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ABSTRACT. The aim of this paper is to show that any continuous #-homomorphism
of L'(C™)(with twisted convolution as multiplication) into B(L?(R")) is essentially
a Weyl transform. From this we deduce a similar characterisation for the group
Fourier transform on the Heisenberg group, in terms of convolution.

1. INTRODUCTION AND PRELIMINARIES

The behaviour of the Fourier transform under translations, dilations, modula-
tions and differentiation is well known. It is an interesting fact that a few of these
properties are characteristic of the Fourier transform. Several characterisations
of the Fourier transform were done in [3, 4, 8, 9, 10]. A well known property of the
Fourier transform is that it takes convolution product into pointwise product.
Conversely, is there any relation between the Fourier transform and a map which
converts convolution product into pointwise product? Recently, a characterisa-
tion for the Fourier transform on R™ was done in [I, 2] without assuming the
map to be linear or continuous. In [7], Jaming proved such characterisations for
the groups Z/nZ and Z([7], Theorem 2.1), R™ and T" ([7], Theorem 3.1). We
state below the result of Jaming for the case R™ and T":

Theorem 1.1. Let n > 1 be an integer and G = R™ or G = T". Let T be a
continuous linear operator L'(G) — C(G) (here G denotes the dual group of G)
such that T(f x g) = T(f) T(g). Then there exists a set E C G and a function

@ : G = G such that T(f)(§) = xe(&) f(#(§)).
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In the same paper([7]) he posed a question, which leads to that of the char-
acterisation of the Weyl transform in terms of the twisted convolution. Here
we attempt to prove such a characterisation and deduce a similar one for the
Heisenberg group Fourier transform. An extensive study of Fourier analysis on
the Heisenberg group was done in [0]. Before stating our results, we recall a few
standard notations and terminology as in [5, 12, 13].

2. NOTATIONS AND PRELIMINARIES

The (2n + 1)— dimensional Heisenberg group H" is the nilpotent Lie group
whose underlying manifold is C* x R. H” forms a noncommutative group under
the operation

(z,t)(w,s) = <z +w,t+ s+ %Im(z.@)) , (2,1), (w,s) € H".

The Haar measure on H" is the Lebesgue measure dz dt on C" x R. By the
Stone-von Neumann theorem, all the infinite-dimensional irreducible unitary
representations of H", acting on L?(R"), are parametrised by A € R*, and are
given by

(2, 1) p(E) = e AT p(e L y) € e R, p € LA(RY),

and z = x 41y € C". The group Fourier transform of an integrable function f on
H"™ is defined as

T = | f(z.t) malz,t) dz dt, A € R*.
Hn
Let B(L*(R™)) be the space of bounded linear operators on L*(R™). Then we

~ ~

have f(A) € B(L*(R")), with [|f(A\)llop < [ f]l1.
The convolution f * g of functions f, g on H" is defined by

(f *g)(zvt) = o f((z,t)(—w, _8)) g(w7s) dw dS, (th> € Hn’

whenever the integral exists.

Then the group Fourier transform satisfies

-~ ~

Property 1. (f*)(\) = f(A)* for all A € R*, where

o~

[*(z,t) = f(—z,—t) and (f(\))* is the adjoint of the operator in B(L?(R")).

~

Property 2. (f*g)"(\) = f(A) g(\), A€ R*, f,g € L'(H").

-~

Property 3. (Re.yf] (A) = f(A) ma(2,t)", (2,t) € H", where R(.;) denotes
the right translation given by
(R f)(w,s) = f((w,5)(2,1), (w,s) € H".

We shall prove in Section 3 that the above properties characterise the group
Fourier transform on H".
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For f € L*(H") we denote by f*(z), the inverse Fourier transform of f in the
t-variable, i.e.,

P = [ e a e
R
We write my(2) = m(z,0) so that m\(z,t) = e m\(2) and
JO) = | ) m(e) d=

For A € R* and g € L'(C"), consider the operator

Wilo) = [ 9l2) ma(2) d=

When A = 1, we call this the Weyl transform of g. The A-twisted convolution of
functions f, g € L'(C") is defined as

(Foag)z) = | flz = w) glw) 37D du, z e C

The convolution of functions on H", and the A-twisted convolution of functions
on C", are related as

(fxg)Mz) = (f*xr gM)(2), z € C"

The operators Wy, are continuous, linear and map L'(C") into B(L*(R")). Also,
they satisfy the following properties:

Property A. W\(f*) = Wi(f)*, f € L'(C"), where f*(z) = f(—=2).
Property B. Wy(f xx g) = Wi(f) Walg), f,g € L*(C"),

i.e., W) is a continuous *-homomorphism from L!(C") into B(L*(R™)). In Section
3, we shall prove the converse that any continuous *-homomorphism from L!(C")
into B(L*(R™)) is essentially a Weyl transform.

We now recall a few properties of the Hermite and special Hermite functions
which will be of much use in proving this characterisation.
For k e N={0,1,2,...}, let

dk

o) = (-1 (2 VR (L

2 22
dm’“ew> "2z eR,

denote the normalised Hermite functions on R. The multi-dimensional Hermite
functions are defined as

O, (z) = Hhaj(xj), r=(21,....,2,) €ER", o= (ay,...,ap,) € N".
=1

The collection {®, : o € N"} forms an orthonormal basis for L*(R™) and their
linear span is dense in LP(R") for 1 < p < oo. For A € R* Suppose that
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®A(2) = |A|T ®4(1/|A|x). Then the scaled special Hermite functions are defined

©o5(2) = (2m) 72 [A|F (ma(2) €3, 93), 2 € C",

and they form an orthonormal basis for L?(C"). Further finite linear combinations
of special Hermite functions are dense in LP(C") for 1 < p < oo. Also they satisfy

_— _—) no\iCn —A n
Dogra D,(2) = 2m)2 A7 daw P5(2), @, B, p,v € N (2.1)
We refer to [12, 13] for these properties. We now proceed to prove our main
results.

3. CHARACTERISATION OF THE WEYL TRANSFORM

As recalled in Section 2, the Weyl transform is a continuous linear map from
LY (C") into B(L?*(R")) taking twisted convolution into composition of operators.
We shall now prove the converse, thus answering a modified version of Jaming’s
question. We remark that the proof of the following theorem is similar to that
of the Stone-von Neumann theorem as in [5]. Indeed, if p, is a primary repre-
sentation of H" with central character ¢, then the operator defined on L'(C")
by

N = [ £G) i) d:

satisfies the hypothesis of the following theorem. By the Stone-von Neumann
theorem p)(z,t) is a direct sum of representations each of which is unitarily
equivalent to my(z,t). The proof makes use of the relations

Tof pa(2,0) = Ta(72 ), palz,0) T f = Ta(m*f)
where
2 f(w) = f(w = z) o230

z

is the A—twisted translation. The proof given below shows that we really do not
need these extra properties in order to prove Stone-von Neumann theorem.

The following theorem can also be proved using the Stone-von = Neumann
theorem and the representation theory of locally compact groups. We attempt
to prove it without using these techniques.

Theorem 3.1. Let T : (L*(C"),*,) — B(L*(R™)) be a nonzero continuous homo-
morphism. Then there is a subspace H* of L*>(R™) and a unitary representation
px of H" on H* such that

T(f)= [ f(z) pa(2,0) dz, on H*,
cn

and there is a decomposition L?*(R") = H*@ V*, where
VA i={ve L*R") : (Tf)(v) =0 for all fec L'(C")}.



A CHARACTERISATION OF THE FOURIER TRANSFORM ON H" 113

Proof. 1t suffices to prove the result when A = 1 as the general case follows sim-
ilarly. We let f x g := f %, g and we will drop all subscripts and superscripts
involving A(=1).

n J—

For a, 8 € N, let Q5 = (27)72 T(®4p). Then

Qap Qv = (2m)7" T(®up x ) (by hypothesis)
= oy (2m)72 ( s)  (by (2.1))
e, Qap Qu = daw Qup. (3.1)

For o, 3 € N™ and v,w € L*(R"),

(2m)% (Qap v,w) = (0,T(Rap)" w)
= (U,T(aga) ’LU)
ie., Qaﬂ* = Qﬂou a, peN". (32)

Note that for each @ € N", Q,n # 0. To see this suppose Qnn = 0 for some
a € N". Then

Qpa U= Qoa Qpa u=0for any e N" ue L*(R™).
Similarly,
Qory U= Quy Qoo u=0 for any v € N", ue L*(R").
For arbitrary 3, v € N*, u € L*(R"),
Qpy u= Qaoy Qpa u=0.

This implies T' = 0, a contradiction. Thus Q) # 0 for any o € N™.

Let a € N*. Then the range R(Qaq) 0f Qaq is non-zero. Let {u/}32, be an
orthonormal basis of R(Qaa). For € N", define
v}, g = Qap ul,. Then

(Vg Van) = (Qra Qap uhy up) (by (3.2))
= 5/3’7 (Qaa Ug, ulocé) (by (31))
= 0y Ojk- (3.3)

In particular, {v’, s} penn is an orthonormal set.

Let HJ be the Hilbert space with {vi 5}penn as an orthonormal basis. Define
Ul : L*(R") — Hi, by Ui(®s) =), 5, B € N". Let

Sa(f) =UL W(f) U, f e L(C).
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For v =35 cp viﬁ € HJ, using the relation W(®,,) &5 = (27)2 dz, D,, we
have

S (Pu)v = UL, W(Dy,) (Z Cp (I)B>
B
= (2m)
e, SL(®,)v = (2m)
On the other hand
T(E/LV)U = (277-)% Z Ca Quu Qa,@ sz

Ui cu
CM vi,u (34)

ISEREENTE]

B
— @M} 6 Quul  (by (3.1)
e, T(®u)v = (2m)2 ¢, vl (3.5)
From (3.4) and (3.5), we get
T(®,)v = (U W(®,,) U v, for allve Hl, p,ve N
This gives
T(Nlyy = (2) Uy mi(2) UY dz, feLY(C). (3.6

(Cn
Note that (3.3) implies that the spaces HJ, and HE are orthogonal to each other
when j # k.

Let Ho = @52, M} and write L*(R") = H, @ V1. Equation (3.6) gives a
complete description of 7" on H, and our next task is to obtain one for T'|;,.. For
this we first show that the range R(Qap) C H, for all € N*. If v € R(Qup),
then using (3.1) we get

UV = Qup U= Qap Qoo u for some u e L*(R™).
Since Qoo U € R(Qua), Qaa U = Zj ¢; ul, and so

U:Qaﬁ Qoax U:Z Cj Ui,ﬁ € Heg.
J

Thus R(Qup) C H, for all 3 € N*. For v € HE and u € L*(R"), this gives
(v, Qap u) = 0 for all B € N, which implies Qs, v =0 by (3.2). Thus

Qsa =0 on HE for all g€ N"
By (3.1), for v € HY, BEN", Qps v = Quop Qpa v=0. Thus
Qss =0 on Hi for all 3€N"
Again for v € H}: and u € L?(R"),
(Qag v,u) = (v,@pa u) = (v, Qaa Qpa u) = 0.

Thus Qus =0 on HL for all 8 € N" Finally, for any v € HZ,
pv €N Qu v = Qav Qua v =0. This gives T'|5,1 = 0.
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We have thus obtained a collection {H‘g‘}jzl’grn of mutually orthogonal sub-
spaces of L*(R") and unitary representations p! (z,t) = U m(z,t) UJ* of H",
on HJ such that

TNy, = - f(2) pi(2,0) dz, fe LY (C").

Then p, = @;’;1 pl is a unitary representation of H" on H, and

T, = [ 72) pala.0) dz, f € LI,
(Cn
which is the required characterisation. O

The following remarks are in order. (LP(C"),x,) is an algebra as long as 1 <
p < 2 and for f € LP(C™), W,(f) is still a bounded linear operator on L?(R™)
and satisfies

IWAH)I < CIIf[lp-

This follows from the fact that for p,¢» € L*(R") the function (mx(z,0)p, )
belongs to LP (C™) whose norm is bounded by ||¢||2||¢)||2. It is therefore natural to
ask if an anlaogue of the above theorem is true for 1 < p < 2. A close examination
of the proof shows that Theorem 3.1 is true for (LP(C"), %)) with 1 <p < 2.

Let Sy be the algebra of Hilbert-Schmidt operators on L*(R™). In the special
case when T" maps L?(C") into S, the decomposition of H*, obtained in the
above result reduces to a finite sum.

Corollary 3.2. Let T : (L*(C"), xy) — Sy be a nonzero continuous homomorphism.
Then there is a subspace H* of L*(R"™) and a unitary representation py of H" on
H such that

T(f)= | f(z) pa(2,0) dz, on H,
Cn
and there is a decomposition L?*(R") = H*@ V*, where
VYi={ve L*R") : (Tf)(v) =0V f e L'(C")}.
Moreover H* is the direct sum of finitely many subspaces of L*(R™).

Proof. Here again we work with A = 1 and drop all subscripts and superscripts in-
volving A. Proceeding as in the proof of the above theorem we obtain a sequence
{H},=12,. of mutually orthogonal subspaces of L?(R™) and unitary representa-
tions pl (z,t) = UJ m(z,t) UZ*, of H" on HJ, such that

T, = [ 16) A0 b= € 22,
iLe, T(f)=UJ W(f) U on HJ,. Then

ITNIIEs =D > 1Tl

j=1 5€N"

Note that Y scwn 17(f)V 513 = W ()|} is independent of j. Hence the above
shows that H7 = {0} only for finitely many j, and the decomposition takes the
form H, = P}, HJ for some m € N. O



116 R. LAKSHMI LAVANYA, S. THANGAVELU

4. CHARACTERISATION OF THE FOURIER TRANSFORM ON H"
In this section we prove a characterisation of the group Fourier transform using

Theorem 3.1 of the previous section.

Let L°°(R*, B(L*(R™)),dp) denote the space of essentially bounded functions
on R* taking values in B(L*(R")), where R* is equipped with the measure
dp(X) = (2m) 1 A" dA.

Theorem 4.1. Let T : L(H") — L=(R*, Sy, dp) be a nonzero continuous linear
map satisfying

(i) T(f)(\) = TN, for all X € R*, f € LY(H),

(i) T(f * g)(\) = (THHN) (Tg)(N), A€ R*, f.g € L'(H"), and

(iii) T(Roy f)(A) = (Tf)(\) e, XeR*, f e LY(H"), t € R

Then for each \ € A, there is a decomposition L*(R") = H}@ V?*, and a unitary
representation py of H" on H» such that

T(HN) = | f(z1) palz,t) dz dt, on H?,
Hn
where A :=={\ € R*: (Tf)(\) #0 for some f & L'(H")}.
Proof. Let T\(f) = (Tf)()\), for A € R*, f € L'(H"). For fixed ¢,v € L*(R"),
the map defined on L'(H") by f +— (T\(f) o, ) satisfies
[(I(f) oo )1 < IO ez 192
< Clfllaay llell2 [[¢]l2-

i.e., the above map defines a continuous linear functional on L'(H"), and so there
is Fy, € L>°(H") such that

() = [ 1) Bal(eti0) de d, f € DEP)
Let f € L(H") be of the form F(2.) = g(2) h(b).
Then
TDew) = [ 1) B0 ds
= [0 ([ o) Bl tio0) dz) at
_ /R h(t) ®(t) dt.

where ®)(t) = [.. 9(2) Fa((2,t);,v) dz. But (iii) gives

(1) e 00) = (T(Row Do) = [ 1(0) @t =) do

R
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Thus we get ®y(t —s) = e ®y(t) forall s € R, ae. t € R. Let ¥ be a
Schwartz class function on R such that W(A) # 0. Then

/R it — 5) U(s) ds — / e By (1) U(s) ds = B(A) By(t).

R
As the left hand side is a smooth bounded function of ¢, so is ®,. Thus we get
that @, (t — s) = e~ ®,(¢) for all s,¢ € R. In particular ®,(t) = e &,(0) for
all ¢ € R. Thus for every g € L*(C"), the function

[ o) B tyig.)
is continuous and satisfies
[ o) Bty d= ¥ [ o) B((a 00

Taking

9(2) = 1Br(w)| ™" X5, (w)(2)
where |B,.(w)]| is the volume of the ball of radius r centered at w and and letting
r — 0, we see that for almost every w € C",

Fy((w,t);0,4) = €™ Fa((w,0);¢,).
This leads to the equation

(Ta(f)p, ) = Flz,t) €M Fa((2,0);90,0) dz dt.

Hn

= ) Fa((2,0);0, ) dz

Cn
Hence T)(f) depends only on f* and satisfies

I < C 1 lzaen.
For a given A, fix 1 € L'(R) such that ¢(—A) = 1 and define
Sx(9) = Ta(g(z) ©(t)) = Ta(f), f(z,1) = g(2) ¥(1).

Then it is clear that [[Sy(g)|| < C [lgllzycs). Moreover, for gy, g2 € L1(C"), with
fi(z,t) = g;(2) ¥(t), j =1,2, we have

(Fi* M) = g0 92(2) = g1 %2 g2(2) (=)
and hence (f1 * f2)* = ((g1 *x g2) ¥)*. Since T\(f) depends only on f*, this gives
Sx(g1 #x g2) = Ta((g1 %1 92)(2) ¥ (1)) = T (f1 * f2),

and as Ta(fi * f2) = Ta(fr) To(fe) = Sag) Silg), we get
Sx(g1 %x g2) = Sx(g1) Sx(g2).

As the operator S) satisfies the hypotheses of Theorem 3.1, for each A € A,
there is a decomposition L?(R") = H*@ V* and a unitary representation py of
H" on H* such that

Sx(Plaer = . f(2) pa(2,0) dz, f € LI (C").
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In particular, for f € L'(H")

S = [ PE o0 b
_ £z, 1) palz,t) dz dt.
This gives for all f € L'(H") and A eH;,
TNk = [ F1) pr(z:t) dz de.

O

In the above theorem, replacing hypothesis (iii) with a stronger assumption,
we obtain the following

Theorem 4.2. Let T : L*(H") — L>®(R*, B(L*(R")),du) be a nonzero continu-
ous linear map satisfying

(i) T(F)N) = (T, A € R, f e LNHY),
(i) T(f % 9)N) = (T)(N) (Tg)(N), A€ RY, f,g € L'(E"), and
(iii) T(Riey NN = (TN malz,0)", A€ R, f € LMH), (2,1) € H".

Then (THO) =FN). Ae A, [eL'@H),
where A:={X €R*: (Tf)(\) #0 for some f e L'(H")}.

Proof. By the previous theorem, for each A\ € A, there is a decomposition L*(R"™) =
H*@P V?, and a unitary representation py of H" on H* such that

TN = [ F(o0) palet) d= dt, on W (42)
HT’L

Let V2 ={ve L*R"): To(f)(v)=0V f € L*(H")}. Let v € V*. Then

T\(f)v = 0 for all fe L'(H")

gives Th(f) ma(z,t)*v = 0for all f e L'(H"), for all (z,t) € H".
This implies that V* is invariant under 7. Now the irreducibility of 7y forces
VA = L*R") or V} = (0). If A € A, then V* #£ L?(R") and so V* = (0).
But equation (4.2) gives T(R.4) f)(A) = (Tf)(A) pa(z,t)". This, combined with
(iii) of the hypothesis implies for each f € L'(H"), A € A and ¢ € L*(R"),
(TN ma(z,8)" @ = (TFHN) palz,1)" o,

which gives

(TN [ma(z,8)" = palz,8)") ] = 0.
That is, the term in the square bracket is in V* and so it is 0. Thus for all A € A
and (z,t) € H", pa(z,t) = ma(2,t). This gives

(THN) =FN), A€ A, fe L' HY,



A CHARACTERISATION OF THE FOURIER TRANSFORM ON H" 119

O

When T is an operator from L*(H") onto L*(R*, Sy, dut), we obtain the following
characterization.

Theorem 4.3. Let T : L*(H") — L*(R*, Sy, du) be a nonzero surjective continuous
linear map satisfying

(i) T(f = g)(A\) = (TH)A) (Tg)(A), A €R", f.g,f*g € L*(H"), and

(ii) T(Reey J)N) = (TN malz, ), A € R, f € LAHY), (2,1) € H™.

-~

Then T(f)(\) = f(\) for all X € R*, fe L*(H").
Proof. Define U : L*(H") — L*(H") as Uf = g if Tf = g, i.e., U is such that

—_—

(Tf)(AN) = (Uf)(A). Then U is surjective, linear and continuous.

If f1, fo, fi * fo € L*(H") are such that Uf, = g1, Ufs = ¢, and
U(f1 * f2) =g, then g = T(fl * f2) =0 §2 = (91 * gz)A- This gives

U(frxf2) = U(f)xU(fo) for all fi, fo, fi* fo € L*(H").  (4.3)

Now, (ii) of the hypothesis and the similar property of the Fourier transform give

(U Ry JTA) = (UFT(A) malz,8)" = (B UST(A)

This gives U R4y [ = Ry Uf for all f € L*(H"), ie., U is right-translation
invariant. This implies from [11] that

—

(Uf)A) = m(N) fA()\), for some m € L*(R*, B(L*(R™)), du).
This gives

~

(U(f*g)T () = m(N) FO) ) = ULTO) GOV (4.4)
But by (4.3),
(U(f* )TN = (Uf«UgTN) = UHN) Ug)(N). (4.5)

From (4.4), (4.5) and the surjectivity of U, we get

AN (GO — UgH(N) =0, for all g,h € L*(H").
This implies that the range R((g — Ug) (\)) is contained in the kernel of /ﬁ()\)
for all h € L*(H"), which forces (9 — UgJ (\) = 0 for every A € L*(H"). Hence
Ug = g for all g € L*(H"), and thus

(TFHN) = f(N), for all A€ R*, fe L*(H").
O
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