Cn
f(z) ρλ(z, 0) dz, on Hλ,

and there is a decomposition L2(Rn) = Hλ
⊕

V λ, where

V λ := {v ∈ L2(Rn) : (Tf)(v) = 0 ∀ f ∈ L1(Cn)}.
Moreover Hλ is the direct sum of finitely many subspaces of L2(Rn).

Proof. Here again we work with λ = 1 and drop all subscripts and superscripts in-
volving λ. Proceeding as in the proof of the above theorem we obtain a sequence
{Hj

α}j=1,2,... of mutually orthogonal subspaces of L2(Rn) and unitary representa-
tions ρjα(z, t) = U j

α π1(z, t) U
j∗
α , of Hn on Hj

α such that

T (f)|Hjα =

∫
Cn
f(z) ρjα(z, 0) dz, f ∈ L2(Cn),

i.e., T (f) = U j
α W (f) U j∗

α on Hj
α. Then

‖T (f)‖2HS =
∞∑
j=1

∑
β∈Nn

‖T (f)vjα,β‖
2
2.

Note that
∑

β∈Nn ‖T (f)vjα,β‖22 = ‖W (f)‖2HS is independent of j. Hence the above

shows that Hj
α 6= {0} only for finitely many j, and the decomposition takes the

form Hα =
⊕m

j=1 Hj
α for some m ∈ N. �
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4. Characterisation of the Fourier transform on Hn

In this section we prove a characterisation of the group Fourier transform using
Theorem 3.1 of the previous section.

Let L∞(R∗,B(L2(Rn)), dµ) denote the space of essentially bounded functions
on R∗, taking values in B(L2(Rn)), where R∗ is equipped with the measure
dµ(λ) = (2π)−n−1 |λ|n dλ.

Theorem 4.1. Let T : L1(Hn)→ L∞(R∗, S2, dµ) be a nonzero continuous linear
map satisfying

(i) T (f ∗)(λ) = Tf(λ)∗, for all λ ∈ R∗, f ∈ L1(Hn),

(ii) T (f ∗ g)(λ) = (Tf)(λ) (Tg)(λ), λ ∈ R∗, f, g ∈ L1(Hn), and

(iii) T (R(0,t) f)(λ) = (Tf)(λ) e−iλt, λ ∈ R∗, f ∈ L1(Hn), t ∈ R.

Then for each λ ∈ A, there is a decomposition L2(Rn) = Hλ
⊕

V λ, and a unitary
representation ρλ of Hn on Hλ such that

T (f)(λ) =

∫
Hn

f(z, t) ρλ(z, t) dz dt, on Hλ,

where A := {λ ∈ R∗ : (Tf)(λ) 6= 0 for some f ∈ L1(Hn)}.

Proof. Let Tλ(f) = (Tf)(λ), for λ ∈ R∗, f ∈ L1(Hn). For fixed ϕ, ψ ∈ L2(Rn),
the map defined on L1(Hn) by f 7→ (Tλ(f) ϕ, ψ) satisfies

| (Tλ(f) ϕ, ψ) | ≤ ‖Tλ(f)‖ ‖ϕ‖2 ‖ψ‖2
≤ C ‖f‖L1(Hn) ‖ϕ‖2 ‖ψ‖2.

i.e., the above map defines a continuous linear functional on L1(Hn), and so there
is Fλ ∈ L∞(Hn) such that

(Tλ(f)ϕ, ψ) =

∫
Hn
f(z, t) Fλ((z, t);ϕ, ψ) dz dt, f ∈ L1(Hn).

Let f ∈ L1(Hn) be of the form f(z, t) = g(z) h(t).
Then

(Tλ(f)ϕ, ψ) =

∫
Hn

f(z, t) Fλ((z, t);ϕ, ψ) dz dt

=

∫
R
h(t)

(∫
Cn
g(z) Fλ((z, t);ϕ, ψ) dz

)
dt

=

∫
R
h(t) Φλ(t) dt.

where Φλ(t) =
∫
Cn g(z) Fλ((z, t);ϕ, ψ) dz. But (iii) gives

(Tλ(f) e−iλs ϕ, ψ) = (Tλ(R(0,s) f)ϕ, ψ) =

∫
R
h(t) Φλ(t− s) dt
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Thus we get Φλ(t − s) = e−iλs Φλ(t) for all s ∈ R, a.e. t ∈ R. Let Ψ be a

Schwartz class function on R such that Ψ̂(λ) 6= 0. Then∫
R

Φλ(t− s) Ψ(s) ds =

∫
R
e−iλs Φλ(t) Ψ(s) ds = Ψ̂(λ) Φλ(t).

As the left hand side is a smooth bounded function of t, so is Φλ. Thus we get
that Φλ(t− s) = e−iλs Φλ(t) for all s, t ∈ R. In particular Φλ(t) = eiλt Φλ(0) for
all t ∈ R. Thus for every g ∈ L1(Cn), the function∫

Cn
g(z) Fλ((z, t);ϕ, ψ) dz

is continuous and satisfies∫
Cn
g(z) Fλ((z, t);ϕ, ψ) dz = eiλt

∫
Cn
g(z) Fλ((z, 0);ϕ, ψ) dz

Taking
g(z) = |Br(w)|−1 χBr(w)(z)

where |Br(w)| is the volume of the ball of radius r centered at w and and letting
r → 0, we see that for almost every w ∈ Cn,

Fλ((w, t);ϕ, ψ) = eiλt Fλ((w, 0);ϕ, ψ).

This leads to the equation

(Tλ(f)ϕ, ψ) =

∫
Hn

f(z, t) eiλt Fλ((z, 0);ϕ, ψ) dz dt.

=

∫
Cn

fλ(z) Fλ((z, 0);ϕ, ψ) dz.

Hence Tλ(f) depends only on fλ and satisfies

‖Tλ(f)‖ ≤ C ‖fλ‖L1(Cn).

For a given λ, fix ψ ∈ L1(R) such that ψ̂(−λ) = 1 and define

Sλ(g) = Tλ(g(z) ψ(t)) = Tλ(f), f(z, t) = g(z) ψ(t).

Then it is clear that ‖Sλ(g)‖ ≤ C ‖g‖L1(Cn). Moreover, for g1, g2 ∈ L1(Cn), with
fj(z, t) = gj(z) ψ(t), j = 1, 2, we have

(f1 ∗ f2)λ(z) = g1 ∗λ g2(z) = g1 ∗λ g2(z) ψ̂(−λ)

and hence (f1 ∗ f2)λ = ((g1 ∗λ g2) ψ)λ. Since Tλ(f) depends only on fλ, this gives

Sλ(g1 ∗λ g2) = Tλ((g1 ∗λ g2)(z) ψ(t)) = Tλ(f1 ∗ f2),
and as Tλ(f1 ∗ f2) = Tλ(f1) Tλ(f2) = Sλ(g1) Sλ(g2), we get
Sλ(g1 ∗λ g2) = Sλ(g1) Sλ(g2).

As the operator Sλ satisfies the hypotheses of Theorem 3.1, for each λ ∈ A,
there is a decomposition L2(Rn) = Hλ

⊕
V λ and a unitary representation ρλ of

Hn on Hλ such that

Sλ(f)|Hλ =

∫
Cn
f(z) ρλ(z, 0) dz, f ∈ L1(Cn).
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In particular, for f ∈ L1(Hn)

Sλ(f
λ)|Hλ =

∫
Cn
fλ(z) ρλ(z, 0) dz,

=

∫
Hn
f(z, t) ρλ(z, t) dz dt.

This gives for all f ∈ L1(Hn) and λ ∈ A,

(Tf)(λ)|Hλ =

∫
Hn
f(z, t) ρλ(z, t) dz dt.

�

In the above theorem, replacing hypothesis (iii) with a stronger assumption,
we obtain the following

Theorem 4.2. Let T : L1(Hn) → L∞(R∗,B(L2(Rn)), dµ) be a nonzero continu-
ous linear map satisfying

(i) T (f ∗)(λ) = (Tf)(λ)∗, λ ∈ R∗, f ∈ L1(Hn),

(ii) T (f ∗ g)(λ) = (Tf)(λ) (Tg)(λ), λ ∈ R∗, f, g ∈ L1(Hn), and

(iii) T (R(z,t) f)(λ) = (Tf)(λ) πλ(z, t)
∗, λ ∈ R∗, f ∈ L1(Hn), (z, t) ∈ Hn.

Then (Tf)(λ) = f̂(λ), λ ∈ A, f ∈ L1(Hn),

where A := {λ ∈ R∗ : (Tf)(λ) 6= 0 for some f ∈ L1(Hn)}.

Proof. By the previous theorem, for each λ ∈ A, there is a decomposition L2(Rn) =
Hλ
⊕

V λ, and a unitary representation ρλ of Hn on Hλ such that

T (f)(λ) =

∫
Hn

f(z, t) ρλ(z, t) dz dt, on Hλ. (4.2)

Let V λ = {v ∈ L2(Rn) : Tλ(f)(v) = 0 ∀ f ∈ L1(Hn)}. Let v ∈ V λ. Then

Tλ(f) v = 0 for all f ∈ L1(Hn)

gives Tλ(f) πλ(z, t)
∗v = 0 for all f ∈ L1(Hn), for all (z, t) ∈ Hn.

This implies that V λ is invariant under πλ. Now the irreducibility of πλ forces
V λ = L2(Rn) or V λ = (0). If λ ∈ A, then V λ 6= L2(Rn) and so V λ = (0).
But equation (4.2) gives T (R(z,t) f)(λ) = (Tf)(λ) ρλ(z, t)

∗. This, combined with
(iii) of the hypothesis implies for each f ∈ L1(Hn), λ ∈ A and ϕ ∈ L2(Rn),

(Tf)(λ) πλ(z, t)
∗ ϕ = (Tf)(λ) ρλ(z, t)

∗ ϕ,

which gives
(Tf)(λ) [(πλ(z, t)

∗ − ρλ(z, t)∗) ϕ] = 0.

That is, the term in the square bracket is in V λ and so it is 0. Thus for all λ ∈ A
and (z, t) ∈ Hn, ρλ(z, t) = πλ(z, t). This gives

(Tf)(λ) = f̂(λ), λ ∈ A, f ∈ L1(Hn).
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When T is an operator from L2(Hn) onto L2(R∗, S2, dµ), we obtain the following
characterization.

Theorem 4.3. Let T : L2(Hn)→ L2(R∗, S2, dµ) be a nonzero surjective continuous
linear map satisfying

(i) T (f ∗ g)(λ) = (Tf)(λ) (Tg)(λ), λ ∈ R∗, f, g, f ∗ g ∈ L2(Hn), and

(ii) T (R(z,t) f)(λ) = (Tf)(λ) πλ(z, t)
∗, λ ∈ R∗, f ∈ L2(Hn), (z, t) ∈ Hn.

Then T (f)(λ) = f̂(λ) for all λ ∈ R∗, f ∈ L2(Hn).

Proof. Define U : L2(Hn) → L2(Hn) as Uf = g if Tf = ĝ, i.e., U is such that

(Tf)(λ) = (̂Uf)(λ). Then U is surjective, linear and continuous.

If f1, f2, f1 ∗ f2 ∈ L2(Hn) are such that Uf1 = g1, Uf2 = g2, and
U(f1 ∗ f2) = g, then ĝ = T (f1 ∗ f2) = ĝ1 ĝ2 = (g1 ∗ g2)̂ . This gives

U(f1 ∗ f2) = U(f1) ∗ U(f2) for all f1, f2, f1 ∗ f2 ∈ L2(Hn). (4.3)

Now, (ii) of the hypothesis and the similar property of the Fourier transform give

(U R(z,t) f )̂ (λ) = (Uf )̂ (λ) πλ(z, t)
∗ = (R(z,t) Uf )̂ (λ)

This gives U R(z,t) f = R(z,t) Uf for all f ∈ L2(Hn), i.e., U is right-translation
invariant. This implies from [11] that

(̂Uf)(λ) = m(λ) f̂(λ), for some m ∈ L∞(R∗,B(L2(Rn)), dµ).

This gives

(U(f ∗ g))̂ (λ) = m(λ) f̂(λ) ĝ(λ) = (Uf )̂ (λ) ĝ(λ). (4.4)

But by (4.3),

(U(f ∗ g))̂ (λ) = (Uf ∗ Ug)̂ (λ) = (̂Uf)(λ) (̂Ug)(λ). (4.5)

From (4.4), (4.5) and the surjectivity of U , we get

ĥ(λ) ((ĝ(λ)− (̂Ug)(λ)) = 0, for all g, h ∈ L2(Hn).

This implies that the range R((g − Ug)̂ (λ)) is contained in the kernel of ĥ(λ)
for all h ∈ L2(Hn), which forces (g − Ug)̂ (λ) = 0 for every λ ∈ L2(Hn). Hence
Ug = g for all g ∈ L2(Hn), and thus

(Tf)(λ) = f̂(λ), for all λ ∈ R∗, f ∈ L2(Hn).

�
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