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E-mail: j.adamek@tu-bs.de1, rosicky@math.muni.cz2

Dedicated to the eightieth birthday of two mathematicians we admire: Peter Freyd and Bill
Lawvere.

Abstract

This is a survey of results concerning the algebraic hulls of two 2-categories: VAR, the 2-
category of finitary varieties, and LFP, the 2-category of locally finitely presentable categories.
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1. Introduction

It is with great pleasure that we recall the years of our close collaboration with Bill Lawvere and
present here a survey of the results that we and subsequently other authors obtained, initiated by
Bill. He asked: what algebraic properties (a) varieties and (b) locally finitely presentable categories
have? Are the corresponding 2-categories algebraic? If not, we ask what their algebraic hull is.

What do we mean by algebraic hulls? Firstly, both varieties and locally finitely presentable
categories form a 2-category in a natural sense as we explain in Sections 3 and 4: the category
VAR has algebraic functors as 1-cells and natural transformations as 2-cells. And the category
LFP has finitary right adjoints as 1-cells and natural transformations as 2-cells. Next, we follow
two passages in analogy to what algebraic hull means in the classical General Algebra.

The first passage is to define equations and their satisfaction by a category. The algebraic (or
equational) hull of VAR then consists of those categories that satisfy all equations satisfied by
every variety. Analogously for LFP. We follow this passage in Sections 3 and 4.

The latter passage works with pseudomonads T on the 2-category CAT of categories. The
category CATT of algebras is concrete: we have the obvious 2-forgetful functor UT : CATT →
CAT. The algebraic hull of VAR is a concrete 2-embedding E : VAR → CATT (meaning that
UT ·E is the inclusion 2-functor) universal among all such concrete 2-embeddings. Analogously for
LFP. This passage is followed in Sections 5-7.

The last Section 8 discusses infinitary varieties and locally λ-presentable categories. And the
concept of limits distributing over colimits is recalled in the Appendix.
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2. Algebraic duality

The first question to turn to was: what are the canonical morphisms between varieties (as objects)?
We were quite surprised not to find an answer in the literature. Varieties can be viewed, in the light
of the classical results of Lawvere, see [20], [21], as categories Mod T of models of algebraic theories
T . Here T is a small category with finite products and Mod T the category of set-valued functors
on T preserving finite products. (Thus “variety” means a many-sorted, finitary equational class
of algebras.) Morphisms of algebraic theories are obvious: the functors between them preserving
finite products. They induce functors between varieties preserving

1. limits

2. filtered colimits, and

3. regular epimorphisms.

And vice versa: every functor preserving (1)–(3) is naturally isomorphic to one induced by a
morphism of theories. We call these functors algebraic (in [3] we used the name algebraically
exact). We thus obtain the 2-category

VAR

of varieties, algebraic functors and natural transformations. This compares to the 2-category

Th

of algebraic theories, their morphisms and natural transformations as follows: we have a 2-functor

Mod: Th → VARop

assigning to every theory T the variety Mod T and to every theory morphism F : T → T ′ the
algebraic functor (−) · F : Mod T ′ → Mod T it induces.

The first attempt at the algebraic duality might be to claim that Mod is an equivalence of
categories. But it is not! Consider Set as a (trivial) variety whose algebraic theory TSet is the
dual of natural numbers. Every endofunctor of Set naturally isomorphic to Id is certainly algebraic
– and there is a proper class of such pairwise distinct endofunctors. But there is only a countable set
of theory endomorphisms of TSet . Thus, we need to employ the concept of biequivalence between
2-categories. Recall that a bifunctor F : K → L is a biequivalence provided that

(a) F induces, for every pair K1, K2 of objects of K, an equivalence of categories K(K1,K2) '
L(FK1, FK2)

and

(b) every object of L is equivalent to FK for some K ∈ K.

For example, Mod is a biequivalence. This leads us to the following

2.1. Algebraic Duality Theorem (see [3]). The 2-category of varieties is dually biequivalent to
the 2-category of algebraic theories.
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We do not include further details of this duality since the reader can find them in [3] or [9].
See also the paper of Centazzo and Vitale [12] where a unified proof of this and other dualities
is presented. Let us mention that the condition (3) above can be substituted by preservation of
reflexive coequalizers: These are coequalizers of parallel pairs which are split epis having a joint
splitting.

Lemma 2.2. ([3]) Every algebraic functor between varieties preserves reflexive coequalizers.

It is also true that conditions (2) and (3) can be put together by saying that the functor
preserves sifted colimits. These are colimits of diagrams whose domain D is a small sifted category,
which means that D-colimits in Set commute with finite products. Besides filtered colimits, also
reflexive coequalizers are sifted. And this is all in the sense that a functor between cocomplete
categories preserves sifted colimits iff it preserves filtered colimits and reflexive coequalizers, see [7].
Analogously to the Grothendieck’s free completion of a category under filtered colimits, denoted by

IndK

see [10] we introduced in [7] the following

2.3. Notation. The free completion of a category K under sifted colimits is denoted

SindK

2.4 Proposition. ([7]) For every category K with finite coproducts SindK is obtained by com-
pleting IndK freely under reflexive coequalizers.

Corollary 2.5. Algebraic functors between varieties are precisely the functors preserving limits
and sifted colimits.

3. How algebraic is algebra?

Finitary algebra, represented by the 2-category VAR, is non-fully embedded into the 2-category
CAT of categories. Is algebra algebraic? That is, is the forgetful 2-functor U : VAR ↪→ CAT
2-monadic? Or at least pseudomonadic? It is not because U does not preserve U -split coequalizers,
see Example 5.1 below. Lawvere suggested to study the “algebraic hull” of the above embedding.
This requires defining what an “operation” on VAR means and which “equations” these operations
satisfy. The algebraic hull then consists of all categories on which those operations are also defined,
and satisfy all the equations. The 1-cells of the hull are the functors preserving the given operations,
and the 2-cells are the natural transformations.

Before defining a k-ary operation on VAR, let us take an example: binary products. Every
variety V has binary products, which defines a functor ωV : V2 → V (by choosing a product for
every pair). Every algebraic functor F : V → W preserves binary products (non-strictly, of course).
This means that we obtain a natural isomorphism between F · ωV and ωW · F 2:

V2

∼⇒F 2

��

ωV // V

F

��
W2

ωW
// W
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Thus, binary products form a binary operation on VAR in the following sense:

Definition 3.1. Given a category K, by a K-ary operation ω on VAR is meant a pseudonatural
transformation

ω : UK ⇒ U .

It assigns to every variety V a functor ωV : VK → V and to every algebraic functor F : V → W a
natural isomorphism

VK

ωF⇒F ·−

��

ωV // V

F

��
WK

ωW
// W

such that ωG·F = (G ∗ ωF ) · (ωG ∗ F ) and ωId = Id .

Examples are

1. k-lim, limits over a small category k,

2. k-colim, colimits over a small, filtered category k,

3. reflexive coequalizers, an operation of the following arity

r ≡ •

u1

&&

u2

88 •doo (3.1)

with u1 · d = id = u2 · d, see Lemma 2.2

and

1. projections: for every object i of a category K define the K-ary operation ωi by F 7→ F (i) for
all F : K → V.

Composite Operations. Given categories K and L, by an L-tuple of operations of arity K is

meant a pseudonatural transformation from UK to UL. This leads to the concept of composing
an L-tuple γ of K-ary operations with one L-ary operation ω: the result is one K-ary operation
obtained as the following composite

UK
γ⇒ UL ω⇒ U

of pseudonatural transformations.
We may ask (based on the intuition of the above algebraic duality) whether the above operations

are exhaustive: can every operation on VAR be composed from the operations of types (1)–(4)?
The answer is no, see Example 6.9 below. The reason is that all of the above operations have the
following property:
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Definition 3.2. An operation ω on VAR is ranked if its arity is a small category and there exists
an infinite regular cardinal λ (the rank of ω) such that every functor ωV preserves λ-filtered colimits.

Thus k-lim is ranked: choose λ larger than the number of morphisms of k. And k-colim has
rank ω. Since composites of ranked operations are clearly ranked, we can reduce our question about
(1)–(4) being exhaustive. Here the answer is affirmative:

Theorem 3.3 ([4, 4.2]). All ranked operations on VAR are composites of operations of types the
(1)–(4) above.

Equations. Let us again start by a trivial example: the binary operations “product” is commu-
tative. This means that for δ : U2 ⇒ U2 swapping the components, we have an equality ω · δ = ω
- but, of course, just a nonstrict one. More precisely, we have an invertible modification from ω · δ
to ω.

Definition 3.4. By an equation e over VAR between operations ω and ω′ of the same arity K is
meant an invertible modification from ω to ω′.

To every variety V this assigns a natural isomorphism eV : ωV → ω′V such that for every algebraic
functor F : V → W a natural isomorphism

FωV

∼⇒FeV

��

ω̂F // ωWFK

eWF
K

��
FωW

ω̂′F

// ω′WF
K

is given subject to the expected coherence conditions.
Examples of equations are abundant:

(a) Filtered colimits commute over finite limits.

(b) Filtered colimits distribute over (infinite) products, see Appendix.

(c) Regular epimorphisms are stable under pullback.

In order to summarize those conditions, we introduced the concept of an algebraically exact
category in [4]. If K has sifted colimits then we have the functor

colim : SindK → K

which computes sifted colimits in K, unique up to natural isomorphism.

Definition 3.5. A complete category with sifted colimits is called algebraically exact if sifted
colimits distribute over limits (see Appendix), i.e., the above functor colim preserves limits.

Every variety is algebraically exact, more generally, every essential localization of a variety is,
see [8] 3.3. Among categories with a small regular generator the inverse holds: every algebraically
exact category is an essential localization of a variety. In [4] we proved that a category K with limits
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und sifted colimits satisfies all the equations between ranked operations holding in VAR iff it is
algebraically exact. And we asked whether this is equivalent to having the properties (a)-(c) above
and being Barr-exact (that is, a regular category with effective equivalence relations). Richard
Garner answered this affirmatively by a beautiful application of topos theory:

Theorem 3.6 ([16]). A category with limits, filtered colimits, and reflexive coequalizers is alge-
braically exact iff it is Barr-exact and has properties (a)–(c).

This explains in which sense the properties (a)–(c) summarize all equational properties of vari-
eties (w.r.t. ranked operations), since we proved the following result.

Theorem 3.7 ([4], Corollary 4.4). The algebraic hull of VAR w.r.t. ranked operations is the
2-category ALG of

algebraically exact categories,
functors preserving limits and sifted colimits

and
natural transformations.

We indicate the proof in Section 7.

Open Problem. What is the algebraic hull of VAR w.r.t.
(a) all operations of small arities?
(b) all operations?

4. How algebraic is local presentability?

We now take a broader view by considering not only varieties, but all locally finitely presentable
(lfp) categories. These are the cocomplete categories K with a small full subcategory Kfp which
represents all finitely presentable objects and is colimit dense, i.e., every object is a colimit of
objects in Kfp. The role that an algebraic theory plays for a variety is played by the dual of Kfp,
T = (Kfp)op. And where Mod T was the category of set-valued functors preserving finite products,
we now take the following category

Lex T = functors in Set T preserving finite limits.

Indeed, every lfp category K is equivalent to Lex Kop
fp , see [17].

What are the canonical morphisms between lfp categories as objects? The answer is given by
the well-known duality due to Gabriel and Ulmer. The above assignment T 7→ Lex T defines a
2-functor

Lex: Catlex → CATop

from the 2-category Catlex of small, finitely complete categories, lex functors (i.e., preserving
finite limits), and natural transformations. To every lex functor F : k → k′ it assigns the functor
(−) · F : Lex k′ → Lex k.

Gabriel-Ulmer Duality ([17]). Lex is a dual biequivalence between Catlex and the 2-category
LFP of

locally finitely presentable categories,
functors preserving limits and filtered colimits

and
natural transformations.
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Is LFP algebraic? That is, is the forgetful functor

V : LFP→ CAT

monadic in an appropriate sense? The answer is negative (for the same reason why it is negative
for VAR), see Section 5. Thus we ask again: what is the algebraic hull of LFP?

Operations of arity K are now pseudonatural transformations from V K to V . Composite oper-
ations and equations are introduced analogously to VAR.

Here we are more lucky. Under a certain set-theoretical axiom (R), see 4.2 below, we have a
simple description of all operations on LFP of small arities: they are precisely the composites of
the following types

(1) k-lim for small categories k,
(2) k-colim for small filtered categories k, and
(3) projections.

And all equational properties of these operations can be derived from the following ones:
(a) finite limits commute with filtered colimits, and
(b) products distribute over filtered colimits, see Appendix.

This leads to a concrete description of the algebraic hull of LFP w.r.t. operations of small arities:
it is formed by all precontinuous categories. They are defined below where, analogously to Sind ,
for every category K with filtered colimits we denote by

colim : IndK → K

the functor computing filtered colimits in K.

Definition 4.1. A complete category K with filtered colimits is called
(a) continuous if colim : IndK → K has a left adjoint, and
(b) precontinuous if colim preserves limits.

The first concept was introduced by Johnstone and Joyal [18] where they prove in 2.4 that
every lfp category is continuous. The latter concept is from [5]. Every essential localization of
an lfp category is precontinuous, and among categories with a regular generator, these are all the
precontinuous categories, see [8], 2.7.

Remark 4.2. The following axiom was proved by Donder [14] to be consistent with set theory:
(R) Every uniform ultrafilter is regular.

That is, given an ultrafilter U all members of which have the same cardinality k, there exists a
subset V ⊆ U of cardinality k such that every member of U meets only finitely many members of
V.

Theorem 4.3 ([5, 6.6]). Assuming (R) the algebraic hull of LFP w.r.t. operations of small arities
is the 2-category of precontinuous categories, functors preserving limits and filtered colimits, and
natural transformations.

5. Algebraic and continuous lattices

In this short section we explain why neither VAR nor LFP is pseudomonadic, and we present our
proof, from [5], that the algebraic hull of algebraic lattices is formed by the continuous ones. This
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was originally proved by Day [13] and Wyler [25] and the reason for our alternative proof below is
that the procedure is analogous to that we use in Section 6 for LFP and in Section 7 for VAR.

An algebraic lattice is a poset that is lfp (or a variety) as a category: a complete lattice in which
every element is a filtered joins of compact, i.e. finitely presentable, elements. We consider algebraic
lattices as infinitary algebras whose k-ary operations are k-meets (for all discretely ordered sets k)
and k-joins (for all directed posets k). This class of algebras is not equationally presentable because
it is not closed under quotients. That is, if

Alg

denotes the category of algebraic lattices and functions preserving meets and directed joins, the
forgetful functor

W : Alg→ Pos

is not monadic: it does not preserve W -split coequalizers. We illustrate this in the next example,
denoting by

IndL

the free completion of a poset L under filtered joins. Let us recall that if L has finite meets, then
IndL is an algebraic lattice and has the following concrete description:

IndL = all directed ↓ -sets of L (ordered by ⊆)

Example 5.1. Let L be an algebraic lattice with a non-algebraic quotient

e : L→ L/E .

Here E ⊆ L × L is a congruence for which the quotient map e preserves meets and directed joins.
The projections u1, u2 : E→ L have unique extensions

IndL

u1

%%

u2

99 L

to morphisms of Alg which clearly form a W -split pair. That is, the coequalizer of Wu1 and Wu2

splits in Pos . Since e is the coequalizer of u1, u2 in Pos , we conclude that W does not preserve
W -split coequalizers.

Remark 5.2. What does the above example say us about the 2-functor U : VAR→ CAT? That
U also fails to preserve U -split coequalizers. Now this means, by Beck Theorem, that U is not
monadic. However, we need more: the appropriate concept we need (for dealing with constructions
such as free completion under filtered colimits) is pseudomonad, a non-strict variant of a 2-monad.
Pseudomonads were introduced by Day and Street [15], and the corresponding Beck Theorem for
them was proved by Le Creurer, Marmolejo and Vitale [22].

Corollary 5.3. Neither U : VAR→ CAT nor V : LFP→ CAT is pseudomonadic.
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But let us return to the “posetal shadow”, the category of algebraic lattices. The above com-
pletion under filtered colimits defines a monad Ind on Pos . Furthermore denote by Meet L the
free completion under meets. This defines a monad Meet on Pos (assigning to L the poset of all
↑-sets ordered by the opposite of ⊆).

5.4 Proposition ([5, 2.5]). The monad Meet distributes over Ind since
(a) if L is a complete meet-semilattice, so is IndL, and
(b) if f : L→ L′ is a meet-semilattice homomorphism,

then so is Ind f .
Consequently, there is a monad structure on the composite

Ind ◦Meet .

Corollary 5.5. Since the free algebras of the above monad,

Ind (Meet L)

are algebraic lattices, due to Meet L having (finite) joins, it follows that the category

Pos (Ind ◦Meet)

of algebras for the monad Ind ◦Meet is the algebraic hull of Alg. This is precisely the category of
continuous lattices.

Example 5.6. Another approach to the above corollary is to consider the two-element chain 2 as
a dualizing object for the categories Pos and

Slat = meet semilattices and their homomorphisms.

We obtain an adjoint situation (enriched over Pos ) as follows

Pos

Pos (−,2)

((
Slat

Slat(−,2)

gg

yielding a monad on Pos denoted by

D : L 7→ Slat(2L, 2).

It assigns to every poset the set of all filters on it. It was already observed by Day [13] that
continuous lattices form the category of Eilenberg-Moore algebras for the filter monad.

5.7. Fact (see [5]). The monad D is isomorphic to the monad Ind ◦Meet .
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6. The algebraic hull of LFP

We first describe the algebraic hull of LFP w.r.t. all operations (of possibly large arities) by intro-
ducing a pseudomonad D∗ analogous to D in Example 5.6. (Well, “describe” is a bit optimistic: we
will show that the Eilenberg-Moore category of D∗ is the algebraic hull of LFP, but we have no
concrete characterization of the algebras for D∗.) Then we turn to operations of small arities on
LFP and prove that

(a) they are all generated by small limits and small filtered colimits,

(b) the 2-category of precontinuous categories (see 4.1) is the algebraic hull of LFP w.r.t. oper-
ations of small arities -assuming the axiom (R),

and

(c) without (R), precontinuous categories form the algebraic hull of LFP w.r.t. ranked operations
(see 3.2).

6.1. Notation. For the 2-categories CAT (of all categories) and CATlex (of all lex categories) we
use their joint object Set as a dualizer and consider the enriched functor

Cat(−,Set ) : CAT→ CATop
lex

as a left adjoint to
Catlex(−,Set ) : CATop

lex → CAT .

The corresponding pseudomonad
D∗

on CAT assigns to every category K the category

D∗K = lex functors SetK → K

to every functor F : K →L the functor

D∗F = ( ) · F : Set L → SetK

and to every natural transformations f the natural transformation
(
D∗f

)
H

= H ∗ Set f .

Recall from Introduction that he algebraic hull of LFP is given by a concrete 2-embedding of
LFP into an Eilenberg-Moore category over CAT with the expected universal property which we
make explicit below.

Theorem 6.2 ([5, 4.6]). The Eilenberg-Moore 2-category of D∗,

CATD∗

is the algebraic hull of LFP (w.r.t. the comparison 2-functor K : LFP→ CATD∗).
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That is, for every pseudomonad T on CAT and every concrete 2-embedding E : LFP→ CATT

there is an extension of E to a concrete pseudofunctor E∗ : CATD∗ → CATT. We thus have the
following natural isomorphisms:

LFP

'

E //

K

��

CATT

CATD∗

E∗

;;wwwwwwwwwwwwwwwww

CATD∗

'

E∗ //

UD∗

��6666666666666 CATT

UT

��												

CAT

6.3. Notation. The “small core” of the pseudomonad D∗ is given by forming, for every category
K, the colimit

D∗smallK = colimD∗k

of the diagram of all free D∗-algebras on k, where k ranges over all small subcategories of K.
It is easy to see that this yields a sub-pseudomonad D∗small of D∗. And the algebraic hull of LFP

w.r.t. small-arity operations is the Eilenberg-Moore 2-category for D∗small. Fortunately, we have a
nice description of D∗small. This is based on the following analogy of Proposition 5.4:

Definition 6.4. (a) We denote by
Lim

the pseudomonad on CAT of free completion under small limits. Thus for k small we have

Lim k =
(
Set k

)op

w.r.t. the Yoneda embedding of k.
(b) We denote by

Ind

the pseudomonad on CAT of free completion under filtered colimits. For every finitely cocomplete
category L we have

Ind L = Catlex

(
L op

,Set
)
.

6.5 Proposition ([5, 5.5]). The pseudomonad Lim distributes over Ind because
(a) if L is a complete category, so is Ind L,

and
(b) if F : L→L ′ preserves limits (L and L ′ complete),

so does IndF .

Corollary 6.6. Ind ◦ Lim carries the structure of a pseudomonad on CAT.

Remark 6.7. In order to obtain a concrete characterization of the algebraic hull of LFP w.r.t.
operations of small arities, we would like to prove that the pseudomonads D∗small and Ind ◦ Lim
are biequivalent. This implies that every operation of small arity is composable from small limits,
small colimits, and projections - thus it has a rank. This is not true absolutely, as the next example
demonstrates. But it is true assuming (R), see Remark 4.2, as we explain after that example. Recall
that a functor is called accessible if it preserves λ-filtered colimits for some regular cardinal λ.
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Example 6.8 (Reiterman [23]). Assume the existence of arbitrarily large measurable cardinals.
That is, for every cardinal k there exists a non-trivial ultrafilter Fk (on a set, say, Mk) closed under
meets of k members. Then a lex endofunctor H of Set which is not accessible can be constructed
as follows. For every cardinal k let Qk be the quotient of the hom-functor Set (Mk,−) merging two
maps from Mk iff they agree on some set Y ∈ Fk. Define a transfinite chain Hk (k ∈ Ord ) of set
functors by H0 = Id , Hk+1 = Qk ◦Hk and Hk = colim

l<k
Hl for limit ordinals k. Then the transfinite

colimit H = colim
k∈Ord

Hk exists in [Set ,Set ], is lex but not accessible.

Example 6.9. A unary operation without rank on LFP and on VAR.
Define a unary operation ω on VAR by using the functor H of the above Example as follows:

for every variety V = Mod T define the functor

ωV : V → V

by post-composition with H, that is, ωV(F ) = H · F for all F : T → Set in Mod T . Since H does
not preserve λ-filtered colimits for any λ, we see that neither ωSet preserves them. Thus ω is not
ranked.

Analogously for LFP: here we define ωV , for V = Lex T , by post-composition with H.

Theorem 6.10 ([1]). Assuming (R), every lex functor from Set k to Set , with k small, is accessible.

Corollary 6.11 ([5, 5.8]). Assuming (R), the pseudomonads D∗small and Ind ◦Lim are biequivalent.

Now the Eilenberg-Moore category of Ind ◦ Lim is easy to describe: It is the 2-category of
precontinuous categories. That is, the above corollary states precisely what Theorem 4.3 does.
Without (R), the weakening of Theorem 4.3, where only ranked operations are used, holds, see
Theorem 7.5 below.

7. The algebraic hull of VAR

The situation with VAR is analogous to (but a bit less clear than) LFP: here also two pseudomon-
ads on CAT are composed and the algebras of the resulting pseudomonads form the algebraic hull
w.r.t. ranked operations on LFP. The one missing step is the result involving (R): we do not know
whether (R) implies that all operations of small arities are ranked.

The role that filtered colimits and the pseudomonad Ind play for LFP is played by sifted
colimits here (see 2.3).

7.1. Notation. Recall that SindK denotes the free completions of a category K under sifted
colimits. For small categories with finite coproducts k we have, as proved in [7]

Sind k = Mod(kop) . (7.1)

We denote by
Sind

the pseudomonad of free completion under sifted colimits on CAT.
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Theorem 7.2 ([5, 3.11]). The pseudomonad Lim distributes over Sind because
(a) if L is a complete category, so is Sind L,

and
(b) if F : L→L ′ preserves limits (L and L ′ complete),

so does SindF .

Corollary 7.3. Sind ◦ Lim carries the structure of a pseudomonad on CAT.

The Eilenberg-Moore category of the pseudomonad Sind ◦ Lim is easily seen to be the 2-
category ALG of algebraicaly exact categories, see 3.7. We now want to explain in which sense the
Eilenberg-Moore 2-category is the algebraic hull of VAR. Its free algebra on a small category k is,
since Lim k = (Set k)op, the category

Sind
(
Set k

)
which, unfortunately, does not have the form Mod T , see (7.1), although Set k has finite coproducts,
because Set k is not small. We thus take the essentially small full subcategory of Set

Set λ = all sets of cardinality ≤ λ.

Then Set is a (large) colimit of Set λ for λ ∈ Card , and Sind (Set k) is a colimit of the following
varieties

Sind
(
Set kλ

)
= Mod

(
Set kλ

)op
.

Now the fact that we only consider small categories k means that only operations of small arities
are taken. And for every λ the operations encoded by Sind

(
Set kλ

)
are those of rank λ. We thus

obtain a direct proof of Theorem 3.7.
Precisely the same procedure can be applied to LFP: instead of Sind we use Ind and consider

the free algebras of Ind ◦ Lim on small categories k:

Ind (Set k)

as colimits of the transfinite chains Ind (Set kλ). We obtain the following result (that, by omission,
was not formulated in [5]). It does not use any set-theoretic axiom:

Theorem 7.4. The algebraic hull of LFP w.r.t. operations with rank is the 2-category of precon-
tinuous categories.

8. Infinitary algebra and local λ-presentability

All results of Section 6 generalize, for infinite regular cardinals λ, without problems from LFP to
the 2-category

λ- LP

of all locally λ-presentable categories, λ-accessible functors preserving limits, and natural transfor-
mations. Recall that given a regular cardinal λ, a category is locally λ-presentable if it is complete
and has an essentially small full subcategory Kλ on all λ-presentable objects, which is colimit dense.
The forgetful functor Vλ : λ-LP→ CAT is not pseudomonadic (for the same reason that V is not).
We want to describe the algebraic hull of λ-LP. Here operations are pseudonatural transformations
from V Kλ to Vλ, and equations are defined completely analogously to the case of LFP. If

Ind λ
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denotes the pseudomonad on CAT of free completion under λ-filtered colimits, then the proof
that Lim distributes over it is completely analogous to the case λ = ω in [5]. This yields a
pseudomonad Lim ◦Ind λ. Its algebras are the λ-precontinuous categories K, i.e. those for which
colim: Ind λK → K preserves limits.

Theorem 8.1. Assuming (R), the algebraic hull of λ-LP w.r.t. operations of small arities is the
2-category of λ-precontinuous categories, functors preserving limits and λ-filtered colimits, and
natural transformations.

Indeed, the role (R) plays is to make sure that given a small category k every functor F : Set k →
Set preserving λ-small limits is accessible – and this follows from Theorem 4.3.

Without (R) the theorem holds for the algebraic hull w.r.t. all ranked operations, analogously
to Theorem 7.4.

Also the description of the full algebraic hull generalizes smoothly from LFP. Let CATλ be the
2-category of all categories having λ-small limits, functors preserving λ-small limits, and natural
transformations. The adjoint situation CAT(−,Set ) a CATλ(−,Set ) yields a pseudomonad D∗λ
on CAT whose Eilenberg-Moore category is the algebraic hull of λ-LP.

The situation with λ-ary varieties is more colorful. Denote by

λ- VAR

the 2-category of

λ-ary varieties, i.e., equational classes of λ-ary
(possibly many-sorted) algebras,

λ-algebraic functors, i.e., functor preserving limits,
λ-filtered colimits and regular epimorphisms,

and
natural transformations.

Analogously, we form the 2-category λ-Th of λ-ary theories (i.e. small categories with λ-small
products), functors preserving λ-small products and natural transformations.

Every variety is equivalent to one of the form Modλ T where T is a λ-ary algebraic theory and
Modλ T is the category of all functors in Set T preserving λ-small products. Thus Modλ gives a
2-functor from λ-Th to (λ-VAR)op analogous to Mod above.

λ-Algebraic Duality Theorem ([2]). The 2-functor Modλ is a dual biequivalence of λ-Th and
λ-VAR.

However, there is a fundamental catch when trying to generalize algebraic exactness to λ-ary
varieties: the expected generalization of sifted categories does not work.

Theorem ([2]). Let λ be an uncountable regular cardinal. Then every small category D such that
D-colimits in Set commute with λ-small products is λ-filtered.

Thus a direct generalization of results of Section 3 does not work.

Open Problem. Describe the algebraic hull of λ-VAR w.r.t. operations with rank.

Appendix
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A Limits distributing over colimits

Whereas the concept of a class L of limits commuting over a class C of colimits is well known (e.g.
finite limits commute with filtered colimits in varieties), the distribution of limits over colimits is
less often encountered.

Suppose a class C of small categories is given. Every category K has a free completion under
C-colimits (i.e., colimits of diagrams D : C → K where C ∈ C). This is a full embedding

E: K ↪→ ColimCK

into a category with C-colimits with the expected universal property:

for every category L with C-colimits we have an equivalence between [K,L] and the category
of C-colimits preserving functors from ColimCK to L, given by precomposition with E.

In particular, whenever K has C-colimits we get a functor

colim : ColimCK → K

computing C-colimits in K. It corresponds to Id ∈ [K,K].

Remark A.1. Given another class L of small categories, to say that C-colimits commute in K
with L-limits means that for every diagram

D : C × L → K

where C ∈ C and L ∈ L the canonical morphism

colim
c∈C

lim
l∈L
D(c, l)→ lim

l∈L
colim
c∈C

D(c, l)

is invertible.

Definition A.2. ([4]) Let C and L be classes of small categories. Given a category K with C-
colimits and L-limits, we say that C-colimits distribute over L-limits in K if the functor

colim: ColimCK → K

preserves L-limits.

Example A.3. Filtered colimits distribute over finite products iff they commute with them. For
infinite products distributivity is strictly weaker. For example, in Set filtered colimits do not
commute with countable powers: consider N as a colimit of 0→ 1→ 2→ . . . where n ={0,. . ., n−1}.
Then NN is strictly larger than colimnN. In contrast:

Example A.4. In every lfp category filtered colimits distribute over products. This was already
proved by Artin, Grothendieck and Verdier in [10]. To verify this, recall the following description
of IndK from [18]: objects are all small filtered diagrams D : D → K. Morphisms into another
filtered diagram D̄ : D̄ → K are compatible families of equivalence classes [fd]d∈objD of morphisms
fd : Dd→ D̄d′, d′ ∈ obj D̄, under the smallest equivalence ∼ with fd ∼ Dū · fd for every morphism
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ū : d′ → d′′ in D̄. Compatibility means that for every morphism v : d1 → d2 in D we have
fd1 ∼ fd2 ·Dv.

Now a product in IndK is easy to describe: given objects Di : Di → K for i ∈ I, their product
is the filtered diagram

D :
∏
i∈I
Di → K, D(di)i∈I =

∏
i∈I

Didi

And in every lfp category the colimit of D is canonically given by the product of colimits of Di,
i ∈ Ij , see e.g. [8], proof of 2.1.

Now, distributivity of filtered colimits in K over products means that K has both, and that
given filtered diagrams Di (i ∈ i) we have

colimD =
∏
i∈I

colimDi

Example A.5. Filtered colimits in lfp categories actually distribute over all limits. This follows
from the fact that K is continuous (see Definition 4.1). However, distributivity of filtered colimits
over equalizers is a little bit less intuitive, see the proof of 2.1 in [8].

Example A.6. (a) Distributivity of sifted colimits over products is given by a completely analogous
formula to that for filtered colimits, except that here the diagrams are sifted.

(b) In every finitary variety of algebras, sifted colimits distribute over products. Indeed, this
follows from algebraic exactness (see 3.7) since this states that in varieties sifted colimits distribute
over all limits.

Observe that (a) does not hold in lfp categories in general.

Acknowledgement. We are grateful to the referee for suggestions which improved our presenta-
tion.
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[3] J. Adámek, F. W. Lawvere and J. Rosický, On the duality between varieties and algebraic
theories, Algebra Universalis 49 (2003), 35–49.
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