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INTEGRAL REPRESENTATIONS AND ASYMPTOTIC
BEHAVIOUR OF A MITTAG–LEFFLER TYPE FUNCTION OF

TWO VARIABLES

CHRISTIAN LAVAULT

Communicated by C. Lizama

Abstract. Integral representations play a prominent role in the analysis of
entire functions. The representations of generalized Mittag–Leffler type func-
tions and their asymptotics have been (and still are) investigated by plenty of
authors in various conditions and cases.

The present paper explores the integral representations of a special function
extending to two variables the two-parametric Mittag–Leffler type function. In-
tegral representations of this functions within different variation ranges of its
arguments for certain values of the parameters are thus obtained. Asymptotic
expansion formulas and asymptotic properties of this function are also estab-
lished for large values of the variables. This yields corresponding theorems
providing integral representations as well as expansion formulas.

1. Definition and notation

Let the power series

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
(α, β ∈ C; <(α) > 0)

define the two-parametric Mittag–Leffler function (or M-L function for short) [12].
For the first parameter α with positive real part and any non restricted complex
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value of the second parameter β, the function Eα,β(z) is an entire functions of
z ∈ C of order ρ = 1/<(α) and type σ = 1 (see, e.g, [5, Chap. 4], [8], [9, §1.1]).

From here on, since we are concerned with integral representations and as-
ymptotic expansions of generalized two-parametric M-L type functions, we shall
restrict our attention to positive real-valued parameters α and β. Besides, the
function Eα,β(z) of one variable z ∈ C will also be denoted for simplicity by
Eα(z; β) in the proof of Lemma 2.1, according to the notation used by Džrbašjan
in [1, 2].

Thus, the two-parametric M-L function of one variable z ∈ C extends to the
generalized M-L type function Eα,β(x, y; µ) of two variables x, y ∈ C [1, 2]. Pro-
vided that α, β > 0, it is also an entire function defined by the double power
series [4, 10]

Eα,β(x, y; µ) :=
∞∑

n,m=0

xnym

Γ(nα + mβ + µ)
(α, β ∈ R, α, β > 0, µ ∈ C), (1.1)

in which the arbitrary parameter µ takes in general complex values.
Following [1, 2] (see also, e.g., [5, 6, 7, 11], [9, §1.2 & App. A, C & D], and

references therein), Eα,β(x, y; µ) can be written in terms of Hankel’s integral repre-
sentations depending on the variation ranges of the arguments, thereby as special
cases of the Fox H-function. The Hankel path considered further in Lemma 2.1
to 2.4 and in Theorem 3.1 is denoted by γ(ε; η) :=

{
0 < η ≤ π, ε > 0

}
, defining

a contour integral oriented by non-decreasing arg ζ. It consists of the following
two parts depicted for instance in [6, Fig. 1 to 4]):

(1) the two rays Sη =
{
arg ζ = η, |ζ| ≥ ε

}
and S−η =

{
arg ζ = −η, |ζ| ≥ ε

}
;

(2) the circular arc Cη(0; ε) =
{
|ζ| = ε, −η ≤ arg ζ ≤ η

}
.

If 0 < η < π, then the contour γ(ε; η) divides the complex ζ-plane into two
unbounded regions, namely Ω(−)(ε; η) to the left of γ(ε; η) by orientation and
Ω(+)(ε; η) to the right of the contour. If η = π, then the contour consists of
the circle

{
|ζ| = ε

}
and of the ray −∞ < ζ ≤ −ε (ε > 0), which is a two-

way path (one in each direction) along the real line. More precisely, this keyhole
or Hankel contour is a path from −∞ inbound along the real line to −ε < 0,
counterclockwise around a circle of radius ε at 0, back to −ε on the real line, and
outbound back to −∞ along the real line.

2. Integral representations

This section provides a few lemmas, which show various integral representations
of the generalized M-L type function (1.1) corresponding to different variation
ranges of the two arguments.

Lemma 2.1. Let 0 < α, β < 2 and αβ < 2. Let µ be any complex number and
let η satisfy the condition

παβ/2 < η ≤ min
(
π, παβ

)
. (2.1)
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If x ∈ Ω(−)(εα; ηα) and y ∈ Ω(−)(εβ; ηβ), where εα := ε1/β, εβ := ε1/α and
ηα := η/β, ηβ := η/α, then the Hankel integral representation holds

Eα,β(x, y; µ) =
1

2πi

1

αβ

∫
γ(ε;η)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1

(ζ1/α − y)(ζ1/β − x)
dζ. (2.2)

Proof. First, let |x| < εα. Taking into account the fact that εα = ε1/β =
(
εα
β

)1/β
=

ε
α/β
β yields next the inequality (2.3)

sup
ζ∈γ(εβ ;ηβ)

∣∣xζ−α/β
∣∣ < 1. (2.3)

From definition (1.1), the expansion of Eα,β(x, y; µ) may be rewritten as follows
in terms of the corresponding two-parametric M-L function Eβ(y; nα + µ) of one
variable,

Eα,β(x, y; µ) =
∞∑

n=0

∞∑
m=0

xnym

Γ(nα + mβ + µ)

=
∞∑

n=0

xn

∞∑
m=0

ym

Γ(mβ + (nα + µ))
=

∞∑
n=0

xnEβ(y; nα + µ). (2.4)

Under the assumptions of Lemma 2.1, it is possible to use the known integral
representation of Eβ(y; αn+µ) (see, e.g., [2, Eq. (2.2)]) by taking the above εβ and
ηβ as the parameters defining the Hankel contour, which is admissible according
to inequalities (2.1). For y ∈ Ω(−)(εβ; ηβ), and provided that ηβ = η/α, the
following representations holds from the integral representation of Eβ(y; αn + µ)

Eα,β(x, y; µ) =
∞∑

n=0

xnEβ(y; nα + µ)

=
∞∑

n=0

xn 1

2πi

1

β

∫
γ(εβ ;ηβ)

eζ1/β
ζ

1−nα−µ
β

ζ − y
dζ. (2.5)

And by simplifying and using inequality (2.3) one gets

Eα,β(x, y; µ) =
1

2πi

1

β

∫
γ(εβ ;ηβ)

eζ1/β
ζ

1−µ
β

ζ − y

(
∞∑

n=0

(
xζ−α/β

)n)
dζ

=
1

2πi

1

β

∫
γ(εβ ;ηβ)

eζ1/β
ζ

1+α−µ
β

(ζ − y)(ζα/β − x)
dζ. (2.6)

Now, by rewriting the above integral representation (2.6) along the suitable
integral contour γ(ε; η), we obtain

Eα,β(x, y; µ) =
1

2πi

1

β

∫
γ(ε;η)

e(ξ1/α)
1/β (

ξ1/α
) 1+α−µ

β

(ξ1/α − y)(ξ1/β − x)

1

α
ξ

1−α
α dξ
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and get the desired integral representation (2.2) set out in Lemma 2.1

Eα,β(x, y; µ) =
1

2πi

1

αβ

∫
γ(ε;η)

eξ1/(αβ)
ξ

α+β+1−µ
αβ

−1

(ξ1/α − y)(ξ1/β − x)
dξ.

The above resulting integral is absolutely convergent and it is an analytic function
of x ∈ Ω(−)(εα; ηα) and y ∈ Ω(−)(εβ; ηβ).

The open disk D = {|x| < εα} is contained into the complex region Ω(−)(εα; ηα)
for all values of ηα taken in the interval

]
πα/2, min(π, πα)

]
. Therefore, from the

principle of analytic continuation Eq. (2.2) is valid everywhere within the complex
region Ω(−)(εα; ηα) and the lemma is established. �

Lemma 2.2. Let 0 < α, β < 2 and αβ < 2 Let µ be any complex number and let
η verify inequalities (2.1),

παβ/2 < η ≤ min
(
π, παβ

)
.

If x ∈ Ω(−)(εα; ηα) and y ∈ Ω(+)(εβ; ηβ), where εα := ε1/β, εβ := ε1/α and ηα :=
η/β, ηβ := η/α, then the integral representation holds

Eα,β(x, y; µ) =
1

β

ey1/β
y

1+α−µ
β

yα/β − x
+

1

2πi

1

αβ

∫
γ(ε;η)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1

(ζ1/α − y)(ζ1/β − x)
dζ. (2.7)

Proof. By assumption, the point y is located to the right of the Hankel contour
γ(εβ; ηβ), that is y ∈ Ω(+)(εβ; ηβ). Then, for any εβ1 > |y|, we have that y ∈
Ω(−)(εβ1 ; ηβ) and x ∈ Ω(−)(εα1 ; ηα) for εα1 = ε1/β1 . Therefore, by (2.6) we get the
integral representation

Eα,β(x, y; µ) =
1

2πi

1

β

∫
γ(εβ1

;ηβ)

eζ1/β
ζ

α+β−µ
β

(ζ − y)(ζα/β − x)
dζ. (2.8)

On the other hand, if εβ < |y| < εβ1 , then | arg y| < ηβ and, by Cauchy theorem,

Eα,β(x, y; µ) =
1

2πi

1

β

∫
γ(εβ1

;ηβ)−γ(εβ ;ηβ)

eζ1/β
ζ

1+α−µ
β

(ζ1/α − y)(ζ1/β − x)
dζ

=
1

β

ey1/β
y

1+α−µ
β

yα/β − x
. (2.9)

Hence, from Eqs. (2.8) and (2.9), we obtain the integral representation (2.7) and
Lemma 2.2 follows. �

Remark 2.3. Symmetrically, for x ∈ Ω(+)(εα; ηα), y ∈ Ω(−)(εβ; ηβ) and under the
assumptions of Lemma 2.2, the integral representation of Eα,β(x, y; µ) is shown
in a same manner to be

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y
+

1

2πi

1

αβ

∫
γ(ε;η)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1

(ζ1/α − y)(ζ1/β − x)
dζ, (2.10)

by simply interchanging α and β in representation (2.7).
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Lemma 2.4. Let 0 < α, β < 2 and αβ < 2. Let µ be any complex number and
let η verify inequalities (2.1). If x ∈ Ω(+)(εα; ηα) and y ∈ Ω(+)(εβ; ηβ), where
εα := ε1/β, εβ := ε1/α and ηα := η/β, ηβ := η/α, then the integral representation
holds

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y
+

1

β

ey1/β
y

1+α−µ
β

yα/β − x

+
1

2πi

1

αβ

∫
γ(ε;η)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1

(ζ1/α − y)(ζ1/β − x)
dζ. (2.11)

Proof. By assumption, each of the points x and y lies on the right-hand side of the
Hankel contours γ(εα; ηα) and γ(εβ; ηβ), respectively; that is in the two regions
of the complex plane defined by x ∈ Ω(+)(εα; ηα) and y ∈ Ω(+)(εβ; ηβ) (where
the parameters εα and εβ correspond to ε). Now, choose ε1 > ε such that one of
the coordinates is to the right of the contour and the other coordinate to its left
(which is always possible provided that xβ 6= yα).

Let x ∈ Ω(−)(εα1 ; ηα) and y ∈ Ω(+)(εβ1 ; ηβ) (i.e., x < y) for εα1 = ε1/β1 and
εβ1 = ε1/α1 . Then, by Eq. (2.7) in Lemma 2.2, we have the integral representation

Eα,β(x, y; µ) =
1

β

ey1/β
y

1+α−µ
β

yα/β − x
+

1

2πi

1

αβ

∫
γ(ε1;η)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1

(ζ1/α − y)(ζ1/β − x)
dζ. (2.12)

Upon changing the variable ζ1/β for t in (2.12), the above integral may be
rewritten under the form

1

2πi

1

α

∫
γ(ε1;η)

et1/α
t

1+β−µ
α

(t− x)(tβ/α − y)
dt. (2.13)

Now, when εα < |x| < εα1 , then | arg x| < ηα and, by Cauchy theorem,

Eα,β(x, y; µ) =
1

2πi

1

α

∫
γ(εα1 ;ηα)−γ(εα;ηα)

eζ1/α
ζ

1+β−µ
α

(ζβ/α − y)(ζ − x)
dζ =

1

α

ex1/α
x

1+β−µ
α

xβ/α − y
. (2.14)

Finally, from Eqs. (2.12) and (2.14) the representation (2.11) holds true, and the
lemma is established. �

Lemma 2.5. If <(µ) > 0, then the integral representations (2.2), (2.7), (2.10)
and (2.11) remain valid for α = 2 or β = 2.

Proof. The lemma follows immediately by passing to the limit with respect to the
corresponding parameters in representations (2.2), (2.7), (2.10) and (2.11). �

3. Asymptotic behaviour

The asymptotic properties of the function Eα,β(x, y; µ) for large values of |x|
and |y| are of particular interest.
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Theorem 3.1. Let 0 < α, β < 2 and αβ < 2. Let µ be any complex number and
τ be any real number satisfying inequalities (2.1)

παβ/2 < τ ≤ min
(
π, παβ

)
.

Then, for all integer r ≥ 1, the function Eα,β(x, y; µ) verifies the following as-
ymptotic formulas drawn from its integral representations whenever |x| → ∞ and
|y| → ∞.

1) If | arg x| ≤ τ/β and | arg y| ≤ τ/β, then

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y
+

1

β

ey1/β
y

1+α−µ
β

yα/β − x

+

rβ∑
n=1

rα∑
m=1

x−ny−m

Γ(µ− nα−mβ)
+ o

(
|xy|−1|x|−rα

)
+ o

(
|xy|−1|y|−rβ

)
(3.1)

2) If | arg x| ≤ τ/β and τ/α < | arg y| ≤ π, then

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y

+

rβ∑
n=1

rα∑
m=1

x−ny−m

Γ(µ− nα−mβ)
+ o

(
|xy|−1|x|−rα

)
+ o

(
|xy|−1|y|−rβ

)
(3.2)

3) If τ/β < | arg x| ≤ π and | arg y| ≤ τ/α, then

Eα,β(x, y; µ) =
1

β

ey1/β
y

1+α−µ
β

yα/β − x

+

rβ∑
n=1

rα∑
m=1

x−ny−m

Γ(µ− nα−mβ)
+ o

(
|xy|−1|x|−rα

)
+ o

(
|xy|−1|y|−rβ

)
(3.3)

4) If τ/β < | arg x| ≤ π and τ/α < | arg y| ≤ π, then

Eα,β(x, y; µ) =

rβ∑
n=1

rα∑
m=1

x−ny−m

Γ(µ− nα−mβ)

+ o
(
|xy|−1|x|−rα

)
+ o

(
|xy|−1|y|−rβ

)
. (3.4)

Proof. The proof below focuses on the first case, since the proofs ot the three
other cases are easily completed along the same lines as in case 1, that is as the
proof of asymptotic formula (3.1).

So, under the conditions required in case 1, i.e. | arg x| ≤ τ/β and | arg y| ≤
τ/α, pick a real number θ satisfying the condition (3.5):

παβ/2 < τ < θ ≤ min
(
π, παβ

)
. (3.5)

It is easy to expand the equality

1

(ζ1/β − x)(ζ1/α − y)
=

rβ∑
n=1

rα∑
m=1

ζ
n−1

β
+m−1

α

xnym
+

xrβζ
rα
α + yrαζ

rβ
β − ζ

rα
α

+
rβ
β

xrβyrα(ζ1/β − x)(ζ1/α − y)
. (3.6)
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Set ε = 1 in the representation (2.11) in Lemma 2.4. Then, to the right
of the contour γ(1; θ) (i.e. within the complex region Ω(+)(1; θ)), in view of
expansion (3.6) and by Eq. (2.11), the integral representation of Eα,β(x, y; µ)
takes the form

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y
+

1

β

ey1/β
y

1+α−µ
β

yα/β − x

+

rβ∑
n=1

rα∑
m=1

1

2πi

1

αβ

 ∫
γ(1;θ)

eζ1/(αβ)

ζ
α+β+1−µ

αβ
−1+n−1

β
+m−1

α dζ)

 x−ny−m

+
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)

ζ
α+β+1−µ

αβ
−1 xrβζ

rα
α + yrαζ

rβ
β − ζ

rα
α

+
rβ
β

xrβyrα(ζ1/β − x)(ζ1/α − y)
dζ. (3.7)

Now, the Hankel representation of the reciprocal gamma function is obtained
through the suited Hankel contour H detailed in [9, Eq. C3], [11, Chap. 3, §3.2.6],
etc., and written as the well-known contour integral formula

1

Γ(s)
=

∫
H

euu−s du (s ∈ C, u > 0).

In the present setting, the integral contour is defined by Hθ = γ(1; θ) (παβ/2 <
τ < θ ≤ min

(
π, παβ

)
), according to the definition of the Hankel path γ(ε; η) in

Section 1 and the assumptions of the theorem.
As a consequence, the summand of the double sum, the second term in (3.7),

satisfies the relation

1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)

ζ
α+β+1−µ

αβ
−1+n−1

β
+m−1

α dζ =
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)

ζ
1−µ
αβ
−1+n

β
+m

α dζ

=
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)

ζ−
1

αβ

(
µ−nα−mβ

)
+ 1

αβ
−1 dζ =

1

Γ(µ− nα−mβ)
. (3.8)

Therefore, under the constraints resulting from inequalities (3.5), substituting
the above summand (3.8) into representation (3.7) yields the transformation

Eα,β(x, y; µ) =
1

α

ex1/α
x

1+β−µ
α

xβ/α − y
+

1

β

ey1/β
y

1+α−µ
β

yα/β − x
+

rβ∑
n=1

rα∑
m=1

x−ny−m

Γ(µ− αn− βm)

+
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)

ζ
α+β+1−µ

αβ
−1 xrβζrα/α + yrαζrβ/β − ζrα/α+rβ/β

xrβyrα(ζ1/β − x)(ζ1/α − y)
dζ. (3.9)
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Next, expanding and simplifying the final term above makes the obvious sum of
the three integrals I1 + I2 + I3 appear in Eq. (3.9); precisely,

I1 =
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1+rα/α

yrα(ζ1/β − x)(ζ1/α − y)
dζ, (3.10)

I2 =
1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1+rβ/β

xrβ(ζ1/β − x)(ζ1/α − y)
dζ and (3.11)

I3 = − 1

2πi

1

αβ

∫
γ(1;θ)

eζ1/(αβ)
ζ

α+β+1−µ
αβ

−1+rα/α+rβ/β

xrβyrα(ζ1/β − x)(ζ1/α − y)
dζ. (3.12)

Assuming that | arg x| ≤ τ/β and | arg y| ≤ τ/α, each of the three integrals in
the sum (3.9), I1 in (3.10), I2 in (3.11) and I3 in (3.12), can be evaluated for large
values of |x| and |y|. Provided that | arg x| ≤ τ/β for |x| large enough, it can be
checked that

min
ζ∈γ(1;θ)

∣∣ζ1/β − x
∣∣ = |x| sin(θ/β − τ/β) = |x| sin

(
θ−τ
β

)
and analogously, when | arg y| ≤ τ/β for |y| large enough,

min
ζ∈γ(1;θ)

∣∣ζ1/α − y
∣∣ = |y| sin(θ/α− τ/α) = |y| sin

(
θ−τ
α

)
.

Hence, when | arg x| ≤ τ/β and | arg y| ≤ τ/α for large |x| and |y|, the following
estimate for the integral I1 can be obtained:

|I1| ≤
|x|−1|y|−rα−1

2παβ sin
(

θ−τ
α

)
sin
(

θ−τ
β

) ∫
γ(1;θ)

∣∣∣∣eζ
1

αβ

∣∣∣∣ ∣∣∣ζ α+β+1−µ
αβ

−1+ rα
α

∣∣∣ |dζ|. (3.13)

Of course, an analogous estimate holds also symmetrically for the integral I2 by
substituting rβ for rα and rβ/β for rα/α (resp.) into inequality (3.13).

Besides, since the rays defined by Sθ =
{
arg ζ = ±θ, |ζ| ≥ 1

}
belong to the

contour γ(1; θ), the integral in inequality (3.13) is convergent; whence the equality∣∣∣eζ1/(αβ)
∣∣∣ = exp

(
|ζ|

1
αβ cos

θ

αβ

)
.

Now, according to inequalities (3.5), we have that cos θ
αβ

< 0. Thus,

I1 = o
(
|xy|−1|y|−rα

)
and I2 = o

(
|xy|−1|x|−rβ

)
.

Furthermore, by referring to Eq. (3.12), the next estimate is also obtained for
the integral I3.

|I3| ≤
|x|−rβ−1|y|−rα−1

2παβ sin
(

θ−τ
α

)
sin
(

θ−τ
β

) ∫
γ(1;θ)

∣∣∣eζ1/(αβ)
∣∣∣ ∣∣∣ζ α+β+1−µ

αβ
−1+rα/α+rβ/β

∣∣∣ |dζ|, (3.14)

which yields the asymptotic formula I3 = o (|xy|−1|x|−rβ |y|−rα).
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Hence, this leads finally to the overall asymptotic formula

I1 + I2 + I3 = o
(
|xy|−1|x|−rβ

)
+ o

(
|xy|−1|y|−rα

)
and the proof of Eq. (3.1) (in case 1 of Theorem 3.1) is established.

Similarly, the proofs of Eq. (3.2) (case 2), Eq. (3.3) (case 3) and Eq. (3.4)
(case 4) run along the same lines as the above proof of Eq. (3.1) (case 1). This
completes the proof of Theorem 3.1. �
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