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Abstract. Let L := −div(A∇) + V be a Schrödinger type operator with
the nonnegative potential V belonging to the reverse Hölder class RHq(Rn) for
some q ∈ (n/2,∞] and n ≥ 3, where A satisfies the uniformly elliptic condition.
Assume that ϕ : Rn×[0,∞)→ [0,∞) is a function such that ϕ(x, ·) is an Orlicz
function and ϕ(·, t) ∈ A∞(Rn) (the class of uniformly Muckenhoupt weights).
In this article, the author proves that the operators V L−1, V 1/2∇L−1 and
∇2L−1 are bounded from the Musielak–Orlicz–Hardy space associated with
L, Hϕ,L(Rn), to the Musielak-Orlicz space Lϕ(Rn) or Hϕ,L(Rn) under some
further assumptions for ϕ and A, which further implies a maximal inequality
for L in the scale of Hϕ,L(Rn). All these results improve the known results by
weakening the assumption for ϕ and L.

1. Introduction

Let L := −∆ +V be the Schrödinger operator on the Euclidean space Rn with
n ≥ 3. When V is a nonnegative polynomial on Rn, the boundedness of V 1/2∇L−1

and ∇2L−1 on Lp(Rn) with p ∈ (1,∞) was obtained by Zhong in [41]. Based on
this, Shen [33] generalized these results via extending the nonnegative polynomial
V to the case that 0 ≤ V belongs to the reverse Hölder class RHq(Rn) with some
q ∈ [n/2,∞]. Recall that a nonnegative function w on Rn is said to belong to
the reverse Hölder class RHq(Rn) with q ∈ (1,∞], denoted by w ∈ RHq(Rn), if,
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when q ∈ (1,∞), w ∈ Lqloc(Rn) and

[w]RHq(Rn) := sup
B⊂Rn

{
1

|B|

∫
B

[w(x)]q dx

}1/q {
1

|B|

∫
B

w(x) dx

}−1

<∞ (1.1)

or, when q =∞, w ∈ L∞loc(Rn) and

[w]RH∞(Rn) := sup
B⊂Rn

{
ess sup
x∈B

w(x)

}{
1

|B|

∫
B

w(x) dx

}−1

<∞, (1.2)

where the suprema are taken over all balls B ⊂ Rn. We remark that RHp(Rn) ⊂
RHq(Rn) for any 1 < q < p ≤ ∞ and, if V is a nonnegative polynomial, then
V ∈ RH∞(Rn) (see, for example, [33]). It follows from [13] that RHq(Rn) has
the property of self-improvement. More precisely, if V ∈ RHq(Rn) for some
q ∈ (1,∞), then there exists ε ∈ (0,∞), depending only on n and the constant C
in (1.1), such that V ∈ RHq+ε(Rn). Thus, for any V ∈ RHq(Rn) with q ∈ (1,∞],
we introduce the critical index q+ for V as follows:

q+ := sup {q ∈ (1,∞] : V ∈ RHq(Rn)} . (1.3)

It is easy to see that the boundedness of ∇2L−1 on Lp(Rn) implies immediately
the Sobolev W 2, p(Rn) regularity for the solution u to the equation −∆u+V u = f
when f ∈ Lp(Rn) with some p ∈ (1, ∞). Furthermore, Shen [33] also established
the boundedness of V L−1 on Lp(Rn), which, together with the boundedness of
∇2L−1 on Lp(Rn), further implies the following maximal inequality in Lp(Rn) (see
also [1]):

‖−∆f‖Lp(Rn) + ‖V f‖Lp(Rn) ≤ C ‖(−∆ + V )f‖Lp(Rn) ,

where f ∈ C∞c (Rn) and C is a positive constant independent of f . Moreover, the
weighted Lp(Rn)-boundedness of these operators was studied in [37]. Recently,
Ly [27] proved that V L−1 and ∇2L−1 are bounded from the Hardy space Hp

L(Rn),
associated with L, to Lp(Rn) when p ∈ (0, 1], and ∇2L−1 is also bounded from
Hp
L(Rn) to the classical Hardy space Hp(Rn) when p ∈ ( n

n+1
, 1], via the bounded-

ness of ∇2L−1 on Lp(Rn) with some p ∈ (1,∞) and some Sobolev type estimates
for the heat kernel of L. Moreover, the boundedness of ∇2L−1 and V L−1 on
the Musielak–Orlicz–Hardy space Hϕ,L(Rn) was independently studied in [7] by
different method. Very recently, the boundedness of V L−1, V 1/2(∇− i~a)L−1 and
(∇− i~a)2L−1 from the Musielak–Orlicz–Hardy space Hϕ,L(Rn), associated with
the magnetic Schrödinger operator L, to the Musielak–Orlicz space Lϕ(Rn) was
established in [8], where L := −(∇− i~a) · (∇− i~a) +V with ~a := (a1, a2, . . . , an)
and 0 ≤ V ∈ L1

loc(Rn) satisfying some additional assumptions (see [8, Theorem
1.1] for the details).

Recall that the Musielak–Orlicz–Hardy space is a function space of Hardy-type
which unify the classical Hardy space, the weighted Hardy space, the Orlicz-Hardy
space and the weighted Orlicz-Hardy space, in which the spatial and the time vari-
ables may not be separable (see [12, 19, 35, 30, 32, 36, 38] for more details on the
developments of Hardy-type spaces and Musielak-Orlicz spaces). We also remark
that the Musielak–Orlicz–Hardy space appears naturally in many applications
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(see, for example, [5, 24, 25, 26]). This kind of Musielak–Orlicz–Hardy spaces as-
sociated with operators generalizes the (Orlicz-)Hardy space and the (weighted)
(Orlicz-)Hardy space associated with operators, which has attracted great inter-
ests in recent years. Such function spaces associated with operators play impor-
tant roles in the study for the boundedness of singular integrals associated with
some differential operators, which may not fall within the scope of the classical
Calderón-Zygmund theory (see, for example, [2, 6, 9, 11, 16, 17, 20, 21, 39]).

Let the matrix A := {aij}1≤i, j≤n satisfies the following assumptions.
(A1) For any i, j ∈ {1, . . . , n}, aij is a measurable function on Rn. Moreover,

there exists a constant λ ∈ (0, 1] such that, for all i, j ∈ {1, . . . , n} and x, ξ ∈ Rn,

aij(x) = aji(x) and λ|ξ|2 ≤
n∑

i, j=1

aij(x)ξiξj ≤ λ−1|ξ|2.

(A2) There exist constants α ∈ (0, 1] and K ∈ (0,∞) such that, for all i, j ∈
{1, . . . , n},

‖aij‖Cα(Rn) ≤ K,

where, for f ∈ Cα(Rn), ‖f‖Cα(Rn) := supx, y∈Rn, x 6=y
|f(x)−f(y)|
|x−y|α .

(A3) For all i, j ∈ {1, . . . , n}, x ∈ Rn and z ∈ Zn,

aij(x+ z) = aij(x) and
n∑
k=1

∂akj(x)

∂xk
= 0.

Assume that 0 ≤ V belongs to the reserve Hölder class RHq0(Rn) for some q0 ∈
[n/2,∞] and n ≥ 3. Denote by W 1, 2(Rn) the usual Sobolev space on Rn equipped
with the norm (‖f‖2

L2(Rn) + ‖∇f‖2
L2(Rn))

1/2, where ∇f denotes the distributional

gradient of f . Let V ∈ RHq0(Rn) and

W 1, 2
V (Rn) :=

{
u ∈ W 1, 2(Rn) :

∫
Rn
|u(x)|2V (x) dx <∞

}
.

Denote by L the maximal-accretive operator (see [31, p. 23, Definition 1.46] for
the definition) on L2(Rn) with largest domain D(L) ⊂ W 1, 2

V (Rn) such that, for

any f ∈ D(L) and g ∈ W 1, 2
V (Rn),

〈Lf, g〉 :=

∫
Rn
A(x)∇f(x) · ∇g(x) dx+

∫
Rn
f(x)g(x)V (x) dx,

where 〈·, ·〉 denotes the interior product in L2(Rn) and A satisfies the assumption
(A1). In this sense, for all f ∈ D(L), we write

Lf := −div(A∇)f + V f. (1.4)

For the elliptic operator L0 := −div(A∇) with A satisfying (A1), (A2) and (A3),
Avellaneda and Lin [4, Theorem B] proved that ∇2L0 is bounded on Lp(Rn) for
any p ∈ (1,∞). It was also proved in [4, Theorem B] that the assumption (A3) is
necessary for the Lp(Rn)-boundedness of∇2L0. Moreover, for the operator L as in
(1.4), Kurata and Sugano [23] studied the boundedness of V L−1, V 1/2∇L−1 and
∇2L−1 on weighted Lebesgue spaces and Morrey spaces under the assumptions
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that A satisfies (A1), (A2) and (A3), V ∈ RH∞(Rn) and that, for all i, j ∈
{1, . . . , n}, aij ∈ C1+α(Rn) with some α ∈ (0, 1].

Based on the work in [23], the boundedness of V L−1, V 1/2∇L−1 and ∇2L−1,
from the Musielak–Orlicz–Hardy space Hϕ,L(Rn) to Lϕ(Rn) or Hϕ,L(Rn), was
studied in [40]. More precisely, assume that the Musielak-Orlicz function ϕ sat-
isfies some assumptions (see [40, Theorems 1.4 and 1.6] or Remark 1.7 below
for the details). It was proved in [40] that V L−1 and V 1/2∇L−1 are bounded
from Hϕ,L(Rn) to Lϕ(Rn) under the assumptions (A1), (A2) and V ∈ RHq(Rn)
with q ∈ [n,∞); ∇2L−1 is bounded from Hϕ,L(Rn) to Lϕ(Rn) or Hϕ(Rn) un-
der the assumptions (A1), (A2), (A3), V ∈ RHq(Rn) with q ∈ [n,∞) and that,
for any i, j ∈ {1, . . . , n}, aij ∈ C1+α(Rn) with some α ∈ (0, 1], and V L−1 is
bounded on Hϕ,L(Rn) under the same assumptions. Here, Hϕ(Rn) denotes the
Musielak–Orlicz–Hardy space introduced by Ky [24].

The main intention of this article is to improve the results obtained in [7, 40]
by weakening the assumption for ϕ and L. More precisely, let L be as in (1.4)
and Hϕ,L(Rn) the Musielak–Orlicz–Hardy space associated with L. We establish
the boundedness of the operators V L−1, V 1/2∇L−1 and ∇2L−1 from Hϕ,L(Rn)
to Lϕ(Rn) or Hϕ,L(Rn) under weaker assumptions than those in [7, 40].

In order to state the main results of this article, let us first recall some notation
and definitions.

We first describe the growth function considered in this article. Recall that a
function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is nondecreasing,
Φ(0) = 0, Φ(t) > 0 for any t ∈ (0,∞) and limt→∞Φ(t) = ∞ (see, for example,
[30, 32]). Moreover, Φ is said to be of upper (resp. lower) type p for some
p ∈ [0,∞), if there exists a positive constant C such that, for all s ∈ [1,∞) (resp.
s ∈ [0, 1]) and t ∈ [0,∞), Φ(st) ≤ CspΦ(t).

For a given function ϕ : Rn× [0,∞)→ [0,∞) such that, for any x ∈ Rn, ϕ(x, ·)
is an Orlicz function, ϕ is said to be of uniformly upper (resp. lower) type p for
some p ∈ (0,∞) if there exists a positive constant C such that, for all x ∈ Rn,
t ∈ [0,∞) and s ∈ [1,∞) (resp. s ∈ [0, 1]), ϕ(x, st) ≤ Cspϕ(x, t). Let

I(ϕ) := inf{p ∈ (0,∞) : ϕ is of uniformly upper type p} (1.5)

and

i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}. (1.6)

In what follows, I(ϕ) and i(ϕ) are, respectively, called the uniformly critical upper
type index and the uniformly critical lower type index of ϕ. Observe that I(ϕ) and
i(ϕ) may not be attainable, namely, ϕ may not be of uniformly upper type I(ϕ)
and uniformly lower type i(ϕ) (see, for example, [6, 7, 39] for some examples).
Moreover, it is easy to see that, if ϕ is of uniformly upper type p1 ∈ (0,∞) and
lower type p0 ∈ (0,∞), then p1 ≥ p0. Thus, I(ϕ) ≥ i(ϕ).

Definition 1.1. Let ϕ : Rn × [0,∞) → [0,∞) satisfy that ϕ(·, t) is measurable
for all t ∈ [0,∞). The function ϕ is said to satisfy the uniformly Muckenhoupt
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condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(Rn), if, when q ∈ (1,∞),

Aq(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|q

∫
B

ϕ(x, t) dx

{∫
B

[ϕ(y, t)]1−q dy

}q−1

<∞

or, when q = 1,

A1(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|

∫
B

ϕ(x, t) dx

{
ess sup
y∈B

[ϕ(y, t)]−1

}
<∞.

Here the first suprema are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ Rn.

The function ϕ is said to satisfy the uniformly reverse Hölder condition for
some q ∈ (1,∞], denoted by ϕ ∈ RHq(Rn), if supt∈(0,∞)[ϕ(·, t)]RHq(Rn) < ∞,
where [ϕ(·, t)]RHq(Rn) for any given t ∈ (0,∞) is defined as in (1.1) and (1.2) with
w replaced by ϕ(·, t).

Recall that, in Definition 1.1, Ap(Rn), with p ∈ [1,∞), and RHq(Rn), with
q ∈ (1,∞], were respectively introduced in [24] and [39].

Let A∞(Rn) := ∪q∈[1,∞)Aq(Rn). The critical indices for ϕ ∈ A∞(Rn) is defined
as follows:

q(ϕ) := inf {q ∈ [1,∞) : ϕ ∈ Aq(Rn)} (1.7)

and

r(ϕ) := sup {q ∈ (1,∞] : ϕ ∈ RHq(Rn)} . (1.8)

Now we recall the notion of growth functions from Ky [24].

Definition 1.2. A function ϕ : Rn × [0,∞)→ [0,∞) is called a growth function
if the following hold:

(i) ϕ is a Musielak-Orlicz function, namely,
(a) ϕ(x, ·) : [0,∞)→ [0,∞) is an Orlicz function for all x ∈ Rn;
(b) ϕ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ ∈ A∞(Rn).
(iii) The function ϕ is of uniformly lower type p for some p ∈ (0, 1] and of

uniformly upper type 1.

Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞(Rn) and Φ is an
Orlicz function of lower type p for some p ∈ (0, 1] and upper type 1. Here, Aq(Rn)
with q ∈ [1,∞] denotes the class of Muckenhoupt weights (see, for example, [15]).
A typical example of such Orlicz function Φ is Φ(t) := tp, with p ∈ (0, 1], for all
t ∈ [0,∞) (see, for example, [38, 39] for more examples of such Φ). Another
typical example of growth function is

ϕ(x, t) :=
t

ln(e+ |x|) + ln(e+ t)
(1.9)

for all x ∈ Rn and t ∈ [0,∞). It is worth to remark that for such ϕ as in (1.9),
the corresponding Musielak–Orlicz–Hardy space Hϕ(Rn) or Hϕ,L(Rn), associated
with the Schrödinger operator L := −∆ + V on Rn, appears naturally when
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studying the products of functions in H1(Rn) and BMO(Rn), the endpoint esti-
mates for the div-curl lemma and endpoint estimates for commutators of singular
integrals related to the Schrödinger operator L (see [5, 25, 26] for the details).

Recall that, for a function ϕ as in Definition 1.2, a measurable function f on
Rn is said to be in the Musielak-Orlicz space Lϕ(Rn) if

∫
Rn ϕ(x, |f(x)|) dx < ∞.

Moreover, for any f ∈ Lϕ(Rn), define

‖f‖Lϕ(Rn) := inf

{
λ ∈ (0,∞) :

∫
Rn
ϕ

(
x,
|f(x)|
λ

)
dx ≤ 1

}
.

Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. We remark that, L
is a nonnegative self-adjoint operator in L2(Rn). Moreover, the Gaussian upper
bound estimate for the kernels of the semigroup {e−tL}t>0 (see Lemma 4.5 be-
low) further implies that the semigroup {e−tL}t>0 satisfies the reinforced (1,∞, 1)
off-diagonal estimates (see [6, Assumption (B)] for the details). Thus, L is a non-
negative self-adjoint operator on L2(Rn) satisfying the reinforced (1,∞, 1) off-
diagonal estimates. Now we recall the Musielak–Orlicz–Hardy space Hϕ,L(Rn),
associated with L, introduced in [6].

For f ∈ L2(Rn) and x ∈ Rn, the Lusin area function SL(f)(x), associated with
L, is defined by

SL(f)(x) :=

{∫
Γ(x)

∣∣∣t2Le−t2L(f)(y)
∣∣∣2 dy dt

tn+1

}1/2

,

where Γ(x) := {(y, t) ∈ Rn× (0,∞) : |y−x| < t}. A function f ∈ L2(Rn) is said

to be in the set H̃ϕ,L(Rn) if SL(f) ∈ Lϕ(Rn); moreover, define ‖f‖Hϕ,L(Rn) :=
‖SL(f)‖Lϕ(Rn).

The Musielak–Orlicz–Hardy space Hϕ,L(Rn) is defined to be the completion of

H̃ϕ,L(Rn) respect with to the quasi-norm ‖ · ‖Hϕ,L(Rn).
Now we give out the first main result of this article.

Theorem 1.3. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2.
Assume that q+ > n/2 and q+ > I(ϕ)[r(ϕ)]′, where q+, I(ϕ) and r(ϕ) are,
respectively, as (1.3), (1.5) and (1.8), and [r(ϕ)]′ denotes the conjugate exponent
of r(ϕ).

(i) If A in (1.4) satisfies the assumption (A1), then V L−1 is bounded from
Hϕ,L(Rn) to Lϕ(Rn).

(ii) If A in (1.4) satisfies the assumptions (A1) and (A2), then V 1/2∇L−1 is
bounded from Hϕ,L(Rn) to Lϕ(Rn).

(iii) If A satisfies the assumptions (A1), (A2) and (A3), then ∇2L−1 is bounded
from Hϕ,L(Rn) to Lϕ(Rn).

For any t ∈ (0,∞), denote by Kt the kernel of the semigroup operator e−tL. To
prove Theorem 1.3, we first establish some suitable estimates for V Kt, ∇Kt and
∇2Kt (see Proposition 2.2 below). To end this, we borrow some ideas from
[7, 27, 28]. Moreover, the functional calculus L−1 =

∫∞
0
e−tL dt, the atomic

characterization of Hϕ,L(Rn) obtained in [6] (see also Lemma 3.2 below) and the
boundedness of V L−1, V 1/2∇L−1 and ∇2L−1 on Lp(Rn) with some p ∈ (1,∞)
are used in the proof of Theorem 1.3.
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To state the second main result of this article, we recall the definition of the
Musielak–Orlicz–Hardy space Hϕ(Rn) introduced in [24]. Denote by S(Rn) the
space of all Schwartz functions and by S ′(Rn) its dual space (namely, the space of
all tempered distributions). For all f ∈ S ′(Rn), let G(f) denote its non-tangential
grand maximal function (see [24] for the details).

Definition 1.4. Let ϕ be as in Definition 1.2. The Musielak–Orlicz–Hardy space
Hϕ(Rn) is defined to be the space of all f ∈ S ′(Rn) such that G(f) ∈ Lϕ(Rn)
with the quasi-norm ‖f‖Hϕ(Rn) := ‖G(f)‖Lϕ(Rn).

Moreover, we have the following conclusion, which was stated in [3].

Lemma 1.5. Let L0 := −div(A∇) with A satisfying the assumption (A1) and
pt be the kernel of the heat semigroup e−tL0 generated by L0. Then there exists
α0 ∈ (0, 1] such that, for any α ∈ (0, α0), there exist positive constants C(α) and

c0 satisfying that, for all x, x+ h, y ∈ Rn and t ∈ (0,∞) with |h| ≤
√
t,

|pt(x+ h, y)− pt(x, y)|+ |pt(y, x+ h)− pt(y, x)| ≤
C(α)

tn/2

[
|h|√
t

]α
e−

c0|x−y|
2

t .

Let

σ0 := min

{
α0, 2− n

q+

}
(1.10)

with α0 and q+, respectively, as in Lemma 1.5 and (1.3).
Now we give out the second main result of this article as follows.

Theorem 1.6. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2.
Assume that I(ϕ), i(ϕ), q(ϕ), r(ϕ), q+ and σ0 are, respectively, as in (1.5),
(1.6), (1.7), (1.8), (1.3) and (1.10), q+ > n/2 and q+ > I(ϕ)[r(ϕ)]′.

(i) If A in (1.4) satisfy the assumption (A1) and n+ σ0 >
nq(ϕ)
i(ϕ)

, then V L−1 is

bounded on Hϕ,L(Rn).
(ii) If A in (1.4) satisfy the assumptions (A1), (A2) and (A3), and n + σ0

2
>

nq(ϕ)
i(ϕ)

, then V 1/2∇L−1 is bounded on Hϕ,L(Rn).

(iii) If A in (1.4) satisfy the assumptions (A1), (A2) and (A3), and n + σ0 >
nq(ϕ)
i(ϕ)

, then ∇2L−1 is bounded on Hϕ,L(Rn).

(iv) If A in (1.4) satisfy the assumptions (A1), (A2) and (A3), n + 1 > nq(ϕ)
i(ϕ)

and q(ϕ)[r(ϕ)]′ < q+, then ∇2L−1 is bounded from Hϕ,L(Rn) to Hϕ(Rn).

To prove Theorem 1.6, we introduce an atomic Musielak–Orlicz–Hardy space
Hq, ε
ϕ, L(Rn) (see Definition 4.1 below) and then establish the inclusion relation

Hq, ε
ϕ, L(Rn) ⊂ Hϕ,L(Rn) (see Lemma 4.3 below), which is motivated by [26]. Via

this inclusion, Lp(Rn)-boundedness of V L−1, V 1/2∇L−1 and ∇2L−1 for some
p ∈ (1,∞), the atomic characterization of Hϕ,L(Rn) obtained in [6, Theorem
5.4] (see also Lemma 3.2 below) and the molecular characterization of Hϕ(Rn)
obtained in [18, Theorem 4.13] (see also Lemma 4.8 below), we prove Theorem
1.6. It is worth pointing out that, the proof of Theorem 1.6 is different from that
of [40, Theorem 1.6], and the new ingredient appeared in the proof of Theorem 1.6
is that we fully excavate some connotative information of the (ϕ, q, M)L-atoms
associated with L (see Definition 3.1 below).
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Remark 1.7. Let I(ϕ), i(ϕ), q(ϕ), r(ϕ), q+, α0 and σ0 are, respectively, as in
(1.5), (1.6), (1.7), (1.8), (1.3), Lemma 1.5 and (1.10).

(a) Theorem 1.3 was obtained in [40, Theorem 1.4] under the assumptions that
V ∈ RHq0(Rn) with q0 ∈ [n,∞), i(ϕ) ∈ ( n

n+α0
, 1] and

[r(ϕ)]′ <
n

nq(ϕ)/i(ϕ)− α0

.

We also remark that, the additional assumption that, for any i, j ∈ {1, . . . , n},
aij ∈ C1+α(Rn) with some α ∈ (0, 1], is necessary in [40, Theorem 1.4] when
establishing the boundedness of ∇2L−1 from Hϕ,L(Rn) to Lϕ(Rn). Moreover,
I(ϕ)[r(ϕ)]′ < q+ automatically holds true under these assumptions for ϕ. Thus,
Theorem 1.3 improves the results in [40, Theorem 1.4] by weakening the assump-
tions for ϕ and A.

(b) When A := I with I being the unit matrix, L = −∆ + V is just the
Schrödinger operator on Rn. Let ϕ(x, t) := tp, for all x ∈ Rn and t ∈ [0,∞), with
p ∈ (0, 1]. In this case the spaces Hϕ,L(Rn) and Lϕ(Rn) are, respectively, just the
Hardy space Hp

L(Rn) studied in [11] and Lp(Rn). The boundedness of V L−1 and
∇2L−1, from Hp

L(Rn) to Lp(Rn), was obtained in [27, Theorem 1.2(a)]. Moreover,
in this case, r(ϕ) =∞, which implies that I(ϕ)[r(ϕ)]′ < q+ holds true. Thus, (i)
and (iii) of Theorem 1.3 completely cover [27, Theorem 1.2(a)] by taking A := I
and ϕ(x, t) := tp, for all x ∈ Rn and t ∈ [0,∞), with p ∈ (0, 1].

(c) It follows from [40, Remark 2.4(iii)] that Hϕ(Rn) ⊂ Hϕ,L(Rn) and there
exists a positive constant C such that, for all f ∈ Hϕ(Rn), ‖f‖Hϕ,L(Rn) ≤
C‖f‖Hϕ(Rn) under the assumption n + σ0 >

nq(ϕ)
i(ϕ)

. Thus, as a corollary of (i),

(ii) and (iii) of Theorem 1.6, we know that V L−1, V 1/2∇L−1 and ∇2L−1 are
bounded from Hϕ(Rn) to Hϕ,L(Rn) under the assumptions of the terms (i), (ii)
and (iii) of Theorem 1.6. Furthermore, as a corollary of Theorem 1.6(iv), we see
that ∇2L−1 is bounded on Hϕ(Rn) under the assumption of Theorem 1.6(iv) and

that n+ σ0 >
nq(ϕ)
i(ϕ)

.

(d) (i), (iii) and (iv) of Theorem 1.6 were obtained in [40, Theorem 1.6 and
Remark 1.8(i)] under the assumptions that A in (1.4) satisfies (A1), (A2), (A3)
and aij ∈ C1+α(Rn) with some α ∈ (0, 1] for any i, j ∈ {1, . . . , n}, V ∈ RHq0(Rn)
with q0 ∈ [n,∞), i(ϕ) ∈ ( n

n+α0
, 1] and

q(ϕ)[r(ϕ)]′ <
n

nq(ϕ)/i(ϕ)− α0

.

It is easy to see that, q(ϕ)[r(ϕ)]′ < q+ and n+σ0 >
nq(ϕ)
i(ϕ)

automatically holds true

under these assumptions for ϕ. Thus, (i), (iii) and (iv) of Theorem 1.6 improves
[40, Theorem 1.6 and Remark 1.8(i)] by weakening the assumptions for ϕ and A.

(e) Theorem 1.6(ii) is new even when A := I in (1.4) and ϕ(x, t) := tp, for all
x ∈ Rn and t ∈ [0,∞), with p ∈ ( n

n+σ0/2
, 1].

(f) From [40, Remarks 1.7 and 1.8], we deduce that the function ϕ as in (1.9)
satisfies the assumptions in Theorems 1.3 and 1.6. Thus, the conclusion in The-
orems 1.3 and 1.6 holds true for the space Hϕ,L(Rn) and Hϕ(Rn) associated with
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ϕ as in (1.9) (see [40, Remarks 1.7 and 1.8] for more examples of ϕ satisfying the
assumptions in Theorems 1.3 and 1.6).

As a corollary of Theorem 1.6, we have the following maximal inequality for L
in the scale of the space Hϕ,L(Rn).

Corollary 1.8. Let ϕ, L and V be the same as in Theorem 1.6. Then there
exists a positive constant C such that, for all f ∈ C∞c (Rn),

‖−∆f‖Hϕ,L(Rn) + ‖V f‖Hϕ,L(Rn) ≤ C ‖Lf‖Hϕ,L(Rn) .

The layout of this article is as follows. In Section 2, we establish several useful
Sobolev type estimates for the heat kernel of L. Then, in Sections 3 and 4, we
give the proofs of Theorems 1.3 and 1.6, respectively.

Finally we make some conventions on notation. Throughout the whole article,
we denote by C a positive constant which is independent of the main parameters,
but it may vary from line to line. We also use C(γ,β,...) to denote a positive constant
depending on the indicated parameters γ, β, . . .. The symbol A . B means that
A ≤ CB. If A . B and B . A, then we write A ∼ B. For any given (quasi-
)normed spaces A and B with the corresponding norms ‖ · ‖A and ‖ · ‖B, the
symbol A ⊂ B means that, for all f ∈ A, then f ∈ B and ‖f‖B . ‖f‖A. For
any measurable subset E of Rn, we denote by E{ the set Rn \ E and by χE its
characteristic function. We also set N := {1, . . .} and Z+ := {0} ∪ N. Moreover,
for each ball B ⊂ Rn, let S0(B) := 2B and Sj(B) := 2j+1B \ (2jB) for j ∈ N.
Finally, for q ∈ [1,∞], we denote by q′ the conjugate exponent of q, namely,
1/q + 1/q′ = 1.

2. Sobolev type estimates for heat kernel of L

In this section, we establish some useful Sobolev type estimates for the heat
kernels of L. Assume that U is a nonnegative function on Rn and U ∈ RHq(Rn)
with q ∈ [n/2,∞]. Then, for all x ∈ Rn, the auxiliary function m(x, U) associated
with U is defined by

[m(x, U)]−1 := sup

{
r ∈ (0,∞) :

r2

|B(x, r)|

∫
B(x,r)

U(y) dy ≤ 1

}
, (2.1)

which was introduced by Shen [33]. To state the main results of this section, we
first recall the following useful conclusion for the auxiliary function as in (2.1),
which is just [33, Lemma 1.4].

Lemma 2.1. Let the nonnegative function U ∈ RHq(Rn) with q ∈ [n/2,∞] and
m(·, U) be as in (2.1). Then there exist positive constants C1, C2 and k0 such
that, for all x, y ∈ Rn,

C1m(x, U)

[1 + |x− y|m(x, U)]k0/(k0+1)
≤ m(y, U) ≤ C2[1 + |x− y|m(x, U)]k0m(x, U).

Now we state the main results of this section, which play a key role in the proof
of Theorem 1.3.
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Proposition 2.2. Let L be as in (1.4) and Kt the heat kernel of L. Assume that
q+ ∈ (n/2,∞) with q+ as in (1.3).

(i) For all p ∈ [1, 2q+), k ∈ Z+, x ∈ Rn and t, s ∈ (0,∞), there exist positive
constants C(k, p), ξ(k, p) and c(k, p), depending on k and p, such that[∫

{y∈Rn: |y−x|≥
√
s}

∣∣∣∣∇∂kKt(y, x)

∂tk

∣∣∣∣p dy]1/p

≤
C(k, p)

t1/2+n/(2p′)+k
exp

{
−ξ(k, p)

s

t

}
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
. (2.2)

(ii) For all p ∈ [1, q+), k ∈ Z+, x ∈ Rn and t, s ∈ (0,∞), there exist positive
constants C(k, p), ξ(k, p) and c(k, p), depending on k and p, such that[∫

{y∈Rn: |y−x|≥
√
s}

∣∣∣∣∇2∂
kKt(y, x)

∂tk

∣∣∣∣p dy]1/p

≤
C(k, p)

t1+n/(2p′)+k
exp

{
−ξ(k, p)

s

t

}
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
and [∫

{y∈Rn: |y−x|≥
√
s}

∣∣∣∣V (y)
∂kKt(y, x)

∂tk

∣∣∣∣p dy]1/p

≤
C(k, p)

t1+n/(2p′)+k
exp

{
−ξ(k, p)

s

t

}
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
, (2.3)

here and hereafter, m(·, V ) is as in (2.1) and δ := 1/[2(k0 + 1)] with k0 as in
Lemma 2.1.

Obviously, the conclusion of Proposition 2.2 could be derived from the following
Lemma 2.3. Thus, we only need to prove Lemma 2.3.

Lemma 2.3. Let L, q+ and Kt be as in Proposition 2.2.
(i) For all p ∈ [1, 2q+), k ∈ Z+, x ∈ Rn and t ∈ (0,∞),{∫

Rn

∣∣∣∣∇∂kKt(y, x)

∂tk

∣∣∣∣p epξ(k, p) |y−x|2t dy

}1/p

≤
C(k, p)

t1/2+n/(2p′)+k
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
.

(ii) For all p ∈ [1, q+), k ∈ Z+, x ∈ Rn and t ∈ (0,∞),{∫
Rn

∣∣∣∣∇2∂
kKt(y, x)

∂tk

∣∣∣∣p epξ(k, p) |y−x|2t dy

}1/p

≤
C(k, p)

t1+n/(2p′)+k
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
(2.4)

and {∫
Rn

∣∣∣∣V (y)
∂kKt(y, x)

∂tk

∣∣∣∣p epξ(k, p) |y−x|2t dy

}1/p

≤
C(k, p)

t1+n/(2p′)+k
exp

{
−c(k, p)(1 + t[m(x, V )]2)δ

}
,
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where the positive constants ξ(k, p), C(k, p), c(k, p) and δ are as in Proposition 2.2,
and m(·, V ) is as in (2.1).

To prove Lemma 2.3, we need the following auxiliary conclusions.

Lemma 2.4. Let L, q+ and Kt be as in Proposition 2.2. Then there exist positive
constants C3, C4 and C5 such that, for all x, y ∈ Rn and t ∈ (0,∞),

0 ≤ Kt(x, y) ≤ C3

tn/2
exp

{
−C4(1 + t[m(x, V )]2)δ

}
exp

{
−C5
|x− y|2

t

}
,

where m(·, V ) and δ are, respectively, as in (2.1) and Proposition 2.2. Moreover,

tk ∂
kKt
∂tk

with k ∈ N also satisfies the same estimate as Kt.

Lemma 2.4 is just [22, Theorem 1(b)].

Lemma 2.5. Let L, q+ and Kt be as in Proposition 2.2. Then, for all p ∈ [1, 2q+),
x ∈ Rn and t ∈ (0,∞), there exist positive constants α(p), C(p) and c(p), depending
on p, such that {∫

Rn
|∇Kt(y, x)|p eα(p)

|y−x|2
t dy

}1/p

≤
C(p)

t1/2+n/(2p′)
exp

{
−c(p)

(
1 + t[m(x, V )]2

)δ}
,

where m(·, V ) and δ are, respectively, as in (2.1) and Proposition 2.2.

To prove Lemma 2.5, we need the following boundedness of Riesz transforms
∇L−1/2, associated with L, on Lp(Rn).

Lemma 2.6. Let L and q+ be as in Proposition 2.2. Then, for all p ∈ (1, 2q+),
there exists a positive constant C(p) such that, for all f ∈ Lp(Rn),∥∥∇L−1/2(f)

∥∥
Lp(Rn)

≤ C(p)‖f‖Lp(Rn).

To give out the proof of Lemma 2.6, we need the boundedness of second order
Riesz transforms ∇2L−1 on Lp(Rn), which is also very useful for the proof of
(2.4).

Lemma 2.7. Let L and q+ be as in Proposition 2.2.
(i) If A in (1.4) satisfies (A1), then for any p ∈ [1, q+), there exists a positive

constant C(p) such that, for all f ∈ Lp(Rn), ‖V L−1(f)‖Lp(Rn) ≤ C(p)‖f‖Lp(Rn).
(ii) If A in (1.4) satisfies (A1), (A2) and (A3), then for any p ∈ (1, q+), there

exists a positive constant C(p) such that, for all f ∈ Lp(Rn),∥∥∇2L−1(f)
∥∥
Lp(Rn)

≤ C(p)‖f‖Lp(Rn).

Proof. The proof of (i) is similar to that of [33, Theorem 3.1] and we omit the
details here.

Now we prove (ii). Let L0 := −div(A∇). It was proved by Avellaneda and Lin
in [4, Theorem B] that, for all p ∈ (1,∞) and f ∈ Lp(Rn), ‖∇2L−1

0 (f)‖Lp(Rn) .
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‖f‖Lp(Rn). From this and the conclusion of (i), we deduce that, for all f ∈ Lp(Rn)
with p ∈ (1, q+),∥∥∇2L−1(f)

∥∥
Lp(Rn)

.
∥∥L0L

−1(f)
∥∥
Lp(Rn)

∼
∥∥(L− V )L−1(f)

∥∥
Lp(Rn)

. ‖f‖Lp(Rn).

This finishes the proof of (ii) and hence Lemma 2.7. �

Now we prove Lemma 2.6 via Lemma 2.7.

Proof of Lemma 2.6. It is well-known that, for all y ∈ R, Liy is bounded on
Lp(Rn) with p ∈ (1,∞), where i denotes the imaginary unit (see, for example,
[10]). From this, Lemma 2.7(ii) and the Stein interpolation theorem for families
of operators (see, for example, [34, Theorem 4.1, p. 205]), similar to the proof
in [1, pp. 1990-1991], it follows that, for all p ∈ (1, 2q+), ∇L−1/2 is bounded on
Lp(Rn). This finishes the proof of Lemma 2.6. �

Now we prove Lemma 2.5 by using Lemmas 2.4 and 2.6.

Proof of Lemma 2.5. By using Lemmas 2.4 and 2.6, and the definition of the
operator L, similar to the proof of [28, (3.9), p. 48] or [8, Lemma 2.5], we prove
Lemma 2.5. We omit the details here, which completes the proof of Lemma
2.5. �

Moreover, via Lemmas 2.4, 2.5 and 2.7, and Leibniz’s rule for distributional de-
rivative, similar to [28, Proposition 3.7] or [8, Lemma 2.7], we obtain the following
Lemma 2.8. The details be omitted here.

Lemma 2.8. Let L, q+ and Kt be as in Proposition 2.2.
(i) If A in (1.4) satisfies (A1), (A2) and (A3), then for all p ∈ [1, q+), x ∈ Rn

and t ∈ (0,∞), there exist positive constants β(p), C(p) and c(p), depending on p,
such that{∫

Rn

∣∣∇2Kt(y, x)
∣∣p eβ(p) |y−x|2t dy

}1/p

≤
C(p)

t1+n/(2p′)
exp

{
−c(p)(1 + t[m(x, V )]2)δ

}
,

here and hereafter, m(·, V ) and δ are, respectively, as in (2.1) and Proposition
2.2.

(ii) If A in (1.4) satisfies (A1), then for all p ∈ [1, q+), x ∈ Rn and t ∈ (0,∞),
there exist positive constants β(p), C(p) and c(p), depending on p, such that{∫

Rn
|V (y)Kt(y, x)|p eβ(p)

|y−x|2
t dy

}1/p

≤
C(p)

t1+n/(2p′)
exp

{
−c(p)(1 + t[m(x, V )]2)δ

}
.

Now we prove Lemma 2.3 by using Lemmas 2.5 and 2.8.

Proof of Lemma 2.3. From the commutative property of the semigroup {e−tL}t>0,
it follows that, for any k ∈ N and t ∈ (0,∞),

∂k

∂tk
e−2tL = (−2L)ke−2tL = 2ke−tL

∂k

∂tk
e−tL.
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By this and the estimates obtained in Lemmas 2.5 and 2.7, via an argument
similar to that used in the proof of [28, Proposition 7.7] (or [27, Proposition
3.3]), we obtain Lemma 2.3, the details being omitted. This finishes the proof of
Lemma 2.3. �

3. Proof of Theorem 1.3

In this section, we give out the proof of Theorem 1.3. We begin with some useful
auxiliary conclusions. We first recall the definition of (ϕ, q, M)L-atoms and the

atomic Musielak–Orlicz–Hardy space HM, q, s
ϕ, L, at(Rn) introduced in [6, Definitions

5.2 and 5.8].

Definition 3.1. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2.
Assume that q, s ∈ (1,∞), M ∈ N and B ⊂ Rn is a ball.

(I) Let D(LM) be the domain of LM . A function α ∈ Lq(Rn) is called a
(ϕ, q, M)L-atom associated with the ball B, if there exists a function b ∈ D(LM)
such that

(i) α = LMb;
(ii) for all j ∈ {0, 1, . . . , M}, supp (Ljb) ⊂ B;
(iii) ‖(r2

BL)jb‖Lq(Rn) ≤ r2M
B |B|1/q‖χB‖−1

Lϕ(Rn), where rB denotes the radius of B

and j ∈ {0, 1, . . . , M}.
(II) For f ∈ L2(Rn),

f =
∑
j

λjαj (3.1)

is called an atomic (ϕ, q, s, M)L-representation if, for all j, αj is a (ϕ, q, M)L-
atom associated with some ball Bj ⊂ Rn, the summation (3.1) converges in
Ls(Rn) and {λj}j ⊂ C satisfies that

∑
j ϕ(Bj, |λj|‖χBj‖−1

Lϕ(Rn)) <∞. Let

H̃M, q, s
ϕ, L, at(R

n) :=
{
f ∈ L2(Rn) : f has an atomic (ϕ, q, s, M)L-representation

}
with the quasi-norm

‖f‖HM, q, s
ϕ, L, at(Rn)

:= inf

{
Λ({λjαj}j) :

∑
j

λjαj is a (ϕ, q, s, M)L-representation of f

}
,

where the infimum is taken over all the atomic (ϕ, q, s, M)L-representations of
f as above and

Λ({λjαj}j) := inf

{
λ ∈ (0,∞) :

∑
j

ϕ

(
Bj,

|λj|
λ‖χBj‖Lϕ(Rn)

)
≤ 1

}
. (3.2)

The atomic Musielak–Orlicz–Hardy space HM, q, s
ϕ, L, at(Rn) is then defined as the

completion of the set H̃M, q, s
ϕ, L, at(Rn) with respect to the quasi-norm ‖ · ‖HM, q, s

ϕ, L, at(Rn).
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In what follows, when s = 2, we denote the space HM, q, s
ϕ, L, at(Rn) simply by

HM, q
ϕ,L, at(Rn).
Then we have the following atomic characterization of Hϕ,L(Rn), which is just

a corollary of [6, Theorems 5.4 and 5.9].

Lemma 3.2. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. Assume

that Assume that M ∈ N∩ (nq(ϕ)
2i(ϕ)

,∞), s ∈ (1,∞) and q ∈ ([r(ϕ)]′I(ϕ),∞), where

q(ϕ), i(ϕ), I(ϕ) and r(ϕ) are, respectively, as in (1.7), (1.6), (1.5) and (1.8).

Then the spaces Hϕ,L(Rn) and HM, q, s
ϕ, L, at(Rn) coincide with equivalent quasi-norms.

Moreover, we also need some properties of ϕ in Definition 1.2. In what follows,
for any measurable subset E ⊂ Rn and t ∈ [0,∞), let ϕ(E, t) :=

∫
E
ϕ(x, t) dx.

Then we have the following properties for ϕ from [6, Lemma 2.5], based on the
corresponding results of [24, 15].

Lemma 3.3. Let the function ϕ be as in Definition 1.2.
(i) There exists a positive constant C such that, for all (x, tj) ∈ Rn × [0,∞)

with j ∈ N, ϕ(x,
∑∞

j=1 tj) ≤ C
∑∞

j=1 ϕ(x, tj).

(ii) A1(Rn) ⊂ Ap(Rn) ⊂ Aq(Rn) for 1 ≤ p ≤ q <∞.
(iii) RH∞(Rn) ⊂ RHp(Rn) ⊂ RHq(Rn) for 1 < q ≤ p ≤ ∞.
(iv) A∞(Rn) = ∪p∈[1,∞)Ap(Rn) = ∪q∈(1,∞]RHq(Rn).
(v) If ϕ ∈ Ap(Rn) with p ∈ [1,∞), then there exists a positive constant C such

that, for all balls B1, B2 ⊂ Rn with B1 ⊂ B2 and t ∈ (0,∞), ϕ(B2,t)
ϕ(B1,t)

≤ C[ |B2|
|B1| ]

p.

Furthermore, we need the following estimates for the potential V , which were
established in [33, Lemma 1.2].

Lemma 3.4. Let V ∈ RHq0(Rn) with q0 ∈ [n/2,∞). Then there exists a positive
constant C such that, for all x ∈ Rn and 0 < r < R <∞,

1

rn−2

∫
B(x,r)

V (y) dy ≤ C

[
R

r

] n
q0
−2

1

Rn−2

∫
B(x,R)

V (y) dy.

Moreover, if r := [m(x, V )]−1 with x ∈ Rn, then 1
rn−2

∫
B(x,r)

V (y) dy = 1.

Furthermore, to prove that the operator V 1/2∇L−1 is bounded from Hϕ,L(Rn)
to Lϕ(Rn), we need the following boundedness of V 1/2∇L−1 on Lp(Rn) with
p ∈ (1,∞), whose proof is similar to that of [33, Theorem 4.13].

Lemma 3.5. Let L be as in (1.4) with A satisfying (A1) and (A2) and q+ ∈
(n/2,∞) with q+ as in (1.3). Assume that p+ ∈ (1,∞) given by 1

p+
:= 3

2q+
− 1

n

when q+ ∈ (n/2, n] and p+ := 2q+ when q+ ∈ (n,∞). Then, for all p ∈ [1, p+),
there exists a positive constant C(p) such that, for all f ∈ Lp(Rn),∥∥V 1/2∇L−1(f)

∥∥
Lp(Rn)

≤ C(p)‖f‖Lp(Rn).

Now we prove Theorem 1.3 by using Lemmas 3.2 through 3.5.

Proof of Theorem 1.3. We first prove (i) of Theorem 1.3. From the assumption
q+ > I(ϕ)[r(ϕ)]′, we deduce that there exist q ∈ (I(ϕ)[r(ϕ)]′, q+). Let s ∈ (1, q+),
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M ∈ N∩ (nq(ϕ)
2i(ϕ)

,∞) and f ∈ H̃M, q, s
ϕ, L, at(Rn). By this and Lemma 3.2, we know that

there exist {λj}j ⊂ C and a sequence {αj}j of (ϕ, q, M)L-atoms, associated with
the balls {Bj}j, such that

f =
∑
j

λjαj in Ls(Rn) and ‖f‖Hϕ,L(Rn) ∼ Λ({λjαj}j). (3.3)

To finish the proof of the boundedness of V L−1 from Hϕ,L(Rn) to Lϕ(Rn),
it suffices to prove that, for all λ ∈ C and (ϕ, q, M)L-atoms α associated with
B := B(x0, r0) for some x0 ∈ Rn and r0 ∈ (0, ∞),

∫
Rn
ϕ
(
x,
∣∣V L−1(λα)(x)

∣∣) dx . ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (3.4)

If (3.4) holds true, from this, (3.3) and Lemmas 3.3(i), 3.2 and 2.7(i), it follows
that, for all λ ∈ (0,∞),

∫
Rn
ϕ

(
x,
|V L−1(f)(x)|

λ

)
dx .

∑
j

∫
Rn
ϕ

(
x,
|V L−1(λjαj)(x)|

λ

)
dx

.
∑
j

ϕ

(
Bj,

|λj|
λ‖χBj‖Lϕ(Rn)

)
,

which, together with (3.3), implies that ‖V L−1(f)‖Lϕ(Rn) . ‖f‖HM, q, s
ϕ, L, at(Rn). By

this and the fact that H̃M, q, s
ϕ, L, at(Rn) is dense in HM, q, s

ϕ, L, at(Rn) and Lemma 3.2, we

further conclude that V L−1 is bounded from Hϕ,L(Rn) to Lϕ(Rn).
Now we prove (3.4). We first write

∫
Rn
ϕ
(
x, |V L−1(λα)(x)|

)
dx =

∞∑
j=0

∫
Sj(B)

ϕ
(
x, |V L−1(λα)(x)|

)
dx

=:
∞∑
j=0

Ij. (3.5)

By the choice of q, we see that there exists p1 ∈ (I(ϕ), 1] such that ϕ is of
uniformly upper type p1 and (q/p1)′ < r(ϕ), which, combined with the definition
of r(ϕ), implies that ϕ ∈ RH(q/p1)′(Rn). Moreover, from the assumption M >
nq(ϕ)
2i(ϕ)

and the definitions of q(ϕ) and i(ϕ), we deduce that there exist q̃ ∈ (q(ϕ),∞)

and p0 ∈ (0, i(ϕ)] such that ϕ is of uniformly lower type p0, ϕ ∈ Aq̃(Rn) and M >
nq̃
2p0

. When j ∈ {0, 1, . . . , 4}, by the uniformly upper type p1 and lower type p0

properties of ϕ, Hölder’s inequality, Lemma 2.7(i), p0 ≤ p1, ϕ ∈ RH(q/p1)′(Rn) ⊂
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RH(q/p0)′(Rn) and Lemma 3.3(v), we conclude that

Ij .
1∑

k=0

‖χB‖pkLϕ(Rn)

∫
Sj(B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

) ∣∣V L−1(α)(x)
∣∣pk dx

.
1∑

k=0

‖χB‖pkLϕ(Rn)

∥∥V L−1(α)
∥∥pk
Lq(Sj(B))

∥∥∥ϕ(·, |λ|‖χB‖−1
Lϕ(Rn)

)∥∥∥
L(q/pk)

′
(Sj(B))

.
1∑

k=0

‖χB‖pkLϕ(Rn)‖α‖
pk
Lq(Rn)|2

j+1B|−pk/qϕ
(

2j+1B, |λ|‖χB‖−1
Lϕ(Rn)

)
. ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (3.6)

When j ∈ N and j ≥ 5, from the uniformly upper type p1 and lower type p0

properties of ϕ, it follows that

Ij .
1∑

k=0

‖χB‖pkLϕ(Rn)

∫
Sj(B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

) ∣∣V L−1(α)(x)
∣∣pk dx. (3.7)

To estimate the terms I1,j and I2,j, we first estimate ‖V L−1(α)‖Lq(Sj(B)). By

the functional calculus L−1 =
∫∞

0
e−tL dt and Minkowski’s inequality, we see that∥∥V L−1(α)

∥∥
Lq(Sj(B))

≤
∫ r2B

0

∥∥V e−tLα∥∥
Lq(Sj(B))

dt+

∫ ∞
r2B

· · ·

=: Ej + Fj. (3.8)

Moreover, it is easy to see that, when j ≥ 5,

dist(Sj(B), B) & 2j−1rB − rB & 2j−2rB, (3.9)

which, together with Minkowski’s inequality, (2.3) and Hölder’s inequality, implies
that∥∥V e−tL(α)

∥∥
Lq(Sj(B))

≤
∫
B

|α(y)|
{∫
{x∈Rn: |x−y|≥2j−2rB}

|V (x)Kt(x, y)|q dx
}1/q

dy

. ‖α‖L1(Rn)

1

t1+n/(2q′)
e−ξ(0, q)

4jr2B
t

. |B|‖χB‖−1
Lϕ(Rn)

1

t1+n/(2q′)
e−ξ(0, q)

4jr2B
t , (3.10)

where ξ(0, q) is as in (2.3). Furthermore, M > nq̃
2p0

further implies that there exists

s ∈ (n/(2q′), n/(2q′) + M) satisfying s > nq̃
2p0

. Then it follows, from (3.10) and

Minkowski’s inequality, that

Ej . |B|‖χB‖−1
Lϕ(Rn)

∫ r2B

0

1

t1+n/(2q′)
e−ξ(0, q)

4jr2B
t dt

. |B|‖χB‖−1
Lϕ(Rn)

∫ r2B

0

[
t

4jr2
B

]s
1

t1+n/(2q′)
dt

∼ 2−2sj|B|1/q‖χB‖−1
Lϕ(Rn). (3.11)
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Now we estimate the term Fj. By the definition of (ϕ, q, M)L-atoms, we
know that there exists b ∈ D(LM) such that a = LMb, supp (Ljb) ⊂ B and
‖(r2

BL)jb‖Lq(Rn) ≤ r2M
B |B|1/q‖χB‖−1

Lϕ(Rn) for all j ∈ {0, 1, . . . , M}. From this and

the fact that ∂M

∂tM
e−tL = (−1)MLMe−tL, we deduce that

e−tLα = e−tLLMb = LMe−tLb = (−1)M
∂M

∂tM
e−tLb,

which, combined with Minkowski’s inequality, (3.9), (2.3) and Hölder’s inequality,
implies that∥∥V e−tL(α)

∥∥
Lq(Sj(B))

=

∥∥∥∥V ∂M

∂tM
e−tL(b)

∥∥∥∥
Lq(Sj(B))

≤
∫
B

|b(y)|
{∫
{x∈Rn: |x−y|≥2j−2rB}

∣∣∣∣V (x)
∂MKt(x, y)

∂tM

∣∣∣∣q dx}1/q

dy

. ‖b‖L1(Rn)

1

tM+1+n/(2q′)
e−ξ(M, q)

4jr2B
t

. |B|1+ 2M
n ‖χB‖−1

Lϕ(Rn)

1

tM+1+n/(2q′)
e−ξ(M, q)

4jr2B
t . (3.12)

Then by (3.12) and Minkowski’s inequality, we conclude that

Fj . |B|1+ 2M
n ‖χB‖−1

Lϕ(Rn)

∫ ∞
r2B

1

tM+1+n/(2q′)
e−ξ(M, q)

4jr2B
t dt

. |B|1+ 2M
n ‖χB‖−1

Lϕ(Rn)

∫ ∞
r2B

[
t

4jr2
B

]s
1

tM+1+n/(2q′)
dt

∼ 2−2sj|B|1/q‖χB‖−1
Lϕ(Rn). (3.13)

Thus, it follows from (3.8), (3.11) and (3.13) that, for any j ∈ N with j ≥ 5,∥∥V L−1(α)
∥∥
Lq(Sj(B))

. 2−2sj|B|1/q‖χB‖−1
Lϕ(Rn).

This, combined with (3.7), Hölder’s inequality, p0 ≤ p1,

ϕ ∈ RH(q/p1)′(Rn) ⊂ RH(q/p0)′(Rn)

and Lemma 3.3(v), implies that

Ij .
1∑

k=0

‖χB‖pkLϕ(Rn)

∥∥V L−1(α)
∥∥pk
Lq(Sj(B))

∥∥∥ϕ(·, |λ|‖χB‖−1
Lϕ(Rn)

)∥∥∥
L(q/pk)

′
(Sj(B))

.
1∑

k=0

2−2spkj|B|pk/q|2j+1B|−pk/qϕ
(

2j+1B, |λ|‖χB‖−1
Lϕ(Rn)

)
. 2

−[2s+n
q
−nq̃
p0

]p0jϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,
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which, together with (3.5), (3.7) and s > nq̃
2p0

, implies that

∞∑
j=5

Ij .
∞∑
j=5

2
−[2s+n

q
−nq̃
p0

]p0jϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (3.14)

From this, (3.5) and (3.6), it follows that (3.4) holds true.
Now we prove (ii) of Theorem 1.3. The proof of (ii) is similar to that of (i).

Here we give out the main sketch for this proof and omit some similar details.
By the assumption q+ > I(ϕ)[r(ϕ)]′, we could take q ∈ (I(ϕ)[r(ϕ)]′, q+). Let

M ∈ N ∩ (nq(ϕ)
2i(ϕ)

,∞). Similar the proof of (i), it suffices to prove that, for all

λ ∈ C and (ϕ, q, M)L-atoms α associated with the ball B,∫
Rn
ϕ
(
x,
∣∣V 1/2∇L−1(λα)(x)

∣∣) dx . ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (3.15)

Assume that α is a (ϕ, q, M)L-atom associated with the ball B and λ ∈ C. For
j ∈ Z+, let

IIj :=

∫
Sj(B)

ϕ
(
x,
∣∣V 1/2∇L−1(λα)(x)

∣∣) dx.
Moreover, let p1 be as in (3.6). Then ϕ ∈ RH(q/p1)′(Rn) and q < q+ < 2nq+

3n−2q+
=

p+ when q+ ∈ (n/2, n], which, together with Lemma 3.5, further implies that
V 1/2∇L−1 is bounded on Lq(Rn). From this, ϕ ∈ RH(q/p1)′(Rn) and Lemma
3.3(v), similar to the proof of (3.6), we deduce that for j ∈ {0, 1, . . . , 4},

IIj . ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (3.16)

For j ≥ 5, by using Hölder’s inequality, Lemma 3.4 and (2.2), we obtain an
estimate similar to (2.2) for [

∫
{x∈Rn: |x−y|≥2j−2rB}

|V 1/2∇Kt(x, y)|q dx]1/q with any

y ∈ B. From this and similar to the proof of (3.14), we deduce that
∞∑
j=5

IIj . ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

which, together with (3.16), implies that (3.15) holds true and hence finishes the
proof of Theorem 1.3(ii).

The proof of (iii) is absolutely similar to that of (i), the details being omitted
here. This finishes the proof of (iii) and hence Theorem 1.3. �

4. Proof of Theorem 1.6

In this section, we give out the proof of Theorem 1.6. To this end, we need a
kind atomic Musielak–Orlicz–Hardy space Hq, ε

ϕ, L(Rn) as follows.

Definition 4.1. Let ϕ be as in Definition 1.2, q ∈ (1,∞) and ε ∈ (0,∞). A
function a ∈ Lq(Rn) is called a (ϕ, q, ε)L-atom associated with the ball B :=
B(x0, r0), if

(i) supp (a) ⊂ B;
(ii) ‖a‖Lq(Rn) ≤ |B|1/q‖χB‖−1

Lϕ(Rn);

(iii)
∣∣∫
B
a(x) dx

∣∣ ≤ |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε, where m(·, V ) is as in (2.1).
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The Musielak–Orlicz–Hardy space Hq, ε
ϕ, L(Rn) is defined via replacing (ϕ, q, M)L-

atoms by (ϕ, q, ε)L-atoms in the definition of the space HM, q
ϕ,L, at(Rn).

Remark 4.2. Let ϕ and m(·, V ) be, respectively, as in Definition 1.2 and (2.1),
and q ∈ (1,∞].

(I) Let ε1 ∈ (0,∞). By Definition 4.1, we see that, for any (ϕ, q, ε1)L-atom a,
a is also a (ϕ, q, ε)L-atom for any ε ∈ (0, ε1].

(II) A function a on Rn is called a (ϕ, q)m-atom associated with the ball B :=
B(x0, r0), if

(i) supp (a) ⊂ B;
(ii) ‖a‖Lq(Rn) ≤ |B|1/q‖χB‖−1

Lϕ(Rn);

(iii)
∫
Rn a(x) dx = 0 if r0 < [m(x0, V )]−1.

It is easy to see that, for any (ϕ, q)m-atom a and ε ∈ (0,∞), a is a (ϕ, q, ε)L-
atom.

(III) The Musielak–Orlicz–Hardy space Hϕ, q
m (Rn) (which was introduced in [7,

Definition 2.2]) is defined via replacing (ϕ, q, M)L-atoms by (ϕ, q)m-atoms in the

definition of the space HM, q
ϕ,L, at(Rn).

Now we establish the inclusion relation Hq, ε
ϕ, L(Rn) ⊂ Hϕ,L(Rn), which is moti-

vated by [26].

Lemma 4.3. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2, σ0 as in
(1.10) and ε ∈ (0,∞). Assume that A in (1.4) satisfies (A1), q ∈ (I(ϕ)[r(ϕ)]′,∞),
n+min{σ0, ε}

n
> q(ϕ)

i(ϕ)
. Then Hq, ε

ϕ, L(Rn) ⊂ Hϕ,L(Rn) and there exists a positive con-

stant C such that, for all f ∈ Hq, ε
ϕ, L(Rn), ‖f‖Hϕ,L(Rn) ≤ C‖f‖Hq, ε

ϕ, L(Rn).

As a corollary of Lemma 4.3 and [40, Theorem 2.3], we have the following
conclusion.

Corollary 4.4. Let ϕ and L be, respectively, as in Definition 1.2 and (1.4).
Assume that A in (1.4) satisfies (A1), i(ϕ), q(ϕ), r(ϕ) and σ0 are, respectively, as

in (1.6), (1.7), (1.8) and (1.10). Let q ∈ ([r(ϕ)]′,∞) satisfy σ0 +n/q > nq(ϕ)
i(ϕ)

and

ε ∈ [σ0,∞). Then the spaces Hq, ε
ϕ, L(Rn) and Hϕ,L(Rn) coincide with equivalent

quasi-norms.

To prove Lemma 4.3, we need the following Lemma 4.6, which is just [40,
Lemma 2.6].

Lemma 4.5. Let L be as in (1.4) with A satisfying (A1) and Kt the kernel of
e−tL. Assume that σ0 is as in (1.10).

(i) For each t ∈ (0,∞) and any N ∈ N, there exist positive constants C(N),
depending on N , and α such that, for almost every (x, y) ∈ Rn × Rn,

0 ≤ Kt(x, y) ≤
C(N)

tn/2
e−

α|x−y|2
t

{
1 +
√
tm(x, V ) +

√
tm(y, V )

}−N
.

(ii) For each y ∈ Rn and t ∈ (0,∞), any N ∈ N and µ ∈ (0, σ0), there
exist positive constants C(N,µ), depending on N and µ, and α such that, for all
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x, x+ h, y ∈ Rn satisfying |h| ≤
√
t,

|Kt(x+ h, y)−Kt(x, y)|+ |Kt(y, x+ h)−Kt(y, x)|

≤
C(N,µ)

tn/2

[
|h|√
t

]µ
e−

α|x−y|2
t

{
1 +
√
tm(x, V ) +

√
tm(y, V )

}−N
.

Proof of Lemma 4.3. For f ∈ L2(Rn) and x ∈ Rn, defined the radial maximal
function of f , associated with {e−tL}t>0, by setting

Rh(f)(x) := sup
t∈(0,∞)

∣∣e−tL(f)(x)
∣∣ .

Let
H̃ϕ,Rh(Rn) :=

{
f ∈ L2(Rn) : Rh(f) ∈ Lϕ(Rn)

}
with ‖f‖Hϕ,Rh (Rn) := ‖Rh(f)‖Lϕ(Rn). Then the space Hϕ,Rh(Rn) is defined as the

completion of the set H̃ϕ,Rh(Rn) with respect to the quasi-norm ‖ · ‖Hϕ,Rh (Rn).

Let ∇̃ := (∇, ∂
∂t

) be the gradient operator on Rn+1
+ and

Ã :=

(
1 0
0 A

)
be a partitioned matrix. Then we define the Schrödinger type operator L̃ on Rn+1

+

by

L̃ := L̃0 + V := −div(Ã∇̃) + V,

where 0 ≤ V ∈ L1
loc(Rn). Let u ∈ L2

loc(R
n+1
+ ) be the weak solution of L̃u = 0

in the ball B(X0, 2r) ⊂ Rn+1
+ with X0 ∈ Rn+1

+ and r ∈ (0,∞). Then similar to

[16, Lemma 8.4], we could verify that L̃0|u|2 ≤ 0 in the sense of weak solution.
From this and De Giogi-Nash-Moser estimates (see, for example, [29]), we further
deduce that, for any p ∈ (0,∞), there exists a positive constant C(n, p), depending
only on n and p, such that

sup
X∈B(X0,r)

|u(X)| ≤ C(n, p)

{
1

rn+1

∫
B(X0,2r)

|u(Y )|p dY
}1/p

.

Via this estimate and similar to [6, Theorem 8.3], we obtain that Hϕ,L(Rn) =
Hϕ,Rh(Rn) with equivalent quasi-norms.

Let q ∈ (I(ϕ)[r(ϕ)]′,∞). Furthermore, by the assumption n+min{σ0, ε}
n

> q(ϕ)
i(ϕ)

,

we see that there exist µ0 ∈ (0, σ0), p0 ∈ (0, i(ϕ)] and q̃ ∈ (q(ϕ),∞) such that
n+min{µ0, ε}

n
> q̃

p0
, ϕ ∈ Aq̃(Rn) and ϕ is of uniformly lower type p0. Then to

prove Lemma 4.3, it suffices to prove that, for all (ϕ, q, ε)L-atom a, supported in
B := B(x0, r0), and λ ∈ C,∫

Rn
ϕ (x,Nh(λa)(x)) dx . ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (4.1)

Now we prove (4.1). We first write∫
Rn
ϕ (x,Nh(λa)(x)) dx =

∞∑
j=0

∫
Sj(B)

ϕ (x,Nh(λa)(x)) dx =:
∞∑
j=0

Ij. (4.2)
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Denote by M the classical Hardy-Littlewood maximal operator on Rn. Then
from the Lp(Rn)-boundedness ofM with p ∈ (1,∞) and the pointwise inequality
Nh(a) .M(a), we deduce that ‖Nh(a)‖Lq(Rn) . ‖a‖Lq(Rn). By this and Lemma
3.3(v), similar to the proof of (3.6), we conclude that, for j ∈ {0, 1, . . . , 4},

Ij . ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. (4.3)

When j ≥ 5, for any x ∈ Sj(B), from Hölder’s inequality and Lemma 4.5, it
follows that, for any t ∈ (0,∞),∣∣e−tL(a)(x)

∣∣ =

∣∣∣∣∫
B

Kt(x, y)a(y) dy

∣∣∣∣
≤
∣∣∣∣∫
B

[Kt(x, y)−Kt(x, x0)] a(y) dy

∣∣∣∣+ |Kt(x, x0)|
∣∣∣∣∫
B

a(y) dy

∣∣∣∣
.

rµ00

|x− x0|n+µ0
‖a‖L1(B)

+
1

tn/2
e−

α|x−x0|
2

t

[
1 +
√
tm(x0, V )

]−ε
|B|‖χB‖−1

Lϕ(Rn)[r0m(x0, V )]ε

.
r

min{µ0, ε}
0

|x− x0|n+min{µ0, ε}
|B|‖χB‖−1

Lϕ(Rn),

which, together with the fact that |x − x0| ∼ 2jr0 for any x ∈ Sj(B), further
implies that

Nh(a)(x) .
r

min{µ0, ε}
0

|x− x0|n+min{µ0, ε}
|B|‖χB‖−1

Lϕ(Rn) ∼ 2−(n+min{µ0, ε})j‖χB‖−1
Lϕ(Rn).

By this, the uniformly lower type p0 property of ϕ and Lemma 3.3(v), we see
that

Ij .
∫
Sj(B)

ϕ
(
x, 2−(n+min{µ0, ε})j|λ|‖χB‖−1

Lϕ(Rn)

)
. 2−(n+min{µ0, ε})jp0ϕ

(
2j+1B, |λ|‖χB‖−1

Lϕ(Rn)

)
. 2(n+min{µ0, ε}−nq̃/p0)p0jϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

which, combined with n+ min{µ0, ε} > nq̃/p0, further concludes that

∞∑
j=5

Ij .
∞∑
j=5

2(n+min{µ0, ε}−nq̃/p0)p0jϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
. ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

This, together with (4.2) and (4.3), proves (4.1), which completes the proof of
Lemma 4.3. �

Furthermore, as a corollary of Lemma 2.7, we have the following conclusion,
whose proof is similar to that of [1, Corollary 1.3] and the details is omitted here.
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Lemma 4.6. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. Assume
that A in (1.4) satisfies (A1), (A2) and (A3), and q+ ∈ (n/2,∞) with q+ as in
(1.3). Then for any p ∈ (1, q+), the m-accretive extension on Lp(Rn) of L :=
−div(A∇) + V defined on C∞c (Rn) has domain Dp(L) = W 2, p(Rn) ∩ LpV p(Rn),
where

LpV p(R
n) :=

{
f ∈ L1

loc(Rn) : ‖f‖Lp
V p

(Rn) :=

[∫
Rn
|f(x)V (x)|p dx

]1/p

<∞

}
.

Moreover, to prove Theorem 1.6(iv), we need the molecular characterization of
Hϕ(Rn) established in [18, Theorem 4.13]. To state the molecular characterization
of the space Hϕ(Rn), we first recall the definitions of (ϕ, q, s, ε)-molecules and
molecular Musielak–Orlicz–Hardy spaces Hq, s, ε

ϕ,mol(Rn).

Definition 4.7. Let ϕ be as in Definition 1.2, q ∈ (1,∞), s ∈ Z+ and ε ∈ (0,∞).
(I) A function α ∈ Lq(Rn) is called a (ϕ, q, s, ε)-molecule associated with the

ball B, if
(i) for each j ∈ Z+, ‖α‖Lq(Sj(B)) ≤ 2−jε|2jB|1/q‖χB‖−1

Lϕ(Rn);

(ii)
∫
Rn α(x)xβ dx = 0 for all β ∈ Zn+ with |β| ≤ s.

(II) The molecular Musielak–Orlicz–Hardy space, Hq, s, ε
ϕ,mol(Rn), is defined to be

the space of all f ∈ S ′(Rn) satisfying that f =
∑

j λjαj in S ′(Rn), where {λj}j ⊂
C, {αj}j is a sequence of (ϕ, q, s, ε)-molecules, respectively, associated to the
balls {Bj}j, and ∑

j

ϕ
(
Bj, |λj|‖χBj‖−1

Lϕ(Rn)

)
<∞.

Moreover, define ‖f‖Hq, s, ε
ϕ,mol(Rn) := inf{Λ({λjαj}j)}, where the infimum is taken

over all the decompositions of f as above and Λ({λjαj}j) is as in (3.2).

For any s ∈ R, denote by bsc the maximal integer k such that k ≤ s. Then we
have the following conclusion, which is just [18, Theorem 4.13].

Lemma 4.8. Let ϕ be as in Definition 1.2. Assume that s ∈ Z+ with s ≥
bn(q(ϕ)/i(ϕ) − 1)c, ε ∈ (max{n + s, nq(ϕ)/i(ϕ)},∞) and p ∈ (q(ϕ)[r(ϕ)]′,∞),
where q(ϕ), i(ϕ) and r(ϕ) are, respectively, as in (1.6), (1.7) and (1.8). Then
Hϕ(Rn) and Hp, s, ε

ϕ,mol(Rn) coincide with equivalent quasi-norms.

Now we prove Theorem 1.6 by using Lemmas 3.2, 4.3, 4.6 and 4.8.

Proof of Theorem 1.6. We first prove (i) of this theorem. By the assumption
n+σ0
n

> q(ϕ)
i(ϕ)

and σ0 ≤ 2− n
q+

, we know that there exist ε0 ∈ (0, σ0) and q1 ∈ (1, q+)

such that

2− n

q1

> ε0 and
n+ ε0

n
>
q(ϕ)

i(ϕ)
,

which further implies that there exist q̃ ∈ (q(ϕ),∞) and p0 ∈ (0, i(ϕ)) such that

n+ ε0 >
nq̃

p0

,
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V ∈ RHq1(Rn), ϕ ∈ Aq̃(Rn) and ϕ is of uniformly lower type p0. Let M ∈ N sat-

isfying M > nq(ϕ)
2i(ϕ)

and q ∈ (max{q′1, I(ϕ)[r(ϕ)]′},∞). From this and the assump-

tion I(ϕ)[r(ϕ)]′ < q+, we deduce that there exists p1 ∈ (I(ϕ)[r(ϕ)]′,min{q, q+}).
By Lemmas 3.2 and 4.3, we only need to prove that, for all (ϕ, q, M)L-atoms α,
V L−1(α) is a (ϕ, p1, ε0)L-atom up to a harmless constant multiple.

Via the definition of α, we see that there exists b ∈ D(L) such that α =
Lb, supp (b) ⊂ B and ‖b‖Lq(Rn) ≤ r2

0|B|1/q‖χB‖−1
Lϕ(Rn). First, it follows from

supp (b) ⊂ B and α = Lb that

supp (V L−1(α)) = supp (V b) ⊂ B. (4.4)

Moreover, by Hölder’s inequality and Lemma 2.7(i), we conclude that∥∥V L−1(α)
∥∥
Lp1 (B)

. |B|
1
p1
− 1
q ‖α‖Lq(B) . |B|1/p1‖χB‖−1

Lϕ(Rn). (4.5)

Now we estimate |
∫
B
V L−1(α) dx| by considering the following two cases.

Case 1) r0 ∈ [[m(x0, V )]−1,∞). In this case, from Hölder’s inequality, (4.5)
and r0m(x0, V ) ≥ 1, we deduce that∣∣∣∣∫

B

V L−1(α)(x) dx

∣∣∣∣ ≤ ∥∥V L−1(α)
∥∥
Lp1 (B)

|B|1/p′1

. |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε0 . (4.6)

Case 2) r0 ∈ (0, [m(x0, V )]−1). In this case, by Hölder’s inequality, V ∈
RHq1(Rn), q > q′1, Lemma 3.4, 2−n/q1 > ε0 and r0m(x0, V ) ∈ (0, 1), we see that∣∣∣∣∫

B

V L−1(α)(x) dx

∣∣∣∣ ≤ ‖V b‖L1(B) ≤ ‖V ‖Lq1 (B)‖b‖Lq′1 (B)

. r2
0‖χB‖−1

Lϕ(Rn)

∫
B

V (x) dx

. |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]

2− n
q1

. |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε0 .

From this and (4.6), it follows that∣∣∣∣∫
B

V L−1(α)(x) dx

∣∣∣∣ . |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε0 ,

which, together with (4.4) and (4.5), implies that V L−1(α) is a (ϕ, p1, ε0)L-atom
up to a harmless constant multiple. This finishes the proof of Theorem 1.6(i).

Now we prove (ii). By the assumption n+σ0/2
n

> q(ϕ)
i(ϕ)

and σ0 ≤ 2− n
q+

, we know

that there exist ε1 ∈ (0, σ0), q2 ∈ (1, q+), q̃ ∈ (q(ϕ),∞) and p0 ∈ (0, i(ϕ)) such
that

2− n

q2

> ε1 and n+
ε1

2
>
nq̃

p0

,

V ∈ RHq2(Rn), ϕ ∈ Aq̃(Rn) and ϕ is of uniformly lower type p0. Let M ∈
N ∩ (nq(ϕ)

2i(ϕ)
,∞), q ∈ (max{q′2, I(ϕ)[r(ϕ)]′},∞) and p2 ∈ (I(ϕ)[r(ϕ)]′,min{q, q+}).
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Similar to the proof of (i), we only need to show that, for all (ϕ, q, M)L-atoms
α, V 1/2∇L−1(α) is a (ϕ, p2, ε1/2)L-atom up to a harmless constant multiple.

Let α be a (ϕ, q, M)-atom associated with B := B(x0, r0). Then there ex-
ists b ∈ Lq(Rn) ∩ D(L) such that α = Lb, supp (b) ⊂ B and ‖b‖Lq(Rn) ≤
r2

0|B|1/q‖χB‖−1
Lϕ(Rn). Furthermore, it follows from Lemma 4.6 that b ∈ W 2, q(Rn)∩

LqV q(Rn), which, together with supp (b) ⊂ B, implies that supp (∇b) ⊂ B. By
this, we see that

supp (V 1/2∇L−1(α)) = supp (V 1/2∇b) = supp (∇b) ⊂ B. (4.7)

Moreover, from Hölder’s inequality and the Lq(Rn)-boundedness of V 1/2∇L−1,
we deduce that∥∥V 1/2∇L−1(α)

∥∥
Lp2 (Rn)

≤ |B|
1
p2
− 1
q
∥∥V 1/2∇L−1(α)

∥∥
Lq(Rn)

. |B|
1
p2
− 1
q ‖α‖Lq(Rn) . |B|1/p2‖χB‖−1

Lϕ(Rn). (4.8)

Now we estimate |
∫
B
V 1/2∇L−1(α) dx| by considering the following two cases.

Case 1) r0 ∈ [[m(x0, V )]−1,∞). In this case, similar to (4.6), we conclude that∣∣∣∣∫
B

V 1/2∇L−1(α)(x) dx

∣∣∣∣ ≤ ∥∥V 1/2∇L−1(α)
∥∥
Lp2 (B)

|B|1/p′2

. |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε1/2 . (4.9)

Case 2) r0 ∈ (0, [m(x0, V )]−1). In this case, it follows from Hölder’s inequality
and the Sobolev imbedding theorem (see, for example, [14, Theorem 7.10]) that,
for any p ∈ (1, q+) with p 6= n,

‖∇b‖Lp(B) .
∥∥∇2b

∥∥
Lp(B)

|B|1/n ∼
∥∥∇2L−1(α)

∥∥
Lp(B)

|B|1/n

. |B|1/n+1/p‖χB‖−1
Lϕ(B), (4.10)

which, together with Hölder’s inequality, V ∈ RHq2(Rn), q+ > q′2 > (2q2)′,
Lemma 3.4, 2− n/q2 > ε1 and r0m(x0, V ) ∈ (0, 1), further implies that∣∣∣∣∫

B

V 1/2∇L−1(α)(x) dx

∣∣∣∣ ≤ {∫
B

[V (x)]q2 dx

}1/(2q2){∫
B

|∇b(x)|(2q2)′ dx

}1/(2q2)′

. |B|−1/2q′2

[∫
B

V (y) dy

]1/2

|B|
1

(2q2)
′+

1
n‖χB‖−1

Lϕ(B)

. |B|‖χB‖−1
Lϕ(Rn)[r0m(x0, V )]

1− n
2q2

. |B|‖χB‖−1
Lϕ(Rn) [r0m(x0, V )]ε1/2 .

This, combined with (4.7), (4.8) and (4.9), further implies that V 1/2∇L−1(α) is
a (ϕ, p2, ε1/2)L-atom up to a harmless constant multiple, which completes the
proof of Theorem 1.6(ii).

Now we prove (iii) of Theorem 1.6. Let M ∈ N satisfying M > nq(ϕ)
2i(ϕ)

and

q ∈ (I(ϕ)[r(ϕ)]′, q+). Similar to the proof of (i), we only need to show that, for
all (ϕ, q, M)L-atoms α, ∇2L−1(α) is a (ϕ, q, ε)L-atom for any ε ∈ (0,∞) up to
a harmless constant multiple.
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Let α be a (ϕ, q, M)L-atom associated with B. Then there exists b ∈ Lq(Rn)∩
D(L) such that α = Lb and supp (b) ⊂ B and ‖b‖Lq(Rn) ≤ r2

0|B|1/q‖χB‖−1
Lϕ(Rn).

Furthermore, it follows from Lemma 4.6 that b ∈ W 2, q(Rn) ∩ LqV q(Rn), which,
together with supp (b) ⊂ B, implies that supp (∇2b) ⊂ B. Thus,

supp (∇2L−1(α)) ⊂ B.

Moreover, by Lemma 2.7(ii), we conclude that∥∥∇2L−1(α)
∥∥
Lq(Rn)

. ‖α‖Lq(B) . |B|1/q‖χB‖−1
Lϕ(B). (4.11)

For the above b ∈ D(L), from (4.10) and Hölder’s inequality, we deduce that
∇b ∈ L1(Rn). Furthermore, by (4.11), Hölder’s inequality and α = Lb, we further
know that ∇2b ∈ L1(Rn). Take ψ ∈ C∞c (Rn) such that supp (ψ) ⊂ 2B and ψ ≡ 1
on B. Then via the divergence theorem, we see that, for all i, j ∈ {1, . . . , n},∫

Rn

∂2b(x)

∂xi∂xj
dx =

∫
Rn

∂2b(x)

∂xi∂xj
ψ(x) dx = −

∫
Rn

∂b(x)

∂xj

∂ψ(x)

∂xi
dx = 0,

which further implies that ∫
Rn
∇2L−1(α)(x) dx = 0. (4.12)

Thus, ∇2L−1(α) is a (ϕ, q, ε)L-atom for any ε ∈ (0,∞) up to a harmless constant
multiple.

Finally, we prove (iv). By the assumption q(ϕ)[r(ϕ)]′ < q+, we see that there
exists q ∈ (q(ϕ)[r(ϕ)]′, q+). Let M be as the proof of (iii) and α a (ϕ, q, M)L-
atom associated with B. Moreover, from supp (∇2L−1(α)) ⊂ B, (4.11) and
(4.12), it follows that ∇2L−1(α) is a (ϕ, q, 0, ε)-molecule for any ε ∈ (0,∞) up
to a harmless constant multiple. By this and Lemmas 3.2 and 4.8, we conclude
that ∇2L−1 is bounded from Hϕ,L(Rn) to Hϕ(Rn), which completes the proof of
Theorem 1.6(iv) and hence Theorem 1.6. �
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