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FUNCTIONAL VERSIONS FOR SOME OPERATOR ENTROPY
INEQUALITIES
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Communicated by J. I. Fujii

Abstract. In this paper, some functional versions for operator entropies as
well as for their related operator inequalities are investigated. The theoret-
ical results obtained by our functional approach immediately imply those of
operator version in a simple and nice way.

1. Introduction

Let A and B be two positive invertible operators on a Hilbert space H and
λ ∈ (0, 1]. The relative operator entropy S(A|B) and the Tsallis operator entropy
Tλ(A|B) were defined by, [2, 3, 11]

S(A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2,

Tλ(A|B) =
A]λB − A

λ
,

where

A]λB = A1/2
(
A−1/2BA−1/2

)λ

A1/2

is the power geometric operator mean of A and B. It is well known that Tλ(A|B)
extends S(A|B) in the sense that the following equality

lim
λ↓0

Tλ(A|B) = S(A|B)
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holds for all positive invertible operators A and B. The following operator in-
equality

A− AB−1A ≤ S(A|B) ≤ B − A (1.1)

was shown in [2] and later extended for Tλ(A|B) as well, [3]

A− AB−1A ≤ Tλ(A|B) ≤ B − A. (1.2)

Since then other extensions of S(A|B) have been introduced and related oper-
ator inequalities have been investigated, see [4] and [7] for instance.

Otherwise, in two earlier papers [8] and [9] we extended S(A|B) and Tλ(A|B)
from operators to convex functionals, respectively, as follows:

F(f |g) =

∫ 1

0

(
(1− t)f ∗ + tg∗

)∗
− f

t
dt,

Rλ(f |g) =
Gλ(f, g)− f

λ
, (1.3)

where, for λ ∈ (0, 1),

Gλ(f, g) =
sin(λπ)

π

∫ 1

0

tλ−1

(1− t)λ

(
(1− t)f ∗ + tg∗

)∗
dt (1.4)

is the power geometric functional mean, extension of A]λB from positive operators
to convex functionals. Here, f ∗ denotes the conjugate of f (see Section 2 below).

The following

Aλ(f, g) := (1− λ)f + λg and Hλ(f, g) =
(
(1− λ)f ∗ + λg∗

)∗

have also been introduced (see [8]) as the extensions of the weighted arithmetic
and harmonic means from operators to convex functionals, respectively. The
three above functional means satisfy the following double functional inequality

Hλ(f, g) ≤ Gλ(f, g) ≤ Aλ(f, g), (1.5)

which extends the weighted arithmetic-geometric-harmonic operator mean in-
equality, namely(

(1− λ)A−1 + λB−1
)−1 ≤ A]λB ≤ (1− λ)A + λB.

The double functional inequality (1.5) allowed us to take

G1(f, g) = g and G0(f, g) := lim
λ↓0

Gλ(f, g) = f.

For further detail about these functional means, see [8, 9] and the related refer-
ences cited therein.

The previous extensions of S(A|B) and Tλ(A|B) from positive operators to
convex functionals were investigated in the sense that the following connection-
relationships

F(fA|fB) = fS(A|B), (1.6)

Rλ(fA|fB) = fTλ(A|B), (1.7)
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hold for all positive invertible operators A and B, respectively, see [8] and [9].
Here, fA refers to the convex quadratic function generated by the positive operator
A i.e. fA(x) = (1/2)〈Ax, x〉 for all x ∈ H.

The fundamental goal of the present paper is to extends the operator inequali-
ties (1.1) and (1.2) for F(f |g) andRλ(f |g), respectively. Our functional approach
immediately implies, in a nice and fast way, the inequalities (1.1) and (1.2) whose
proofs were differently stated in the literature, [2, 3, 6].

2. Basic Notions

We state here some basic notions needed later. For more details, we refer the
reader to [1, 5, 10] for instance. Let H be a complex Hilbert space with its inner

product 〈., .〉 and the associate norm ‖.‖. Let f : H → R̃ = R ∪ {∞} be a

functional (in short, we write f ∈ R̃H).

• The (extended) space R̃H of such functionals is equipped with the following
partial order (so-called the point-wise order)

f, g ∈ R̃H , f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ H,

where we extend the structure of R to R ∪ {−∞,∞} by setting

∀s ∈ R ∪ {−∞,∞} −∞ ≤ s ≤ ∞ and s +∞ = ∞.

Since our involved functionals can take the value ∞ then the equality f − f = 0
does not always hold, since∞−∞ = ∞. For the same reason, the two inequalities
f ≤ g and f − g ≤ 0 are not always equivalent.
• The effective domain dom f of f is given by

dom f = {x ∈ H, f(x) < ∞},
and its conjugate f ∗ is defined through

∀x∗ ∈ H f ∗(x∗) = sup
x∈H

{
Re〈x∗, x〉− f(x)

}
= sup

x∈dom f

{
Re〈x∗, x〉− f(x)

}
. (2.1)

As well-known, f ∗∗ := (f ∗)∗ ≤ f , f ∗ is always convex lower semi-continuous and,

f ≤ g implies g∗ ≤ f ∗, for all functionals f, g ∈ R̃H . Further, the conjugate map
f 7−→ f ∗ is point-wise convex in the sense that

∀f, g ∈ R̃H ∀t ∈ (0, 1)
(
(1− t)f + tg

)∗
≤ (1− t)f ∗ + tg∗. (2.2)

• The sub-differential ∂f(x) of f at x ∈ dom f is the (possibly empty) subset
of H defined by

x∗ ∈ ∂f(x) ⇐⇒ ∀y ∈ H f(y) ≥ f(x) + Re〈y − x, x∗〉,
and it is well-known that

x∗ ∈ ∂f(x) ⇐⇒ Re〈x∗, x〉 = f ∗(x∗) + f(x). (2.3)

As usual, the symbol Γ◦(H) denotes the cone of all convex lower semi-continuous

functions f ∈ R̃H not identically equal to ∞. With this, we have f ∗∗ = f if
and only if f ∈ Γ◦(H). Moreover, if f ∈ Γ◦(H) then, x∗ ∈ ∂f(x) if and only if
x ∈ ∂f ∗(x∗). Denoting by int(dom f) the topological interior of dom f , we recall
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that if f ∈ Γ◦(H) and int(dom f) is nonempty then, for all x ∈ int(dom f), f is
continuous at x and ∂f(x) is nonempty.
• The directional derivative of f at x in the direction y is defined by

f
′
(x, y) = lim

t↓0

f(x + ty)− f(x)

t
,

provided that this limit exists. In this case, if moreover the map y 7−→ f
′
(x, y)

is linear then we say that f is Gateaux-differentiable (in short G-differentiable)
at x and we write f

′
(x, y) = ∇f(x)(y), where ∇f(x) is called the (operator) G-

gradient of f at x. With this, if f is convex and G-differentiable at x then ∂f(x) =
{∇f(x)}. It is well-known that every differentiable function is G-differentiable.

The next example will be of interest later.

Example 2.1. Let A and B be as above, fA and fB their generated quadratic
functions, respectively. The following assertions hold:
(1) fA ± fB = fA±B and, fA = (≥≤) fB if and only if A = (≥≤) B.
(2) For all x ∈ H, f ∗(x) = (1/2)〈A−1x, x〉. We can then write f ∗

A = fA−1 .
(3) Since A is self-adjoint (resp. positive) then fA is continuous (resp. convex).
Since fA is quadratic continuous then fA is (infinitely) differentiable and so fA is
G-differentiable. To compute explicitly ∂fA(x) we use (2.3) for writing

x∗ ∈ ∂fA(x) ⇐⇒ Re〈x∗, x〉 = fA(x) + f ∗
A(x∗) =

1

2
〈Ax, x〉+

1

2
〈A−1x∗, x∗〉.

This, with the fact that A is self-adjoint and so 〈Ax, x〉 = ‖A1/2x‖2, yields

‖A1/2x‖2 − 2Re〈x∗, x〉+ ‖A−1/2x∗‖2 = 0,

or equivalently ‖A1/2x − A−1/2x∗‖2 = 0. We then deduce A1/2x − A−1/2x∗ = 0
and so x∗ = Ax. In summary, ∂fA(x) = {Ax}.

3. Main Results

Before stating our first main result, we start with the next needed lemmas.

Lemma 3.1. Let λ ∈ (0, 1). Then we have∫ 1

0

tλ

(1− t)λ
dt =

λπ

sin(λπ)
. (3.1)

Proof. If Γ and B denote the standard special functions Gamma and Beta, re-
spectively, then we can write∫ 1

0

tλ

(1− t)λ
dt = B(1+λ, 1−λ) =

Γ(1 + λ)Γ(1− λ)

Γ(2)
= λΓ(λ)Γ(1−λ) =

λπ

sin(λπ)
.

�

Lemma 3.2. [9]. Let f, g ∈ R̃H . Then we have

lim
λ↓0

Rλ(f |g) = F(f |g),

where the limit is taken for the point-wise convergence.

Now, our first main result may be recited as follows.
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Theorem 3.3. Let f ∈ Γ◦(H) be such that int(dom f) is nonempty. Then, for
each λ ∈ (0, 1], the following inequalities

sup
x∗∈∂f(x)

(
f ∗ − g∗

)
(x∗) ≤ Rλ(f/g)(x) ≤ (g − f)(x) (3.2)

sup
x∗∈∂f(x)

(
f ∗ − g∗

)
(x∗) ≤ F(f/g)(x) ≤ (g − f)(x) (3.3)

hold true for all x ∈ int(dom f).

Proof. First, (3.3) follows from (3.2) with Lemma 3.2. We now will show (3.2).
From (1.3) and (1.4), with (3.1), it is easy to see that

Rλ(f |g) =
sin λπ

λπ

∫ 1

0

tλ

(1− t)λ

Ht(f, g)− f

t
dt. (3.4)

Otherwise, (2.2) implies that

Ht(f, g) :=
(
(1− t)f ∗ + tg∗

)∗
≤ (1− t)f ∗∗ + tg∗∗ ≤ (1− t)f + tg,

which, when substituted in (3.4) with a help of (3.1), gives the right inequality
of (3.2). We now prove the left inequality of (3.2). By (2.1), for all x, x∗ ∈ H we
can write

Ht(f, g)(x) :=
(
(1− t)f ∗ + tg∗

)∗
(x) ≥ Re〈x, x∗〉 −

(
(1− t)f ∗ + tg∗

)
(x∗).

If moreover x ∈ int(dom f) ⊂ dom f then this latter inequality is equivalent to
the next one

Hf (f, g)(x)− f(x) ≥ Re〈x, x∗〉 − f ∗(x∗)− f(x) + t
(
f ∗ − g∗

)
(x∗).

We can take x∗ ∈ ∂f(x) since ∂f(x) 6= ∅ by the assumption, so that according to
(2.3) the last inequality becomes

Ht(f, g)(x)− f(x)

t
≥ (f ∗ − g∗)(x∗).

Substituting this in (3.4), with a help of (3.1), we then proved that the next
inequality

Rλ(f |g)(x) ≥ (f ∗ − g∗)(x∗)

holds true for all x ∈ int(dom f) and x∗ ∈ ∂f(x). It follows that the set{
(f ∗ − g∗)(x∗), x∗ ∈ ∂f(x)

}
is nonempty and upper bounded, for the point-wise order, by Rλ(f |g)(x). That
is,

∀x ∈ int(dom f) Rλ(f |g)(x) ≥ sup
x∗∈∂f(x)

(f ∗ − g∗)(x∗),

and so the left side of (3.2) is obtained, so completes the proof. �

The above theorem has many interesting consequences. First, under a conve-
nient hypothesis on f , it can be recited in the following form.
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Corollary 3.4. Let f ∈ Γ◦(H) be G-differentiable at x. Then, for every λ ∈
(0, 1], we have

f ∗(∇f(x)
)
− g∗

(
∇f(x)

)
≤ Rλ(f/g)(x) ≤ (g − f)(x). (3.5)

f ∗(∇f(x)
)
− g∗

(
∇f(x)

)
≤ F(f/g)(x) ≤ (g − f)(x). (3.6)

Proof. As already pointed in the above section, since f ∈ Γ◦(H) and f is G-
differentiable (then continuous) at x then int(dom f) 6= ∅ and ∂f(x) = {∇f(x)}.
Substituting this in the left side of (3.2) and (3.3) we obtain (3.5) and (3.6),
respectively. �

From the above corollary we find again, under a functional angle, the next
known result giving upper and lower bounds of the Tsallis relative operator en-
tropy, [2, 3, 6].

Corollary 3.5. For all positive invertible operators A and B and each λ ∈ (0, 1]
one has

A− AB−1A ≤ Tλ(A/B) ≤ B − A and A− AB−1A ≤ S(A/B) ≤ B − A

Proof. Take f = fA and g = fB where A and B are as above. Then, by Example
2.1, ∇f(x) = {Ax} for all x ∈ H, and so

f ∗(∇f(x)
)

= fA−1(Ax) = fA(x) and g∗
(
∇f(x)

)
= fB−1(Ax) = fAB−1A(x).

Substituting these in (3.5) and (3.6), with (1.6), (1.7) and Example 2.1 again, we
obtain the desired operator inequalities. �

Now, we state another consequence of the above theorem which, as far as we
know, appears to us to be new.

Corollary 3.6. Let f be convex and G-differentiable. Then we have

inf
g∈eRH

(
g + g∗ ◦ ∇f

)
= min

g∈eRH

(
g + g∗ ◦ ∇f

)
= f + f ∗ ◦ ∇f,

where the ”inf” is taken for the point-wise order.

Proof. If f is convex and G-differentiable then (3.5) implies that

∀x ∈ H f ∗(∇f(x)
)
− g∗

(
∇f(x)

)
≤ (g − f)(x),

or equivalently

∀x ∈ H
(
f + f ∗ ◦ ∇f

)
(x) ≤

(
g + g∗ ◦ ∇f

)
(x),

from which the desired result follows. �

Theorem 3.3 can be formulated in another equivalent version recited in the
following remark.

Remark 3.7. With the same hypothesis as in Theorem 3.3, the following inequal-
ities

(f ∗ − g∗)(x∗) ≤ inf
x∈∂f∗(x∗)

Rλ(f |g)(x) ≤ inf
x∈∂f∗(x∗)

(g − f)(x)

(f ∗ − g∗)(x∗) ≤ inf
x∈∂f∗(x∗)

F(f |g)(x) ≤ inf
x∈∂f∗(x∗)

(g − f)(x)
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hold for all x∗ ∈ int(dom f ∗).

Finally, we end this section by stating the following example.

Example 3.8. Let 1 < p, q < ∞ be two real numbers and take

∀x ∈ H f(x) =
1

p
‖x‖p, g(x) =

1

q
‖x‖q.

It is well known that the conjugates of f and g are given by, [1]

∀x ∈ H f ∗(x) =
1

p∗
‖x‖p∗ , g∗(x) =

1

q∗
‖x‖q∗ ,

where 1 < p∗, q∗ < ∞ are the conjugates numbers of p and q, respectively. Since
f is convex and G-differentiable then

∂f(x) =
{
∇f(x)

}
=

{
‖x‖p−2x

}
for all x 6= 0, ∂f(0) = {0}.

Substituting these in the double inequality of Corollary 3.4 we obtain (after all
computation and reduction)

1

p∗
‖.‖p − 1

q∗
‖.‖q∗(p−1) ≤ Rλ

(1

p
‖.‖p|1

q
‖.‖q

)
≤ 1

q
‖.‖q − 1

p
‖.‖p.

1

p∗
‖.‖p − 1

q∗
‖.‖q∗(p−1) ≤ F

(1

p
‖.‖p|1

q
‖.‖q

)
≤ 1

q
‖.‖q − 1

p
‖.‖p.
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6. B. Mond, C.E.M. Pearce, J. Pečarić, The logarithmic mean is a mean, Math. Commun. 2

(1997), no. 1, 35–39.
7. M.S. Moslehian, F. Mirzapour and A. Morassaei, Operator entropy inequalities, Colloq.

Math. 130 (2013), no. 2, 159–168.
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