NOTE ON (m, q)-ISOMETRIES ON AN HYPERSPACE OF A NORMED SPACE

ANTONIO MARTINÓN

Communicated by V. Müller

Abstract. Given a normed space X we consider the hyperspace $k(X)$ of all non-empty compact convex subsets of X endowed with the Hausdorff distance. We prove that if $T : X \rightarrow X$ is an (m, q)-isometry, then it is possible that the map $k(T) : k(X) \rightarrow k(X)$, $k(T)C := TC$, is not an (m, q)-isometry. Moreover, if $k(X)$ is the Rådström space associated to the hyperspace $k(X)$, then $T : k(X) \rightarrow k(X)$ is an (m, q)-isometry if and only if $\overline{T} : k(X) \rightarrow k(X)$ is an (m, q)-isometry.

1. Introduction

Throughout this paper, X is a real normed space and $\| \cdot \|$ its norm, $L(X)$ the class of all bounded linear operators $T : X \rightarrow X$, m a positive integer and q a positive real number, unless stated otherwise.

The notion of (m, q)-isometry in the setting of metric spaces was introduced in [3]: a map $T : E \rightarrow E$, on a metric space E with distance d, is called an (m, q)-isometry if

$$\sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} d(T^i x, T^i y)^q = 0 \quad (x, y \in E).$$

(1.1)

An (m, q)-isometry is called strict whenever it is not an $(m - 1, q)$-isometry. Of course, the $(1, q)$-isometries are the isometries. This definition generalizes the concept of m-isometry firstly introduced on Hilbert spaces by J. Agler [1]. Some time after the notion of (m, q)-isometry on Banach spaces was defined by Bayart [2] and Sid Ahmed [7].

Date: Received: Dec. 15, 2014; Accepted: Jan. 14, 2015.

2010 Mathematics Subject Classification. Primary 54E40; Secondary 47B99.

Key words and phrases. Rådström space, m-isometry, hyperspace, weighted shift operator.
In [4] it was introduced a notion of \(m \)-isometry on certain hyperspaces of a Banach space. In this paper we study \((m, q) \)-isometries on the hyperspace \(k(X) \) of all non-empty convex compact subsets of a normed space \(X \). Given an operator \(T \in L(X) \) we consider the map \(k(T) : k(X) \to k(X) \), defined by \(k(T)C := TC \). It is possible that \(T \) is an \((m, q) \)-isometry but \(k(T) \) is not an \((m, q) \)-isometry. More precisely, we prove that any weighted shift operator \(S_w \in L(\ell_2) \) which is a \((2, 2)\)-isometry induces a map \(k(S_w) : k(\ell_2) \to k(\ell_2) \) which is not an \((2, 2)\)-isometry.

Using a construction by Råström we associate to \(k(X) \) the normed space \(\hat{k}(X) \), being \(k(X) \) a subspace of \(\hat{k}(X) \). We prove that \(T : k(X) \to k(X) \) is an \((m, q) \)-isometry if and only if \(\hat{T} : \hat{k}(X) \to \hat{k}(X) \) is an \((m, q)\)-isometry.

2. The hyperspace \(k(X) \)

Given a real normed space \(X \), we consider the hyperspace
\[
k(X) := \{ C \subset X : \emptyset \neq C \text{ compact convex} \}.
\]
For \(C, D \in k(X) \) and \(\alpha \) scalar, we write \(C + D := \{ x + y : x \in C, y \in D \} \) and \(\alpha C := \{ \alpha x : x \in C \} \). Some properties of the class \(k(X) \) are given in the following proposition:

Proposition 2.1. For \(C, D, E \in k(X) \), \(\lambda, \mu \geq 0 \) and \(\alpha \) scalar,

1. \(C + D \in k(X) \)
2. \((C + D) + E = C + (D + E) \) and \(C + D = D + C \)
3. \(C + E = D + E \implies C = D \)
4. \(\alpha C \in k(X) \)
5. \(\alpha(C + D) = \alpha C + \alpha D \) and \((\lambda + \mu)C = \lambda C + \mu C \)

Proof. The property (3) is [6, Lemma 2]. The other properties are simple. \(\square \)

We introduce the norm of \(C \in k(X) \):
\[
\|C\| := \sup_{x \in C} \|x\|.
\]

Proposition 2.2. For \(C, D \in k(X) \) and \(\alpha \) scalar,

1. \(\|C\| = 0 \iff C = \{0\} \)
2. \(\|C + D\| \leq \|C\| + \|D\| \)
3. \(\|\alpha C\| = |\alpha|\|C\| \)

Proof. Routine. \(\square \)

The class \(k(X) \) is endowed with the Hausdorff distance \(h \): given \(C, D \in k(X) \), we put
\[
h(C, D) := \inf\{\varepsilon > 0 : C \subset D + \varepsilon B_X \text{ and } D \subset C + \varepsilon B_X \},
\]
where \(B_X \) is the unit closed ball of \(X \). In the next result we collect some basic facts about the distance \(h \).

Proposition 2.3. For \(C, D, E \in k(X) \) and \(\alpha \) scalar,
(1) \(h \) is a metric on \(k(X) \); moreover, if \(X \) is a Banach space, then \(k(X) \) is complete.
(2) \(h(C + E, D + E) = h(C, D) \)
(3) \(h(\alpha C, \alpha D) = |\alpha| h(C, D) \)
(4) \(h(C, \{0\}) = \|C\| \)

Proof. The property (1) is well known and (4) is clear. In order to prove (2), notice that, for every \(\varepsilon > 0 \), we can write
\[
h(C + E, D + E) < \varepsilon \implies C + E \subset D + E + \varepsilon B_X \text{ and } D + E \subset C + E + \varepsilon B_X
\]
\[
\implies C \subset D + \varepsilon B_X \text{ and } D \subset C + \varepsilon B_X
\]
\[
\implies h(C, D) \leq \varepsilon,
\]
by Proposition 2.1 (3). Analogously, \(h(C, D) < \varepsilon \implies h(C + E, D + E) \leq \varepsilon \).
Therefore, (2) is true.

Now we prove (3). We have that the equality is obvious if \(\alpha = 0 \). Assume \(\alpha \neq 0 \). Then
\[
h(\alpha C, \alpha D) < \varepsilon \implies \alpha C \subset \alpha D + \varepsilon B_X \text{ and } \alpha D \subset \alpha C + \varepsilon B_X
\]
\[
\implies C \subset D + \alpha^{-1} \varepsilon B_X = D + |\alpha|^{-1} \varepsilon B_X \text{ and } D \subset C + \alpha^{-1} \varepsilon B_X = C + |\alpha|^{-1} \varepsilon B_X
\]
\[
\implies h(C, D) \leq |\alpha|^{-1} \varepsilon
\]
\[
\implies |\alpha| h(C, D) \leq \varepsilon.
\]
Analogously, \(|\alpha| h(C, D) < \varepsilon \implies h(\alpha C, \alpha D) \leq \varepsilon \). Consequently, (3) holds. \(\square \)

Observe that the property (2) in the above proposition depends on the fact that \(E \) is bounded and that both sets \(C + \varepsilon B_X \) and \(D + \varepsilon B_X \) are convex closed, since \(C \) and \(D \) are convex compact (see [6, Lemmas 2 and 3]).

It is obvious that we can identify \(X \) with \(\{\{x\} : x \in X\} \subset k(X) \). For \(x, y \in X \) and \(\alpha \) scalar we have that \(\{x\} + \{y\} = \{x + y\} \), \(\alpha \{x\} = \{\alpha x\} \) and \(h(\{x\}, \{y\}) = \|x - y\| \). Notice that, in general,
\[
h(C, D) \leq \|C - D\| \quad (C, D \in k(X))
\]
and it is possible that \(h(C, D) < \|C - D\| \). For example, \(h(C, C) = 0 < \|C - C\| \) whenever \(C \) is not a singleton.

3. Maps on \(k(X) \)

We say that a map \(T : k(X) \to k(X) \) is linear if, for \(C, D \in k(X) \) and \(\alpha \) scalar,
\[
T(C + D) = TC + TD \quad \text{and} \quad T(\alpha C) = \alpha TC.
\]
Given \(T : k(X) \to k(X) \) linear we define the norm of \(T \) by
\[
\|T\| = \sup_{\{0\} \neq C \in k(X)} \frac{\|TC\|}{\|C\|} = \sup_{C \in k(X), \|C\| = 1} \|TC\|.
\]
Hence, for every \(C \in k(X) \), we have that \(\|TC\| \leq \|T\| \|C\| \). We say that \(T \) is bounded if \(\|T\| < \infty \).
The following results are very similar to analogous facts about linear operators between normed spaces and we omit the proof.

Proposition 3.1. Let $T : k(X) \rightarrow k(X)$ a linear map. The following assertions are equivalent:

1. T is uniformly continuous
2. T is continuous
3. T is continuous at $\{0\}$
4. There exists $M > 0$ such that, for every $C \in k(X)$, $\|TC\| \leq M\|C\|
5. T is bounded

We denote by $L(k(X))$ the class of all bounded linear maps $T : k(X) \rightarrow k(X)$.

Proposition 3.2. For $T, S \in L(k(X))$ and scalar α,

1. $T + S \in L(k(X))$ and $\|T + S\| \leq \|T\| + \|S\|
2. $\alpha T \in L(k(X))$ and $\|\alpha T\| = |\alpha|\|T\|
3. $TS \in L(k(X))$ and $\|TS\| \leq \|T\|\|S\|

Proof. Routine.

Given $T \in L(X)$ we define the map

$$k(T) : k(X) \rightarrow k(X), \quad k(T)C := TC.$$

Obviously, the restriction of $k(T)$ to X is T: $k(T)\{x\} = T\{x\} = \{Tx\}$, for any $x \in X$.

Proposition 3.3. Let $T \in L(X)$. Then $k(T) \in L(k(X))$ and $\|k(T)\| = \|T\|$.

Proof. For $C \in k(X)$, we have that $\|TC\| \leq \|T\|\|C\|$, hence

$$\|k(T)\| = \sup_{\{0\} \neq C \in k(X)} \frac{\|k(T)C\|}{\|C\|} = \sup_{\{0\} \neq C \in k(X)} \frac{\|TC\|}{\|C\|} \leq \|T\|.$$

Moreover

$$\|T\| = \sup_{0 \neq x \in X} \frac{\|Tx\|}{\|x\|} \leq \sup_{\{0\} \neq C \in k(X)} \frac{\|TC\|}{\|C\|} = \|k(T)\|$$

and the proof is completed.

Proposition 3.4. Let $T \in L(X)$. Then T is an isometry if and only if the map $k(T)$ is an isometry.

Proof. It is enough to observe that the equalities

$$\|k(T)C\| = \|C\| = \|TC\|$$

are equivalent to that both $k(T)$ and T are isometries.

Our main interest is the study of (m,q)-isometries ($m \geq 1$ integer, $q > 0$ real) on the hyperspace $k(X)$. Recall that the general definition was given in (1.1). For $T : k(X) \rightarrow k(X)$ the condition (1.1) is equivalent to

$$\sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} h(T^iC, T^iD)^q = 0 \quad (C, D \in k(X)).$$ (3.1)
The equivalence given in Proposition 3.4 can not be extended to \((m, q)\)-isometries, although an implication is true.

Proposition 3.5. Let \(T \in L(X)\). If the map \(k(T)\) is an \((m, q)\)-isometry, then \(T\) is an \((m, q)\)-isometry.

Proof. It is enough to observe that any restriction of an \((m, q)\)-isometry to an invariant subset is also an \((m, q)\)-isometry and that \(T\) is the restriction of \(k(T)\) to \(X\) as explained before. \(\square\)

The converse of above proposition is false, as we show in the next example.

Example 3.6. Let \(S_w : \ell_2 \rightarrow \ell_2\) the weighted shift operator on \(\ell_2\) with weight sequence \(w = (w_n)_{n \geq 1} \in \ell_\infty\). That is, for \(x = (x_n)_{n \geq 1} \in \ell_2\),

\[
S_wx = S_w(x_1, x_2, x_3...) = (0, w_1x_1, w_2x_2, w_3x_3...) .
\]

If \(S_w\) is a strict \((2, 2)\)-isometry, then \(k(S_w)\) is not a \((2, 2)\)-isometry.

Proof. We put \(\alpha := |w_1|^2\). Then, for \(n \geq 1\) [4, Remark 3.9(1)(b)]

\[
|w_n|^2 = \frac{\alpha n - (n - 1)}{\alpha (n - 1) - (n - 2)} ,
\]

hence

\[
|w_2|^2 = \frac{2\alpha - 1}{\alpha} \quad \text{and} \quad |w_4|^2 = \frac{3\alpha - 2}{2\alpha - 1} .
\]

We have that \(\alpha \neq 1\) since \(S_w\) is not an isometry, and \(\alpha > 1\) since \(S_w\) is a \((2, 2)\)-isometry ([4, Remark 3.9(1)(b)], [5, Corollary 2.3]).

Let \((e_n)_{n \geq 1}\) be the canonical basis of \(\ell_2\). Take \(x = e_1\) and \(y = \lambda e_2\), such that \(\lambda\) is a scalar with

\[
1 < |\lambda|^2 < \frac{\alpha^2}{2\alpha - 1} .
\]

We obtain

\[
\|x\|^2 = 1 , \; \|S_wx\|^2 = \alpha , \; \|S_w^2x\|^2 = 2\alpha - 1 ,
\]

\[
\|y\|^2 = |\lambda|^2 , \; \|S_wy\|^2 = |\lambda|^2 \frac{2\alpha - 1}{\alpha} , \; \|S_w^2y\|^2 = |\lambda|^2 \frac{3\alpha - 2}{\alpha} .
\]

Consider the segment

\[
C = [x, y] := \{tx + (1 - t)y : 0 \leq t \leq 1\} \in k(\ell_2) .
\]

Then

\[
\|C\|^2 = \sup_{0 \leq t \leq 1} \|tx + (1 - t)y\|^2
\]

\[
= \sup_{0 \leq t \leq 1} \|(t, (1 - t)\lambda, 0, 0, 0...)\|^2
\]

\[
= \sup_{0 \leq t \leq 1} (t^2 + (1 - t)^2|\lambda|^2)
\]

\[
= |\lambda|^2 ,
\]
since $1 < |\lambda|^2$. Moreover,
\[
\|S_w C\|^2 = \sup_{0 \leq t \leq 1} \|(0, w_1 t, w_2(1-t)\lambda, 0, 0, 0...\|^2 \\
= \sup_{0 \leq t \leq 1} (|w_1|^2 t^2 + |w_2|^2(1-t)^2|\lambda|^2) \\
= \sup_{0 \leq t \leq 1} (\alpha t^2 + \frac{2\alpha - 1}{\alpha}(1-t)^2|\lambda|^2) \\
= \alpha
\]
and
\[
\|S_w^2 C\|^2 = \sup_{0 \leq t \leq 1} \|(0, 0, w_1 w_2 t, w_2 w_3(1-t)\lambda, 0, 0, 0...\|^2 \\
= \sup_{0 \leq t \leq 1} (|w_1 w_2|^2 t^2 + |w_2 w_3|^2(1-t)^2|\lambda|^2) \\
= \sup_{0 \leq t \leq 1} ((2\alpha - 1)t^2 + \frac{3\alpha - 2}{\alpha}(1-t)^2|\lambda|^2) \\
= 2\alpha - 1.
\]
We have that
\[
h(k(S_w)^2C, k(S_w)^2\{0\})^2 - 2h(k(S_w)C, k(S_w)\{0\})^2 + h(C, \{0\})^2 = \\
= \|k(S_w)^2C\|^2 - 2\|k(S_w)C\|^2 + \|C\|^2 = 2\alpha - 1 - 2\alpha + |\lambda|^2 = |\lambda|^2 - 1 \neq 0,
\]
because of $1 < |\lambda|^2$. By (3.1) we obtain that S_w is not a $(2,2)$-isometry. \hfill \Box

4. The Rådström space $\hat{k}(X)$

Rådström [6] proved that $k(X)$ endowed with the Hausdorff distance can be isometrically embedded in a normed space $\hat{k}(X)$ in such a way that addition in $\hat{k}(X)$ induces addition in $k(X)$ and multiplication by scalars in $\hat{k}(X)$ induces multiplication by scalars in $k(X)$.

Now we give a description of the Rådström space associated to the hyperspace $k(X)$ (see [6]). On $k(X) \times k(X)$ we consider the equivalence relation $(C, D) \sim (E, F) \iff C + F = D + E$, where $C, D, E, F \in k(X)$. The class of (C, D) is denoted by $[C, D]$.

The quotient space
\[
\hat{k}(X) := \frac{k(X) \times k(X)}{\sim}
\]
is a normed space with the following: for $C, D, E, F \in k(X)$ and $\lambda \geq 0$ scalar,
\[
\|[C, D]\| = h(C, D), [C, D] + [E, F] = [C + E, D + F], \\
\lambda[C, D] = [\lambda C, \lambda D], (-\lambda)[C, D] = [\lambda D, \lambda C], .
\]
From this, the distance between two classes of $\hat{k}(X)$ is given by
\[
\hat{h}([C, D], [E, F]) = \|[C, D] - [E, F]\| = \|[C + F, D + E]\| = h(C + F, D + E).
\]
Moreover the map $\psi : k(X) \to \hat{k}(X)$ defined by $\psi C := [C, \{0\}]$, is an isometric embedding of $k(X)$ into $\hat{k}(X)$; in fact, we have that $\psi(C + D) = \psi(C) + \psi(D)$, $\psi(\lambda C) = \lambda \psi(C)$ and $\|\psi(C)\| = \|C\|.$

Given a map $\mathcal{T} : k(X) \to k(X)$, we define

$$\hat{T} : k(X) \to \hat{k}(X), \quad \hat{T}[C, D] := [\mathcal{T}C, \mathcal{T}D].$$

Notice that the restriction of \hat{T} to $k(X)$ is \mathcal{T}.

Proposition 4.1. Let $\mathcal{T} : k(X) \to k(X)$ a linear map. Then

1. \hat{T} is linear
2. \mathcal{T} bounded $\implies \hat{T}$ bounded and $\|\hat{T}\| = \|\mathcal{T}\|.$

Proof. (1) Straightforward.

(2) As \mathcal{T} is restriction of \hat{T}, we have that $\|\mathcal{T}\| \leq \|\hat{T}\|$. Now we show $\|\mathcal{T}\| \geq \|\hat{T}\|$. For this purpose, first we prove

$$h(\mathcal{T}C, \mathcal{T}D) \leq \|\mathcal{T}\| h(C, D) \quad (C, D \in k(X)). \quad (4.1)$$

Fix $C, D \in k(X)$. Let $\varepsilon > h(C, D)$. Then $C \subset D + \varepsilon B_X$ and $D \subset C + \varepsilon B_X$. Hence $\mathcal{T}C \subset \mathcal{T}D + \varepsilon \tilde{T}B_X$ and $\mathcal{T}D \subset \mathcal{T}C + \varepsilon \tilde{T}B_X$, where

$$\tilde{T}B_X := \bigcup_{b \in B_X} \mathcal{T}\{b\}.$$

(Observable that $\tilde{T}B_X$ is not always defined because of $B_X \notin k(X)$ if X is infinite-dimensional). Notice that from $\mathcal{T}\{b\} \subset \|\mathcal{T}\||b||B_X \subset \|\mathcal{T}\|B_X$, we obtain $\tilde{T}B_X \subset \|\mathcal{T}\|B_X$ and consequently $\mathcal{T}C \subset \mathcal{T}D + \varepsilon \|\mathcal{T}\|B_X$ and $\mathcal{T}D \subset \mathcal{T}C + \varepsilon \|\mathcal{T}\|B_X$. Therefore $h(\mathcal{T}C, \mathcal{T}D) \leq \varepsilon \|\mathcal{T}\|$. Hence (4.1) follows. From this

$$\|\hat{T}\| = \sup_{\|\hat{T}[C, D]\| \leq 1} \|\hat{T}[C, D]\|$$

$$= \sup_{\|\mathcal{T}\| h(C, D) \leq 1} \||\mathcal{T}\| h(C, D)\|$$

$$\leq \sup_{\|\mathcal{T}\| h(C, D) \leq 1} \|\mathcal{T}\| h(C, D)$$

$$= \|\mathcal{T}\|. \quad \Box$$

Proposition 4.2. Let $\mathcal{T} \in L(k(X))$. The following assertions are equivalent:

1. \mathcal{T} is a strict (m, q)-isometry
2. \hat{T} is a strict (m, q)-isometry

Proof. For $C, D \in k(X)$ and $1 \leq k \leq m$, we have the following equalities

$$\|\hat{T}^k[C, D]\| = \|\mathcal{T}^k\mathcal{T}^k D\| = h(\mathcal{T}^k C, \mathcal{T}^k D).$$
Consequently, \(\mathcal{T} \) is an \((m, q)\)-isometry, that is it verifies (3.1), if and only if \(\hat{\mathcal{T}} \) verifies
\[
\sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} \| \hat{\mathcal{T}}^i[C,D] \|^q = 0 \quad (C, D \in k(X)) ;
\]
that is, \(\hat{\mathcal{T}} \) is an \((m, q)\)-isometry. From this, it is obvious that \(\mathcal{T} \) is a strict \((m, q)\)-isometry if and only if \(\hat{\mathcal{T}} \) is also a strict \((m, q)\)-isometry. \(\square \)

Acknowledgements: The author is partially supported by MTM2013-44357-P (Spain).

References

4. T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are \(m\)-isometries, Integral Equation Operator Theory 68 (2010), 301–312.

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain

E-mail address: ammarce@ull.edu.es