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Abstract. In this paper, we study some connection between the compactness
of radial operators and the boundary behavior of the corresponding Berezin
transform on weighted Bergman spaces. More precisely, we prove that, under
some mild condition, the vanishing of the Berezin transform on the unit circle
is equivalent to the compactness of a class of radial operators on weighted
Bergman spaces. Moreover, we also study the radial essential commutant of
the Toeplitz operator Tz.

1. Introduction and preliminaries

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and dm
the normalized Lebesgue area measure on D. For α > −1, the weighted Bergman
spaceA2

α is the space of all analytic functions on D which are in L2(D, dmα), where
dmα(z) = (α + 1)(1 − |z|2)αdm(z). For any nonnegative integer n, let en(z) =√

Γ(n+2+α)
n!Γ(2+α)

zn, z ∈ D, here Γ(·) is the usual gamma function. It is easy to check

that {en}∞n=0 is an orthonormal basis for A2
α. It follows that f(z) =

∞∑
n=0

anz
n ∈ A2

α

if and only if ‖f‖2 =
∞∑

n=0

n!Γ(2+α)
Γ(n+2+α)

|an|2 < ∞. For z ∈ D, Kα
z (w) = 1

(1−z̄w)2+α is the
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weighted Bergman reproducing kernel, that is, f(z) = 〈f, Kα
z 〉 for every f ∈ A2

α,
where 〈·, ·〉 denotes the natural inner product in A2

α.
For a bounded linear operator A on A2

α, the Berezin transform of A is the func-

tion Ã on D defined by Ã(z) = 〈Akα
z , kα

z 〉, where kα
z is the normalized reproducing

kernel, i.e., kα
z (w) = (1−|z|2)1+

α
2

(1−z̄w)2+α , w ∈ D. It is easy to see that each bounded oper-

ator on A2
α is uniquely determined by its Berezin transform. Thus, the behavior

of an operator can be analyzed by exploring the corresponding Berezin transform.
The important tool in study of the properties (such as the similarity and the in-
variant subspaces) of Toeplitz operators is the Berezin transform and the Mellin
transform, we mention here that the papers (see [1, 2, 3, 6, 7, 9, 11, 12, 13]). We
also notice that the Berezin transform of an operator A on A2

α has an explicit
formula. In fact,

Ã(z) = 〈Akα
z , kα

z 〉 = (1− |z|2)2+α〈A 1

(1− z̄w)2+α
,

1

(1− z̄w)2+α
〉

= (1− |z|2)2+α〈A
∞∑

n=0

Γ(n + 2 + α)

n!Γ(2 + α)
z̄nwn,

∞∑
m=0

Γ(m + 2 + α)

m!Γ(2 + α)
z̄mwm〉

= (1− |z|2)2+α

∞∑
m,n=0

√
Γ(n + 2 + α)

n!Γ(2 + α)

√
Γ(m + 2 + α)

m!Γ(2 + α)
〈Aen(w), em(w)〉z̄nzm

for all z ∈ D. We know more about the boundary values of the Berezin transform
in the case that the corresponding operator is compact. Since {kα

z } converges

weakly and uniformly to 0 as |z| goes to 1, Ã(z) converges to 0 uniformly as
|z| approaches to 1, for any compact operator A on A2

α. The main topic in this
paper is to consider the inverse problem of determining for which operators on
A2

α the vanishing on ∂D of the Berezin transform of the operator is equivalent
to the compactness of the inducing operator. We know that this is not true for
general case indicated by the following examples.

One example is the composition operator Cφf = f ◦ φ induced by φ(z) =

−z, which is bounded on A2
α such that lim

|z|→1−
C̃φ(z) = 0, but Cφ is not com-

pact. In fact, for any f(z) =
∑∞

n=0 anz
n ∈ A2

α, ‖Cφf‖2 = ‖
∑∞

n=0 an(−z)n‖2 =∑∞
n=0

n!Γ(2+α)
Γ(n+2+α)

|an|2 = ‖f‖2. It follows that Cφ is an isometry on A2
α. So Cφ is not

compact. However,

C̃φ(z) = 〈Cφk
α
z , kα

z 〉 = (1− |z|2)2+α〈CφK
α
z , Kα

z 〉
= (1− |z|2)2+α〈Kα

z (φ), Kα
z 〉 = (1− |z|2)2+αKα

z (φ(z))

=
(1− |z|2)2+α

(1 + |z|2)2+α
→ 0 ( as |z| → 1−).

Another example of a non-compact operator with boundary vanishing Berezin
transform is the projection operator P onto the closed subspace generated by
the orthonormal set {e2n : n = 0, 1, 2, . . . }. In fact, since P has an infinite
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dimensional range, it is not compact, but the Berezin transform

P̃(z) = (1− |z|2)2+α
∞∑

m,n=0

√
Γ(2n+2+α)
2n!Γ(2+α)

√
Γ(2m+2+α)
2m!Γ(2+α)

〈Pe2n , e2m〉z̄2n
z2m

= (1− |z|2)2+α
∞∑

n=0

Γ(2n+2+α)
2n!Γ(2+α)

(|z|2)2n → 0 ( as |z| → 1−).

Our main results show that for a class of radial operators, under some mild
condition, the compactness is equivalent to having vanishing Berezin transform on
∂D. Moreover, we also give a characterization of the radial essential commutant
of the Toeplitz operator Tz on A2

α.

2. Background

Let L(A2
α) denote the operator algebra of all bounded linear operators on A2

α

and

ϑ = {A ∈ L(A2
α)| Ã(z) −→ 0 (as |z| −→ 1−) implies that A is compact}.

The previous examples in the last section show that ϑ is a proper subset of L(A2
α).

The problem of determining if this is true even for a single Toeplitz operator has
been opened for a number of years.

Recall that for f ∈ L∞(D), the Toeplitz operator Tf with symbol f is the op-
erator on A2

α defined by Tfg = P (fg), where P is the orthogonal projection from
L2(D, dmα) ontoA2

α. That is, (Tfg)(z) = (P (fg))(z) =
∫

D f(w)g(w)Kα
w(z)dmα(w).

The compactness of Toeplitz operators on the weighted Bergman space have been
of interest to many mathematicians. Zhu (see [5]) and Luecking (see [6]) proved
that Tf is in ϑ whenever f is positive. Korenblum and Zhu (see[9]) proved that
the same conclusion holds if f is radial. Axler and Zheng (see [1]) proved, for any
f ∈ L∞(D), Tf ∈ ϑ. Actually, they showed that finite sums of finite products of
Toeplitz operators with L∞(D) symbols belong to the class ϑ. Zorboska (see [2])
and Stroethoff (see [12]) proved that for a class of radial operators, the compact-
ness of an operator is equivalent to the vanishing of the Berezin transform on the
unit circle. Following this direction, we generalize the corresponding results to
the weighted Bergman spaces.

For f ∈ L1(D) we define rad(f) by

rad(f)(z) =
1

2π

∫ 2π

0

f(eitz)dt.

We say that rad(f) is the radialization of f , and f is radial if it is equal to its
radialization. Thus a function is radial if and only if f(z) = f(|z|). We also call

the function f̃(z) =
∫

D f(w)|kα
z (w)|2dmα(w) is the Berezin transform of f , which

is a weighted average of f . For a bounded operator A on A2
α, we defined Rad(A)

by

Rad(A) =
1

2π

∫ 2π

0

U∗
t AUt dt,
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which means that for any f and g in A2
α,

〈Rad(A)f, g〉 =
1

2π

∫ 2π

0

〈U∗
t AUtf, g〉dt

where Ut is the unitary operator such that (Utf)(z) = f(e−itz) for f in A2
α and z

in D. We say that the operator A is radial if A = Rad(A).
For our main results, we need the following lemmas.

Lemma 2.1. For any A ∈ L(A2
α) and f ∈ L1(D),

(i) R̃ad(A) = rad(Ã). In addition, A is radial if and only if Ã is radial .

(ii) r̃ad(f) = rad(f̃). In addition, f is radial if and only if f̃ is radial. Espe-
cially, Tf is radial if and only if f is radial.

Proof. Since

Utk
α
z (w) = kα

z (e−itw) =
(1− |z|2)1+α

2

(1− z̄e−itw)2+α
=

(1− |zeit|2)1+α
2

(1− zeitw)2+α
= kα

eitz(w),

then

R̃ad(A)(z) = 〈Rad(A)kα
z , kα

z 〉 =
1

2π

∫ 2π

0

〈U∗
t AUtk

α
z , kα

z 〉dt

=
1

2π

∫ 2π

0

Ã(eitz)dt = rad(Ã)(z).

Hence, if A is a radial operator, then Ã(z) = rad(Ã)(z). That is, Ã is a radial

function. On the other hand, if rad(Ã)(z) = Ã(z), then R̃ad(A)(z) = Ã(z).
Since the operators are uniquely determined by their Berezin transform, so A =
Rad(A).

For the second term, since

r̃ad(f)(z) =

∫
D

rad(f)(w)|kα
z (w)|2dmα(w) =

∫
D

1

2π

∫ 2π

0

f(eitw)dt|kα
z (w)|2dmα(w)

=
1

2π

∫ 2π

0

∫
D

f(u)|kα
eitz(u)|2dmα(u) dt =

1

2π

∫ 2π

0

f̃(eitz) dt = rad(f̃)(z).

Thus, f is radial if and only if f̃ is radial if and only if Tf is radial. �

The following lemma says that every radial operator on A2
α actually is a diag-

onal operator.

Lemma 2.2. Let A be a radial bounded operator on A2
α. Then A is a diagonal

operator with respect to the orthonormal basis {en} of A2
α.

Proof. Since A is a radial bounded operator on A2
α, then A = Rad(A). We have

〈Aen, em〉 = 〈Rad(A)en, em〉 = 〈 1

2π

∫ 2π

0

U∗
t AUt en, em〉dt

=
1

2π

∫ 2π

0

e−i(n−m)t〈Aen, em〉dt = 0, for n 6= m.
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3. Main results

Note that an operator A on weighted Bergman spaces is compact if and only if
A∗A is compact if and only if there exists a unitary operator U such that U∗A∗AU
is a compact radial operator. In the sequel, suppose that A is a radial operator
on A2

α and an = 〈Aen, en〉, we want to explore the relation between the behavior

of the sequence {an} and the boundary behavior of the Berezin transform Ã. Of

course, if lim
n→∞

an = 0, then Ã(z) converges to 0 (as |z| → 1−). The converse is

not always true as the two counterexamples of diagonal non-compact operators
in Section 1. We will show that, under some mild restriction on the sequence

{an}, Ã(z) −→ 0 (as |z| −→ 1−) is a sufficient condition for the compactness of
A.

For a radial operator A, Ã(z) = (1 − |z|2)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an|z|2n. Thus the

question of whether A is in ϑ is equivalent to the following problem: when does

lim
|z|−→1−

(1− |z|2)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an|z|2n = 0 imply that an −→ 0 (as n −→∞)?

Lemma 3.1. (see [4, 8]) Suppose λ ≥ 0 and lim
t−→1−

(1− t)λ
∞∑

n=0

bnt
n = 0.

If sup
n≥0

n1−λ|bn| ≤ ∞, then lim
n−→∞

nP

k=0
bk

(n+1)λ = 0.

Lemma 3.2. Suppose that f ∈ L∞[0, 1) and an(f) = Γ(n+2+α)
n!Γ(2+α)

∫ 1

0
f(r)r2n+1(1 −

r2)αdr, n ≥ 0. Then an(f) −→ 0 (as n −→∞ ) if and only if

lim
t−→1−

(1− t)2+α

∞∑
n=0

Γ(n + 2 + α)

n!Γ(2 + α)
an(f)tn = 0.

Proof. First, suppose that an(f) → 0 (as n →∞). For any ε > 0, there exists a
positive integer N , when n > N , we have |an(f)| < ε

2
. For the ε > 0 above, there

exists 0 < δ < 1, when 1− δ < t < 1, we obtain

|(1− t)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn|

≤ |(1− t)2+α
N∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn|+ |(1− t)2+α
∞∑

n=N+1

Γ(n+2+α)
n!Γ(2+α)

an(f)tn|

< ε
2

+ ε
2
|(1− t)2+α

∞∑
n=0

Γ(n+2+α)
n!Γ(2+α)

tn| < ε.

Thus lim
t−→1−

(1− t)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn = 0.

For the other implication, assume that lim
t−→1−

(1 − t)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn = 0.



THE COMPACTNESS OF A CLASS OF RADIAL OPERATORS 405

Note that

(1− t)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn = (1− t)1+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)(tn − tn+1)

= (1− t)1+α[
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn −
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an(f)tn+1]

= (1− t)1+α[a0(f) +
∞∑

n=1

Γ(n+2+α)
n!Γ(2+α)

an(f)tn −
∞∑

n=1

Γ(n+1+α)
(n−1)!Γ(2+α)

an−1(f)tn].

Let b0 = a0(f), bn = Γ(n+2+α)
n!Γ(2+α)

an(f)− Γ(n+1+α)
(n−1)!Γ(2+α)

an−1(f). In the sequel, we often

use the same letter M , depending only on the allowed parameters, to denote var-
ious positive constants which may change at each occurrence. By the hypothesis,
|f(z)| ≤ M < ∞ a.e. and

|bn| =
∣∣∣Γ(n + 2 + α)

n!Γ(2 + α)
an(f)− Γ(n + 1 + α)

(n− 1)!Γ(2 + α)
an−1(f)

∣∣∣
=

∣∣∣ Γ2(n + 2 + α)

(n!)2Γ2(2 + α)

∫ 1

0

f(r)r2n+1(1− r2)αdr

− Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)

∫ 1

0

f(r)r2n−1(1− r2)αdr
∣∣∣

=
Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)

∣∣∣n2 + 2n(1 + α) + (1 + α)2

n2

∫ 1

0

f(r)r2n+1(1− r2)αdr

−
∫ 1

0

f(r)r2n−1(1− r2)αdr
∣∣∣

=
Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)

∣∣∣ ∫ 1

0

f(r)r2n−1(1− r2)α(r2 − 1)dr

+
2n(1 + α) + (1 + α)2

n2

∫ 1

0

f(r)r2n+1(1− r2)αdr
∣∣∣

≤ Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)

∣∣∣ ∫ 1

0

f(r)r2n−1(1− r2)α(r2 − 1)dr
∣∣∣

+
Γ2(n + 1 + α)

(n!)2Γ2(2 + α)

∣∣∣(2n(1 + α) + (1 + α)2)

∫ 1

0

f(r)r2n+1(1− r2)αdr
∣∣∣

≤ Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)
M

∣∣∣ ∫ 1

0

r2n−1(1− r2)α(r2 − 1)dr
∣∣∣

+
Γ2(n + 1 + α)

(n!)2Γ2(2 + α)
(2n(1 + α) + (1 + α)2)M

∣∣∣ ∫ 1

0

r2n+1(1− r2)αdr
∣∣∣

=
Γ2(n + 1 + α)

((n− 1)!)2Γ2(2 + α)
M

Γ(n)Γ(2 + α)

Γ(n + 2 + α)

+
Γ2(n + 1 + α)

(n!)2Γ2(2 + α)
(2n(1 + α) + (1 + α)2)M

Γ(n + 1)Γ(1 + α)

Γ(n + 2 + α)

=
MΓ(n + 1 + α)

n!Γ(2 + α)

3n + 1 + α

n + 1 + α
.
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By Stirling’s formula Γ(n+1)
Γ(1+n+µ)

∼ 1
nµ (µ > 0), we have |bn|

nα ≤ M < ∞. Using

Lemma 3.1, we have lim
n−→∞

nP

k=0
bk

(n+1)1+α = 0. Again

n∑
k=0

bk = b0 +
n∑

k=1

bk

= a0(f) +
n∑

k=1

(Γ(k+2+α)
k!Γ(2+α)

ak(f)− Γ(k+1+α)
(k−1)!Γ(2+α)

ak−1(f))

= Γ(n+2+α)
n!Γ(2+α)

an(f).

Therefore,

lim
n−→∞

n∑
k=0

bk

(n + 1)1+α
= lim

n−→∞

Γ(n + 2 + α)

n!Γ(2 + α)(n + 1)1+α
an(f) = lim

n−→∞

an(f)

Γ(2 + α)
= 0.

So lim
n−→∞

an(f) = 0. �

Lemma 3.3. ( see [10]) Let H be a separable Hilbert space with basis {en}, and
{an} a complex sequence such that M = sup{|an| : n ≥ 1} < ∞. If Aen = anen

for all n, then A extends by linearity to a bounded operator on H with ‖A‖ = M .
Moreover, A is compact if and only if an −→ 0 (as n −→∞).

In [12], Stroethoff proved that: If f is a bounded and uniformly continuous
with respect to the Bergman metric on the unit ball Bn, then Tf is compact on

A2
α(Bn) if and only if f̃(z) −→ 0 as |z| −→ 1−. In the following, we give a

sufficient condition for a general radial operator A such that the operator A is
compact.

Theorem 3.4. Let A be a bounded radial operator on A2
α with diagonal {an},

with respect to the orthonormal basis {en}, such that n(an − an−1) is bounded.
Then A belongs to the class ϑ.

Proof. Since A is radial,

Ã(z) = (1− |z|2)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

an|z|2n

= (1− |z|2)1+α[a0 +
∞∑

n=1

Γ(n+2+α)
n!Γ(2+α)

an|z|2n −
∞∑

n=1

Γ(n+1+α)
(n−1)!Γ(2+α)

an−1|z|2n]

= (1− |z|2)1+α
∞∑

n=0

bn|z|2n,

where b0 = a0 and bn = Γ(n+2+α)
n!Γ(2+α)

an − Γ(n+1+α)
(n−1)!Γ(2+α)

an−1 = Γ(n+1+α)
n!Γ(2+α)

[n(an − an−1) +

(1 + α)an]. Since both n(an − an−1) and (1 + α)an are bounded, we have from

Stirling’s formula that bn

nα = Γ(n+1+α)
n!Γ(2+α)nα [n(an − an−1) + (1 + α)an] is bounded.

From Lemma 3.1, we get lim
n→∞

Pn
k=0 bk

(n+1)1+α = 0. By Lemma 3.2, we have lim
n−→∞

an = 0.

According to Lemma 3.3, the operator A is compact. �
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Lemma 3.5. ( see [9]) Let K1, K2 ∈ L1[0, +∞). If
∫ +∞

0
Kj(t) tixdt 6= 0 for j =

1, 2 and all real number x, then for any g ∈ L∞[0, +∞), lim
ε−→0+

∫ +∞
0

K1(t) g(εt)dt =

0 if and only if lim
ε−→0+

∫ +∞
0

K2(t) g(εt)dt = 0.

Theorem 3.6. Let f be a bounded radial function on D. Then the following
conditions are equivalent:
(i) Tf : A2

α −→ A2
α is compact.

(ii) f̃(z) −→ 0 as |z| −→ 1−.

(iii) 1
(1−x)1+α

∫ 1

x
f(
√

t)(1− t)αdt −→ 0 as x −→ 1−.

Proof. Since f is a bounded radial function on D, then Tf is radial.
For (i) =⇒ (ii), since Tf : A2

α −→ A2
α is compact, then dn(f) = 〈Tfen, en〉 → 0

(as n →∞). Since

f̃(z) = T̃f (z) = 〈Tfk
α
z , kα

z 〉 = (1− |z|2)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

dn(f)|z|2n.

By Lemma 3.2, we have lim
|z|−→1−

(1 − |z|)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

dn(f)|z|n = 0. That is,

lim
|z|−→1−

f̃(z) = 0.

For (ii) =⇒ (iii), since lim
|z|−→1−

f̃(z) = 0, then

lim
t−→1−

(1− t)2+α
∞∑

n=0

Γ(n+2+α)
n!Γ(2+α)

dn(f)tn = 0.

By Lemma 3.2, we have lim
n−→∞

dn(f) = 0. Since

dn(f) = Γ(n+2+α)
n!Γ(1+α)

∫ 1

0
f(
√

t)tn(1− t)αdt,

we obtain lim
n−→∞

n1+α

Γ(1+α)

∫ 1

0
f(
√

t) tn(1− t)αdt = 0 by Stirling’s formula Γ(n+2+α)
Γ(n+1)

∼
n1+α. Let 1− t = u

n
, then

n1+α

Γ(1+α)

∫ 1

0
f(
√

t) tn(1− t)αdt

= 1
Γ(1+α)

∫ n

0
f(

√
1− u

n
) (1− u

n
)nuαdu

= 1
Γ(1+α)

∫ +∞
0

g(εu)Kε(u)du,

where ε = 1
n

and

g(u) =

{
f(
√

1− u), 0 ≤ u ≤ 1,

0, u > 1.

Kε(u) =

{
(1− εu)

1
ε uα, 0 ≤ u ≤ 1

ε
,

0, u > 1
ε
.

Since 0 ≤ Kε(u) ≤ e−u uα, the dominated convergence theorem implies that
Kε(u) −→ e−uuα in L1[0, +∞) as ε −→ 0+. Therefore, the condition

lim
n−→+∞

n1+α

Γ(1+α)

∫ 1

0
f(
√

t)tn(1−t)αdt = 0 is equivalent to lim
ε−→0+

∫ +∞
0

e−ug(εu)uαdu =
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0. Similarly, lim
x−→1−

R 1
x f(

√
t)(1−t)αdt

(1−x)1+α = 0 is equivalent to

lim
ε−→0+

∫ +∞
0

χ[0,1](u)uα g(ε u)du = 0. The desired result follows from Lemma 3.5.

For (iii) =⇒ (i), if lim
x−→1−

R 1
x f(

√
t) (1−t)αdt

(1−x)1+α = 0, note that

dn(f) = Γ(n+2+α)
n!Γ(1+α)

∫ 1

0
f(
√

t)(1− t)αtndt,

we need only to prove lim
n−→∞

dn(f) = 0. Set h(x) =
R 1

x f(
√

t) (1−t)αdt

(1−x)1+α , x ∈ [0, 1), then

Γ(n+2+α)
n!Γ(1+α)

n
∫ 1

0
h(x)(1− x)1+αxn−1dx

= Γ(n+2+α)
n!Γ(1+α)

n
∫ 1

0

R 1
x f(

√
t) (1−t)αdt

(1−x)1+α (1− x)1+αxn−1dx

= Γ(n+2+α)
n!Γ(1+α)

n
∫ 1

0
f(
√

t) (1− t)αdt
∫ t

0
xn−1dx

= Γ(n+2+α)
n!Γ(1+α)

∫ 1

0
f(
√

t) (1− t)αtndt.

The second equality follows from Fubinis’s theorem. This gives lim
n−→∞

dn(f) = 0.

By Lemma 3.3, we get the compactness of Tf . �

4. Essential commutant of operator Tz

Let I(L∞) be the Toeplitz algebra generated by {Tf : f ∈ L∞(D)}. I(L∞) is
the closed subalgebra of L(A2

α). We recall that the essential commutant of an
operator T ∈ L(A2

α) is the set Ce(T ) = {S ∈ L(A2
α) : TS − ST is compact}.

Englis (see [3]) proved that
(a) Ce(Tz) = {S ∈ L(A2

α) : S − Tz
∗STz is compact},

(b) Ce(Tz) is a C∗-algebra,
(c) Tφ ∈ Ce(Tz) for every φ ∈ L∞(D).
Let l∞ be the Banach space of bounded complex sequences indexed from n ≥

0. Consider the linear subspaces d0 = {{zn} ∈ l∞ : (zn − zn−1) −→ 0} and
d1 = {{zn} ∈ l∞ : {n(zn − zn−1)} ∈ l∞}. It is clear that d0 is closed in l∞ and
d1 ⊂ d0.

In [13], Daniel proved the following result on Bergman space. Now as an
application of our main results, we generalize the conclusion to the weighted
Bergman space.

Theorem 4.1. Let S ∈ L(A2
α) be a radial operator. Then

(i) S ∈ Ce(Tz) if and only if {λn(S)} ∈ d0,
(ii) If S ∈ I(L∞), then {λn(S)} ∈ d1, where {λn(S)} is the diagonal elements
of S.

Proof. (i) Since S is a radial operator, we have Szk = λk(S)zk. Observe that

T ∗z zk =

{
k

k+1+α
zk−1, if k > 0,

0, if k = 0.

We have

(S − T ∗z STz)z
k = λk(S)zk − λk+1(S)zk + 1+α

k+2+α
λk+1(S)zk.
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That is, S − T ∗z STz is radial. Note that S − T ∗z STz is compact if and only if
λk(S)− λk+1(S) + 1+α

k+2+α
λk+1(S) −→ 0 (as k →∞). Hence λk(S) ∈ d0.

(ii) Since S = Tf is radial, we have

λn(Tf ) = 〈Tfen, en〉 =
Γ(n + 2 + α)

n!Γ(1 + α)

∫ 1

0

f(
√

t)tn(1− t)αdt.

Thus

|λn+1(Tf )− λn(Tf )|
= | Γ(n+3+α)

(n+1)!Γ(1+α)

∫ 1

0
f(
√

t)tn+1(1− t)αdt− Γ(n+2+α)
n!Γ(1+α)

∫ 1

0
f(
√

t)tn(1− t)αdt|
≤ ‖f‖∞

∫ 1

0
| Γ(n+3+α)
(n+1)!Γ(1+α)

tn+1(1− t)α − Γ(n+2+α)
n!Γ(1+α)

tn(1− t)α|dt

= ‖f‖∞ Γ(n+2+α)
n!Γ(1+α)

∫ 1

0
|n+2+α

n+1
(t− 1) + 1+α

n+1
|tn(1− t)αdt

≤ ‖f‖∞ Γ(n+2+α)
n!Γ(1+α)

(n+2+α
n+1

∫ 1

0
tn(1− t)α+1dt + 1+α

n+1

∫ 1

0
tn(1− t)αdt)

= ‖f‖∞ Γ(n+2+α)
n!Γ(1+α)

(n+2+α
n+1

· Γ(n+1)Γ(2+α)
Γ(n+3+α)

+ 1+α
n+1

· Γ(n+1)Γ(1+α)
Γ(n+2+α)

)

= 2‖f‖∞ 1+α
n+1

.

This gives that {λn(S)} ∈ d1. �
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