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Abstract

After reviewing a universal characterization of the extended positive real numbers published

by Denis Higgs in 1978, we de�ne a category which provides an answer to the questions:

• what is a set with half an element?

• what is a set with π elements?

The category of these extended positive real sets is equipped with a countable tensor product.

We develop somewhat the theory of categories with countable tensors; we call the commutative

such categories series monoidal and conclude by only brie�y mentioning the non-commutative

possibility called ω-monoidal. We include some remarks on sets having cardinalities in [−∞,∞].
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That which is in locomotion must arrive at the half-way stage before it arrives at the goal. Zeno [1]

1 Introduction

For many years the authors drafted joint notes on a general project dedicated to developing the
theory of categories with tensor products of in�nitely many objects. As part of that, we were
interested in sets with in�nite operations. There is already some literature in this direction: for
example, Tarski's book [28], and the work starting with Linton and Semadeni [23] and leading to a
series of papers including Fillmore-Pumplün-Röhrl [7].

Serendipity led us recently to Higgs' paper [9] which provides a universal property for the set
[0,∞] of extended positive real numbers with structure involving in�nite summation. The paper
acknowledges ideas of Huntingdon [11] and Tarski [28]. More importantly for the current Special
Volume is Higgs' interesting paragraph which begins with the sentence:

In conclusion, I would like to say that the stimulus for the introduction of magnitude modules
was a question of Lawvere as to whether a direct de�nition of the continuum, appropriate for use
in a topos, could be given.
Also, of course, Bill Lawvere [19] used [0,∞] as a base for recognizing metric spaces as a fertile part
of category theory.
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Moreover, as the unary operation of halving is used by Higgs to pin down [0,∞], surely there
are connections with the work of Peter Freyd [8] which involves the mid-point operation. Such
relationships, apart from the fact that real intervals are involved, are not yet apparent to the
authors.

Consequently, [9] was the trigger for us to focus our in�nite tensor work on deciding what
might be a set with a real cardinality. The �rst four sections of the present paper are essentially a
reorganization of Higgs' paper, emphasising the structures we later use to provide our categorical
version.

In Section 5, we de�ne series monoidal categories as categories equipped with a countable
summation operation appropriately axiomatized. Many examples are explained. What we call
Zeno functors in Section 6 allow us to halve objects; these endofunctors universally lead to our
category of extended positive real sets.

The logarithm of a positive real may be negative. Section 7 mentions that and other ideas about
capturing all real numbers and sets.

One of the purposes of symmetric monoidal categories is to serve as bases for enriched categories.
In Section 8, we look at categories enriched in a series monoidal category and show that they form
a series monoidal 2-category. On the excuse that one of our constructions could lead us to a
non-symmetric example, we brie�y look in the last Sections 9 and 10 at non-symmetric in�nitary
operations.

We suspect the reason no one has suggested our construction of the category of positive real
sets is that the Higgs paper was looked at more for its contribution to measure theory [10] and that
categories with in�nite tensor products have not had much attention.

2 Series magmas and series monoids

Let N denote the natural numbers which include 0. For sets X and A, we write AX for the set of
functions a : X → A and we often put ax : = a(x) and (ax)x∈X : = a. Given 0 ∈ A, de�ne

δ : A −→ AN×N

by

δ(a)m,n =

{
a if m = n,

0 if m 6= n .

We identify δ with its composite with either of the canonical isomorphisms σ1, σ2 : AN×N ∼= (AN)N,
where

σ1(a)(m)(n) = am,n = σ2(a)(n)(m) ,

since σ1 ◦ δ = σ2 ◦ δ. We also write δn : A→ AN for a 7→ (δ(a)m,n)m∈N.

De�nition 2.1. A series magma is a set A equipped with an element 0 ∈ A and a function

Σ : AN −→ A , (ai)i∈N 7−→ Σi∈Nai

such that the following diagram commutes for all n ∈ N.

A

A! ��

δ // (AN)N

ΣN
||

AN

(2.1)
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For any series magma A and subset S ⊆ N, we can de�ne an operation ΣS : AS → A whose
value at a ∈ AS is

Σn∈San = Σn∈Ncn (2.2)

where

cn =

{
an if n ∈ S
0 otherwise .

Since series magmas are models of an algebraic theory, there is a corresponding notion of mor-
phism, that is, a function f : A→ B such that f(0) = 0 and the following square commutes.

AN Σ //

fN

��

A

f

��
BN

Σ
// B

(2.3)

Also, the resultant category SerMg of series magmas is both complete and cocomplete, and is Barr-
Tierney exact. The forgetful functor U: SerMg→ Set is monadic. The monad generated by U and
its left adjoint preserves ℵ1-�ltered colimits.

An aspect of all this is that AN is the underlying set for the cotensor of the set N with the
series magma A; the series magma structure consists of the constant sequence 0 = δ(0)0 and
ΣN : (AN)N → AN.

Here is an easy Eckmann-Hilton-type result.

Proposition 2.2. Suppose a set A has two series magma structures Σ and Σ′ with the same 0. If
Σ′ : AN → A is a morphism for the Σ structure on A then Σ′ = Σ and, for all a ∈ AN×N,

Σm∈NΣn∈Nam,n = Σn∈NΣm∈Nam,n . (2.4)

Proof. The morphism condition (2.3) for Σ′ is

Σ′m∈NΣn∈Nam,n = Σn∈NΣ′m∈Nam,n .

In this, for any b ∈ AN, take the diagonal matrix am,n = δ(bm)m,n. Using (2.1) for both sums, we
obtain Σ′m∈Nbm = Σn∈Nbn; that is, Σ′(b) = Σ(b). q.e.d.

De�nition 2.3. A series monoid is a series magma satisfying (2.4). Write SerMn for the full
subcategory of SerMg consisting of the series monoids.

Example 2.4. The natural numbers N ∪ {∞}, extended to include ∞, is a series monoid with 0
the natural number 0 and

Σn∈Nan =

{∑∞
n=0 an if a has �nite support

∞ otherwise .
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Example 2.5. Similarly, the non-negative real numbers [0,∞], extended to include ∞, is a series
monoid with 0 the real number 0 and

Σn∈Nan =

{∑∞
n=0 an if the series converges

∞ otherwise .

Example 2.6. For any series monoid A and any set X, there is the pointwise series monoid
structure on AX . For various choices of X and A, there can be interesting series submonoids of
AX . With X a measurable space and A = [0,∞], the measurable functions f : X → [0,∞] form a
series submonoid of [0,∞]X . With X = A = [0,∞], the continuous non-decreasing functions form
a series submonoid of [0,∞][0,∞].

Example 2.7. Any partially ordered set A admitting countable suprema is a series monoid with 0
the bottom element and Σ equal to the countable supremum operation

∨
.

Proposition 2.8. Suppose A is a series monoid and ξ : N→ N is an injective function. If a ∈ AN

is such that an = 0 for n not in the image of ξ, then Σnaξ(n) = Σnan.

Proof. We de�ne bm,n to be aξ(m) for n = ξ(m) and to be 0 otherwise. Since ξ is injective, each
row and column of the matrix b has at most one non-zero entry. Applying (2.4) to b and using
(2.1), we obtain the result. q.e.d.

Remark 2.9. Similarly, if ξ : N → N × N is an injective function and am,n = 0 for (m,n) not in
the image of ξ, then Σnaξ(n) = Σ(m,n)a(m,n) where, of course, the right-hand side is either side of
(2.4). We leave this as an exercise.

As a particular case of (2.2), we can de�ne a binary operation a1 +a2 = Σn∈{1,2}an. This makes

the series monoid A into a commutative monoid with 0 as identity for +. Moreover, Σ: AN → A is
a monoid morphism. The informal notation

Σnan = a0 + a1 + a2 + . . .

can be suggestive.
We can also make A into a pre-ordered set by de�ning a ≤ b when there exists u with a+u = b.

It is clearly re�exive, transitive, has 0 as least element, and is respected by Σ.

De�nition 2.10. A series monoid is called idempotent when, for all c ∈ A and a ∈ AN such that
an 6= 0 implies an = c, it follows that Σnan = c holds.

Proposition 2.11. A series monoid arises from a partially ordered set as in Example 2.7 if and
only if it is idempotent.

Proof. Suppose A is an idempotent series monoid. We can prove that the order is antisymmetric.
For, take a ≤ b and b ≤ a; so we have a + u = b and b + v = a. Then a = a + u + v =
a+ (u+ v) + (u+ v) + (u+ v) + . . . by idempotence. So

a = a+ u+ (v + u) + (v + u) + · · · = a+ (u+ v) + (u+ v) + · · ·+ u = a+ u = b .

To see that Σnan is the supremum of {an : n ∈ N}, we have am + Σnan = Σnan by commutativity
and idempotency; so am ≤ Σnan. Now suppose an ≤ c for all n. This means there exist un
with an + un = c for all n. Since Σ is a monoid morphism and because of idempotency, we have
Σnan + Σnun = c. So Σnan ≤ c. q.e.d.
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The forgetful functor U: SerMn→ Set has a left adjoint whose value at 1 can be made explicit.

Proposition 2.12. The free series monoid on a single generating element is N∪ {∞} as in Exam-
ple 2.4. In other words, N ∪ {∞} is a representing object for the functor U.

Proof. Given a series monoid A, we will show that

ev1 : SerMn(N ∪ {∞}, A)→ A

taking f to f(1) is bijective. Take a ∈ A and de�ne fa : N ∪ {∞} → A by

fa(n) = na =

n︷ ︸︸ ︷
a+ · · ·+ a

and fa(∞) = a + a + . . . . Then fa(1) = a. Also, for fa : N ∪ {∞} → A, we have ff(1)(n) =
f(1) + . . . f(1) = f(1 + · · ·+ 1) = f(n) and ff(1)(∞) = f(1) + f(1) · · · = f(1 + 1 + . . . ) = f(∞), so
ff(1) = f . q.e.d.

Countable products and sums (= coproducts) in SerMn are special: they coincide. We shall
explain this although it is much like the case of �nite direct products for commutative monoids.

Consider a sequence (Ak)k∈N of series monoids. The cartesian product
∏
k∈NAk becomes a

series monoid by de�ning Σ to be the composite

(
∏
k∈N

Ak)N ∼=
∏
k∈N

(Ak)N
∏
k∈N Σ

−−−−−→
∏
k∈N

Ak .

The projections prk :
∏
k∈NAk −→ Ak are all morphisms of series monoids. This gives the product

in the category SerMn.
Now, we can de�ne morphisms ink : Ak −→

∏
h∈NAh by

ink(a)h =

{
a for h = k,

0 for h 6= k.

Proposition 2.13. The family of morphisms ink : Ak −→
∏
h∈NAh, for k ∈ N, is a coproduct in

the category SerMn. The following formulas hold:

Σk∈Nink ◦ prk = 1∏
h∈N Ah

,

prk ◦ inm =

{
1Ak for k = m,

0 for k 6= m.

Proof. The second sentence is an immediate consequence of the de�nitions. To prove we have a
coproduct, take a family of morphisms fk : Ak −→ B into a series monoid B. Using the formulas
of the second sentence, we deduce that the only morphism f :

∏
k∈NAk −→ B with f ◦ ink = fk

for all k ∈ N is f = Σk∈Nfk. q.e.d.

For families (Ai)i∈I with I not countable, the product is still the cartesian product with point-
wise operations. The coproduct is the subobject consisting of the families of countable support.
With this, it follows from Proposition 2.12 that we can describe all free series monoids (since free
functors preserve coproducts and every set is a coproduct of one-element sets 1).

Proposition 2.14. The free series monoid on a set X is the subobject of (N ∪ {∞})X (as in
Example 2.4) consisting of the functions of countable support.
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3 The symmetric closed structure

For series monoids A and B, we write ser(A,B) for the set SerMn(A,B) equipped with the pointwise
series monoid structure. From Proposition 2.12, we have an isomorphism

iser(A,A) : [N ∪ {∞}, ser(A,A)] ∼= ser(A,A) ,

and so a morphism
jA : N ∪ {∞} −→ ser(A,A)

corresponding to the identity morphism 1A ∈ ser(A,A).
Since Σ for each ser(C,D) is de�ned pointwise in C, we have a morphism

LA : ser(B,C) −→ ser(ser(A,B), ser(A,C))

de�ned by LA(g)(f) = g ◦ f .
There is also an isomorphism

sABC : ser(A, ser(B,C)) ∼= ser(B, ser(A,C))

de�ned by noting that both sides are isomorphic to the pointwise series monoid of functions f :
A×B −→ C for which all f(a,−) : B −→ C and f(−, b) : A −→ C are morphisms.

See [6] and [26] for the de�nition of closed category and the de�nition of category enriched in a
closed category.

Proposition 3.1. A symmetric closed structure on the category SerMn is de�ned by (i, j,L, s).
The obvious inclusions 1 −→ N ∪ {∞} and U[A,B] −→ (UB)UA provide the forgetful functor
U : SerMn −→ Set with a closed structure.

Proof. To check that the axioms pass from those axioms for the cartesian closed structure on Set
we use the facts that each U[A,B] −→ (UB)UA is a monomorphism, and that N ∪ {∞} is free on
1 (Proposition 2.12). q.e.d.

Proposition 3.2. The forgetful functor U: SerMn −→ Set is monadic of rank ℵ1. The left adjoint
is de�ned on objects in Proposition 2.14. The monad on Set generated by the adjunction is closed
(= monoidal).

Proof. The theory of series monoids is commutative. q.e.d.

By the general theory provided by Kock [18], the closed structure of Section 3 (see Proposi-
tion 3.1) is monoidal. We will write A ⊗ B for the tensor product of series monoids. We are
interested in monoids for this tensor product; they might be called series rigs. (The term �rig� was
used by Lawvere and Schanuel; the lack of an �n� in the word was to indicate the lack of negatives
in the otherwise ring.)

Let A be a commutative series rig; that is a commutative monoid in the symmetric monoidal cat-
egory SerMn. We will write the operation of the monoid multiplicatively. This product distributes
over Σ, and 0 acts as a zero. By associativity and commutativity, for each family a = (an)n∈S of
elements of A indexed by a �nite set S, there is an element Πm∈Sam ∈ A.

Write
(N
n

)
for the set of subsets of N of cardinality n.
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Now for a ∈ AN, de�ne

Pa = Pr∈Nar = Σ0<n∈NΣS∈(N
n)

Πm∈Sam . (3.1)

Less formally,

Pa = Σiai + Σi<jaiaj + Σi<j<kaiajak + . . . . (3.2)

In particular,

P(a0, a1, 0, 0, . . . ) = a0 + a1 + a0a1 . (3.3)

Proposition 3.3. Any commutative monoid A in the monoidal category SerMn has a series monoid
structure de�ned by 0 ∈ A and P: AN → A.

Remark 3.4. Notice that each of Examples 2.4 and 2.5 can be obtained using Proposition 3.3
from an example of the countable supremum type of Example 2.7. For Example 2.4, take the sup-
lattice N ∪ {∞} with addition as monoid structure. For Example 2.5, take the sup-lattice [0,∞]
with addition as monoid structure. Indeed, Example 2.7 is obtained from itself using the monoid
structure of �nite sup.

Remark 3.5. Notice that the unit for the monoid A is not needed for Proposition 3.3. The for-
mula (3.1) does not require commutativity of A but then we only obtain a �non-commutative series
monoid� in a sense to be pursued in Section 9.

Remark 3.6. As pointed out by Day [4], the ordered set [0,∞] is ∗-autonomous with multiplication
as tensor product and dualizing object the same as the tensor unit 1, internally homming into which
gives reciprocal as the equivalence

S : [0,∞]op −→ [0,∞] .

In fact we see that S(α) = 1
α is actually the dual of each 0 < α <∞, while S(0) =∞ and S(∞) = 0.

Day further points out that the natural logarithm gives an inverse to a monoidal equivalence

exp: [−∞,∞] −→ [0,∞]

where the tensor product in the domain is addition, and therefore is ∗-autonomous.

Motivated by Remark 3.6, we take our commutative monoid A in SerMn and create another
copy of the set A which we will denote by `A. The elements of `A will be denoted by `a where
a ∈ A. We make `A into a commutative monoid by de�ning

`a+ `b = `(ab) , 0 = `1 and −∞ = `0. (3.4)

By de�nition, if a ≤ 1 in A then there exists u ∈ A with a+ u = 1. We can form the geometric
series v = 1+u+u2 +u3 + . . . in A; then av+uv = (a+u)v = v = 1+u(1+u+u2 + . . . ) = 1+uv.
If uv can be cancelled, then v = a−1. Then we have

`(a−1) = −`a . (3.5)

We also have some countable sums in `A:

Σn`(1 + un) = Πn(1 + un) = 1 + Pnun . (3.6)

When 1 is cancellative in the additive monoid A, then 1 ≤ a implies 1 + u = a for a unique u; in
this case, (3.6) de�nes a sum for sequences of �non-negative elements� `an = `(1 + un) in `A.
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4 Zeno morphisms and magnitude modules

Given an endomorphism f : A→ A in SerMn, de�ne f̃ : A→ A by the geometric series

f̃ = Σn∈Nf
◦(n+1) (4.1)

in the pointwise structure on AA. This f̃ : A→ A satis�es

f ◦ (1A + f̃) = f + f ◦ f̃ = f̃ (4.2)

and is a morphism in SerMn.

De�nition 4.1. A Zeno morphism in SerMn is an endomorphism h : A→ A such that h̃ = 1A. A
magnitude module in the sense of Higgs [9] is a series monoid equipped with a Zeno morphism h.

Magnitude modules are models of an algebraic theory; they are series monoids with an extra
unary operation satisfying one extra axiom.

From (4.2), any Zeno morphism satis�es

h+ h = 1A (4.3)

and so can be regarded as the operation of halving.

Example 4.2. When A = N∪ {∞} as in Example 2.4, there exists no Zeno morphism since (4.3)
gives the contradiction h(1) + h(1) = 1.

Example 4.3. When A = [0,∞] as in Example 2.5, the unique Zeno morphism is de�ned by
h(a) = 1

2a and h(∞) =∞.

Example 4.4. Refer back to Example 2.6 for any set X and any magnitude module A. The
pointwise Zeno morphism makes both AX and [X,A] into magnitude modules. For X a measurable
space, Higgs [9] observed that the measurable functions f : X → [0,∞] form a magnitude submodule
of [0,∞]X and that magnitude module morphisms from there into [0,∞] are the countably-additive
[0,∞]-valued integrals on X.

Example 4.5. For a partially ordered set A as in Example 2.7, the identity function h(a) = a is
Zeno.

Theorem 4.6 (Higgs). The free magnitude module on a single generating element is [0,∞] as in
Example 4.3.

Proof. The proof is given in Section 4 of [9] so we shall only give an indication. Every natural number
is a �nite sum 1+1+· · ·+1 while∞ = 1+1+. . . . Every positive real is the sum of a natural number
and a real number t in the interval [0, 1). However, we have the binary expansion t = Σn∈Nh

◦mn(1),
where m0,m1, . . . is a sequence of strictly positive integers. Consequently, 1 ∈ [0,∞] generates.
The fact that we have equality of binary expansions such as 1.000 · · · = 0.111 . . . is no problem
since 1 = h̃(1). q.e.d.

Remark 4.7. The construct of the extended reals [0,∞] as a quotient of a free series monoid is
as follows. Let M = (N ∪ {∞})N be the free series monoid on N (Proposition 2.14). We have the
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universal morphism χ : N→M taking n to the function χn which has only non-zero value at n and
that value is 1. Take the smallest series monoid congruence ∼ including the relations

χn ∼ χn+1 + χn+2 + χn+3 + . . . .

A consequence of these relations is χn ∼ 2χn+1. Now M/∼ becomes a magnitude module by the
Zeno function h de�ned by h(χn) = χn+1, that is, h is induced by successor on N. We have the
magnitude module isomorphism

M/∼
∼=−→ [0,∞] , χn 7→

1

2n
.

Incidentally, another way of constructing the reals from endomorphisms of N is explained in [25].
The question of how to de�ne multiplication for any construction of the real number system is
always of interest. In [25], it is simply induced by composition of functions. For decimals, it is
tricky. We now turn to the multiplication in our context.

For any series monoid A, by freeness there is a magnitude module morphism

λ : [0,∞] −→ ser(A,A)

taking the generator 1 ∈ [0,∞] to the identity function of A; see Section 3. This gives an action

� : [0,∞]⊗A −→ A

of [0,∞] on A de�ned by α � a = λ(α)(a). In particular, we have a monoid structure

� : [0,∞]⊗ [0,∞] −→ [0,∞]

on [0,∞] in the monoidal category SerMn; the unit is the generator 1 of [0,∞]. This gives a monad
[0,∞]⊗− on SerMn.

Proposition 4.8 (Higgs). The Eilenberg-Moore algebras for the monad
[0,∞]⊗− on SerMn are precisely the magnitude modules.

The �magnitude� terminology comes from Huntingdon [11] who took magnitudes in the unex-
tended strictly positive reals (0,∞).

Remark 4.9. There is also what one might call the paradoxical positive reals where the geometric
series 1

2 + 1
4 + 1

8 + . . . is not 1. It is an example of a very general simple construction of an additive
monoid structure, on the disjoint union {0}+X + S, from any semigroup morphism k : S → X in
Set. It freely adds the zero element 0 to the semigroup X+S whose addition µX+S is the composite

(X + S)× (X + S)
∼=−→ X ×X +X × S + S ×X + S × S 1+1×k+k×1+1−−−−−−−−−−→

X ×X +X ×X +X ×X + S × S [µX ,µX ,µX ,µS ]−−−−−−−−−−→ X + S .

For our particular example, let X be the additive semigroup of positive real numbers, presented as
in�nite binary expansions excluding those having only �nitely many terms equal to 1. Let S be the
set of all positive rational numbers of the form m

2n , where n and m are integers, presented as binary



32 G. Janelidze, R. Street

expansions s having only �nitely many terms equal to 1. De�ne k : S → X to replace the last 1 in
s with a 0 and all the later 0s by 1s; for example, k(1.00 . . . ) = 0.11 . . . . Then {0}+X + S is our
monoid ZP[0,∞) of paradoxical positive reals. In there we have, for example,

(0.11 . . . ) + (0.11 . . . ) = (0.11 . . . ) + (1.00 . . . ) = 1.11 . . .

and
(1.00 . . . ) + (1.00 . . . ) = 10.00 . . . .

We note that ZP[0,∞) is not only an ordered monoid, but, considered as an ordered set with ∞
added, is the free completion of S under arbitrary joins; this is in contrast to the ordinary [0,∞],
which is the existing-join-preserving completion.

5 Series monoidal categories

Let A be a category. Given an object 0 of A , de�ne the functor

δ : A −→ A N×N

by

δ(A)m,n =

{
A if m = n,

0 if m 6= n.

For A ∈ A N and a functor Σ: A N → A , note that δ(ΣnAn) and Σnδ(An) are not too di�erent:

δ(ΣnAn)r,s =

{
ΣnAn if r = s,

0 if r 6= s

while

Σnδ(An)r,s =

{
ΣnAn if r = s,

Σ(0, 0, . . . ) if r 6= s .

So, if we have an isomorphism λ00: 0 → Σ(0, 0, . . . ), then there is an induced isomorphism
λ00: δ(ΣnAn)→ Σnδ(An) which is the identity on the diagonal and λ00 elsewhere.

De�nition 5.1. A series monoidal category is a category A equipped with an object 0 ∈ A , a
functor

Σ : A N −→ A , (Ai)i∈N 7−→ Σi∈NAi

and natural isomorphisms

A N×N

σ1

��

σ2 // (A N)N

ΣN

��γ +3
(A N)N

ΣN

��

A N

Σ

��

,

A N
Σ

// A

A

A ! !!

δ // (A N)N

ΣN{{

λ +3

A N (5.1)
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subject to the conditions that the components of the λn at 0 are all equal and diagrams (5.2) and
(5.3) commute.

ΣmΣpΣnAmnp
γΣnA�n�

((
ΣmΣnΣpAmnp

ΣmγAm��

66

γΣpA��p

��

ΣpΣmΣnAmnp

ΣpγA��p

��
ΣnΣmΣpAmnp

ΣnγA�n� ((

ΣpΣnΣmAmnp

ΣnΣpΣmAmnp

γΣmAm��

66

(5.2)

ΣmΣnδ(Am)n,p
γδ(A�)�p // ΣnΣmδ(Am)n,p

ΣmAm
λpΣmAm

//

ΣmλpAm

OO

Σnδ(ΣmAm)n,p

Σnλ00

OO

(5.3)

Just as Proposition 2.8 used (2.4) and (2.1), we can use (5.1) to obtain a canonical isomorphism

ξ̂ : ΣrAξ(r) ∼= ΣnAn (5.4)

for any injective function ξ : N→ N and any A ∈ A N with An = 0 for n not in the image of ξ.
If ξ : N→ N×N is an injective function and Am,n = 0 for (m,n) not in the image of ξ, then we

have a canonical isomorphism
ξ̂ : ΣrAξ(r) ∼= ΣmΣnA(m,n) .

Clearly the dual A op of a series monoidal category A is series monoidal with the same Σ and
0.

Example 5.2. Any category A with countable coproducts is series monoidal with Σ taken to be
the coproduct. Dually, any category with countable products is series monoidal. For A = SerMn,
these two series monoidal structures coincide (by Proposition 2.13).

Example 5.3. Of course every partially ordered set is a category with at most one morphism be-
tween one object and another. This category structure is compatible with the series monoid structure
of the countable-sup-lattice example (Example 2.7) and so gives a series monoidal category. This
is actually a special case of Example 5.2.

Example 5.4. Indeed, every series monoid A is a series monoidal category by regarding it as
a discrete category. Also A is a series monoidal category by regarding it as a category using the
pre-order de�ned in Section 2; Higgs [9] proves this is a partial order when A is a magnitude module.



34 G. Janelidze, R. Street

Example 5.5. Let R be a commutative ring and consider the category ModR of R-modules. As
usual, for A ∈ ModN

R and any R-module B, de�ne a function f :
∏
n∈NAn → B to be multilinear

when each
f(a0, a1, . . . , am−1,−, am+1, . . . ) : Am → B

is an R-module morphism. By the Representability Theorem [20], there is a universal multilinear
function q :

∏
nAn →

⊗
nAn. For R = C, Ng [21] makes some use of this tensor product, along

with some variants. Here we merely note that ModR becomes series monoidal with Σ =
⊗

and
0 = R.

Example 5.6. Let R be a commutative monoid in the monoidal category SerMn (Section 3) and
consider the category SerMdR of R-modules; that is, the category of Eilenberg-Moore algebras for
the monad R⊗− on SerMn. In Proposition 4.8 we referred to the fact that magnitude modules are
precisely [0,∞]-modules in this sense.

As before, for A ∈ SerMdN
R and any R-module B, de�ne a function f :

∏
n∈NAn → B to be

multilinear when each
f(a0, a1, . . . , am−1,−, am+1, . . . ) : Am → B

is an R-module morphism. By the Representability Theorem [20], there is a universal multilinear
function q :

∏
nAn →

⊗
R nAn. Then SerMdR becomes series monoidal with Σ =

⊗
R and 0 = R.

In particular, when R = N ∪ {∞}, SerMdR = SerMn and the binary case of
⊗

R is the monoidal
structure of Section 3.

Example 5.7. For a sequence A = (An)n∈N of small categories and a category X, a funny functor
f : A → X is a function assigning to each object a ∈

∏
nAn an object f(a) ∈ X, equipped with

the structure of a functor Am → X on each object assignment am 7→ f(a) with all an ∈ An �xed
for n 6= m. There is a category ¨̂ A = ¨̂ n∈NAn such that funny functors A → X are in natural
bijection with functors ¨̂ A→ X. There is a series monoidal structure on the category Cat of small
categories where Σ = ¨̂ .

We now make the natural de�nition of series monoidal functor.

De�nition 5.8. Suppose A and X are series monoidal categories. A functor F : A →X is series
monoidal when it is equipped with a morphism ϕ0 : 0 → F0 in X and a natural transformation
with components

ϕA : ΣnFAn −→ FΣnAn

such that diagrams (5.5) and (5.6) commute. We call F series strong monoidal when ϕ and ϕ0 are
invertible.

A series monoidal functor M : 1 → A is called a series monoid in A ; that is, M is an object
of A equipped with morphisms s0 : 0 → M and s : N ·M = Σ(M,M, . . . ) → M subject to the two
conditions (5.5) and (5.6) with ϕ0 = s0 and ϕ∗ = s for ∗ ∈ 1. Since series monoidal functors
compose, they take series monoids to series monoids.
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ΣmFΣnAmn
ϕΣnA�n

((
ΣmΣnFAmn

ΣmϕAm�

66

γFA

��

FΣmΣnAmn

FγA

��
ΣnΣmFAmn

ΣnϕA�n ((

FΣmΣnAmn

ΣnFΣmAmnp

ϕΣmAm�

66

(5.5)

FΣnδ(A)n,p
ϕδ(A)�p // ΣnFδ(A)n,p

FA
λpFA

//

FλpA

OO

Σnδ(FA)n,p

Σnϕ0

OO

(5.6)

Example 5.9. For any series monoidal category A , the hom functor

A (−.−) : A op ×A −→ Set

is series monoidal where the series monoidal structure on Set is countable product. Here ϕ0 : 1→
A (0, 0) picks out the identity morphism of 0 ∈ A while ϕ(C,A) is the e�ect∏

n∈N
A (Cn, An) = A N(C,A)

Σ−→ A (Σn∈NCn,Σn∈NAn)

of the functor Σ on homs. It follows that, if C is a series comonoid in A (= series monoid in A op)
and A is a series monoid in A (so that (C,A) is a series monoid in A op × A ), then A (C,A)
becomes a series monoid in Set; naturally this is called convolution.

De�nition 5.10. Suppose F,G : A →X are series monoidal functors. A natural transformation
σ : F ⇒ G is series monoidal when the two diagrams (5.7) commute.

ΣnFAn
ΣnσAn //

ϕA

��

ΣnGAn

ϕA

��
FΣnAn

σΣAn

// GΣnAn

0

ϕ0   

ϕ0 // F0

σ0}}
G0

(5.7)

With the obvious compositions, this de�nes a 2-category SerMnCat. Write SerMnsCat for
the sub-2-category obtained by restricting to the series strong monoidal functors. The 2-category
SerMnCat has products preserved by the forgetful 2-functor into Cat. It is immediate from the
de�nitions that:
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Proposition 5.11. For any series monoidal category A , the functor

Σ: A N → A

is series strong monoidal.

Associated with this kind of �commutativity� of the theory is the fact that any countable product
of series monoidal categories is also the bicategorical coproduct in SerMnsCat; that is, SerMnsCat
has countable direct sums in the bicategorical sense.

Example 5.12. The forgetful functor U: ModR → Set becomes a morphism of SerMnCat on
invoking the series monoidal structure of Example 5.5 on ModR and countable product on Set.
Taken together with the free R-module functor, this gives an adjunction F a U in the 2-category
SerMnCat. By doctrinal adjunction (see Kelly [15]), F is strong series monoidal.

Example 5.13. The forgetful functor U: SerMdR → Set becomes a morphism of SerMnCat on
invoking the series monoidal structure of Example 5.6 on SerMdR and countable product on Set.
Taken together with the free R-module functor, this gives another adjunction F a U in the 2-
category SerMnCat. By Kelly [15], F is strong series monoidal. The free R-module on N is RN

with pointwise Σ and R-action. We make it into a monoid in SerMdR by the usual convolution
formula using addition in N. Taking x ∈ RN to be (0, 1, 0, 0, . . . ), we can write each a ∈ RN as
a power series a = a0 + a1x + a2x

2 + . . . . We will denote this monoid of power series by RJxK
(although there is a good case for calling it R[x]). Then we have the free series R-module⊗

n∈N
RJxnK ∼= RJx0, x1, x2, . . .K

on NN consisting of the functions p : NN → R of countable support (thought of as power series∑
a p(a)xa00 xa11 xa22 . . . ). Let δ : RJxK→ RJx0, x1, x2, . . .K be the R-monoid morphism de�ned by

δ(x) = Σixi + Σi<jxixj + Σi<j<kxixjxk + . . . .

This provides RJxK with the structure of a series comonoid in SerMdR (that is, a series monoid
in SerMdop

R ); indeed, it is a series comonoid in the series monoidal category of R-monoids (one
possibility for the term �series R-bimonoid�). For any commutative monoid A in SerMdR, transport
across the isomorphism Mon(SerMdR)(RJxK, A) ∼= A takes convolution to the series monoid struc-
ture on A as in Proposition 3.3. Alternatively, we can transport the convolution structure across
the isomorphism SerMdR(RJxK, A) ∼= AN to obtain a generalized Rota-Baxter-type series monoid
structure on AN (compare Remark 11 of [27]).

For any series monoidal category A and subset S ⊆ N, we can de�ne a functor ΣS : A S → A
whose value at A ∈ A S is

Σn∈SAn = Σn∈NCn (5.8)

where

Cn =

{
An if n ∈ S
0 otherwise.
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When An = B for all n ∈ S, we also put

S ·B := Σn∈SAn . (5.9)

Using (5.4), we obtain, for any bijection ξ : S → T , an isomorphism

ξ̂ : Σr∈SAξ(r) ∼= Σn∈TAn (5.10)

with the special case

ξ̂ : S ·B ∼= T ·B . (5.11)

This de�nition transports to any bijection ξ between any countable sets S and T yielding a functor

− · − : CF×A −→ A , (S,B) 7→ S ·B , (5.12)

where CF is the category of countable sets and all functions. Notice that, for S, T ⊆ N and
A = (Am,n)(m,n)∈S×T , the isomorphism γ of (5.1) restricts to an isomorphism

γ : Σm∈SΣn∈TAm,n ∼= Σn∈TΣm∈SAm,n .

When S is any countable set and A = (Am)m∈T , this transports to an isomorphism

γ : S · Σn∈TAn ∼= Σn∈TS ·An . (5.13)

For any countable T and A ∈ A , we obtain

γ : S · (T ·A) ∼= T · (S ·A) ,

and this is isomorphic to (S × T ) ·A.
Write evS : S · AS → A for the morphism corresponding to the identity of AS . Then each

bijection ξ : S → T determines an isomorphism

ξ : AS → AT (5.14)

which corresponds to the composite T ·AS ξ̂−1·1−−−→ S ·AS evS−−→ A.

Proposition 5.14. The tensor product de�ned by

A1 +A2 = Σn∈{1,2}An . (5.15)

renders A symmetric monoidal with 0 as tensor unit. Moreover, Σ : A N → A is a symmetric
strong monoidal functor.

For series monoidal categories A and X , the category SerMnsCat(A ,X ) is series monoidal
under the pointwise series monoidal structure; we write Ser(A ,X ) for this series monoidal category.
For a sequence F = (Fn)n∈N of series strong monoidal functors Fn : A →X , the de�nition of ΣF
is the composite

A
(Fn)−−−→X N Σ−→X . (5.16)
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The forgetful 2-functor

U: SerMnsCat→ Cat (5.17)

is monadic in a bicategorical sense. In particular, it has a left biadjoint (see [3] for this sort of
result) whose value at the terminal category can be made explicit.

Proposition 5.15. The 2-functor (5.17) is pseudo-representable by the series monoidal category
CB with countable sets as objects, bijective functions as morphisms, and disjoint union as Σ. To
be precise, for any series monoidal category A , the category of series strong monoidal functors
CB→ A is pseudonaturally equivalent to the category A . A series monoidal equivalence

Ser(CB,A ) ' A ,

de�ned by evaluation at the singleton set, follows therefrom.

Proof. Given an object A ∈ A , we de�ne a series strong monoidal functor F : CB → A with
F1 = A as follows. De�ne F− = − · A as per (5.12) with series monoidal structure supplied by
(5.13). The assignment A 7→ F is the object function for a functor A → Ser(CB,A ) de�ned on
morphisms by universality. This provides the inverse equivalence to evaluation at 1. q.e.d.

We also have the 2-functor

sermn: SerMnsCat −→ Cat (5.18)

which takes each series monoidal category A to the category

sermnA = SerMnCat(1,A )

of series monoids in A .

Proposition 5.16. The 2-functor (5.18) is pseudo-representable by the series monoidal category
CF with countable sets as objects, functions as morphisms, and disjoint union (coproduct) as Σ.
To be precise, an equivalence of categories

SerMnsCat(CF,A ) ' sermnA ,

pseudonatural in series monoidal categories A .

Proof. Given a series monoid A ∈ A , we have the series strong monoidal functor F : CB→ A with
F1 = A as in Proposition 5.15. Using the series monoid structure s0 : 1 → A, s : N · A → A on A,
we can extend F to a series strong monoidal functor F ′ : CF → A as follows. For any S ⊆ N, let
An = A for all n ∈ N, let Cn = A for all n ∈ S, let Cn = 1 for all n /∈ S, and let un : Cn → An be
the identity of A for n ∈ S and s0 otherwise. We can de�ne(

S ·A sS−→ A
)

=
(

ΣnCn
Σnun−−−→ ΣnAn

s−→ A
)
.

For any order-preserving function α : S → T between subsets of N, we obtain

(S ·A sα−→ T ·A) := (Σn∈Tα
−1(n) ·A

Σn∈T sα−1(n)−−−−−−−−−→ Σn∈TA) .
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For a bijective ξ : S → S, we already have ξ̂ : S ·A ∼= S ·A as in (5.11). As every function α : S → T
is a composite of an automorphism α1 : S → S and an order-preserving function α2 : S → T , we
obtain

Fα = sα = sα2
◦ α̂1 : S ·A→ T ·A

in A . The remaining details of the proof that this gives an inverse equivalence are as for �nite sets,
symmetric monoidal categories, and commutative monoids. q.e.d.

As a bicategory, SerMnsCat is symmetric closed monoidal in the sense of [5]. There is a tensor
product A ⊗B satisfying pseudonatural equivalences

SerMnsCat(A ,Ser(B,X )) ' SerMnsCat(A ⊗B,X )

' SerMnsCat(B,Ser(A ,X )) . (5.19)

A diagonal for an object A of a series monoidal category A is a morphism d : A −→ Σ(A,A, . . . )
such that, for all bijections ξ : N→ N× N, the following square commutes.

A
d //

d

��

Σ(A,A, . . . )

ξ̂

��
Σ(A,A, . . . )

Σ(d,d,... )
// Σ(Σ(A,A, . . . ),Σ(A,A, . . . ), . . . )

(5.20)

De�nition 5.17. A magnitude module M in a series monoidal category A is a series monoid
equipped with a diagonal morphism d : M −→ Σ(M,M, . . . ) and a series monoid endomorphism
h : M →M such that the composite

h̃ : M
d−→ Σ(M,M, . . . )

(h,h◦h,h◦h◦h,... )−−−−−−−−−−−→ Σ(M,M, . . . )
s−→M (5.21)

is the identity of M .

6 Zeno functors and magnitude categories

Let F : A → A be a series monoidal endofunctor on the series monoidal category A . For each
n ∈ N, we have the n-fold composite series monoidal endofunctor

F ◦n =

n︷ ︸︸ ︷
F ◦ F ◦ . . . F : A −→ A .

By the product property of A N in SerMnCat, a series monoidal functor

F ◦(�+1) : A −→ A N

is induced. This composes with the series strong monoidal functor Σ of Proposition 5.11 to yield a
series monoidal functor

F̃ = Σn∈NF
◦(n+1) : A −→ A . (6.1)

There are canonical natural isomorphisms

F + F ◦ F̃ ∼= F̃ and F̃ ◦ F ∼= F ◦ F̃ . (6.2)
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De�nition 6.1. A Zeno functor on A is a series strong monoidal functor H : A → A equipped
with a series monoidal isomorphism κ : 1A

∼= H̃ such that (6.3) commutes. A magnitude category
is a series monoidal category equipped with a Zeno functor H.

H

κ◦H ""

H◦κ // H ◦ H̃

H̃ ◦H
(6.2)

::

(6.3)

Example 6.2. When A = CB or A = CF, there exists no Zeno functor since 1 is not isomorphic
to a disjoint union of a set with itself.

Example 6.3. Any magnitude module, either as a discrete category or with its partial order, is a
magnitude category.

Example 6.4. For any category C and magnitude category A , the functor category [C ,A ] is
a magnitude category with the pointwise structure. If C is serial monoidal then Ser(C ,A ) is a
magnitude subcategory of [C ,A ].

De�nition 6.5. A magnitude functor F : A → X is a series monoidal functor equipped with a
series monoidal natural transformation ν1 : H ◦ F ⇒ F ◦ H compatible with the series monoidal
isomorphisms κ : 1A

∼= H̃ in the sense that (6.4) should commute. It is strong when it is series
strong monoidal and ν1 is invertible.

The natural transformation ν1 : H ◦F ⇒ F ◦H inductively determines natural transformations
νn : H◦n ◦ F ⇒ F ◦H◦n via

νn+1 : H◦(n+1) ◦ F H◦nν1−−−−→ H◦n ◦ F ◦H νn◦H−−−→ F ◦H◦(n+1) ,

and hence a natural transformation

ν̃ = Σn>0νn : F ◦ H̃ ⇒ H̃ ◦ F .

We ask commutativity of

F

κ◦F ""

F◦κ // F ◦ H̃

H̃ ◦ F
ν̃

::

.

(6.4)

Example 6.6. For a magnitude category A , the Zeno functor H : A → A is a magnitude functor
with ν1 = 1H◦H .

De�nition 6.7. Suppose F,G : A → X are magnitude functors. A magnitude natural trans-
formation σ : F ⇒ G is a series monoidal natural transformation for which the following square
commutes.
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H ◦ F ν1 //

Hσ

��

F ◦H

σH

��
H ◦G

ν1
// G ◦H

With the obvious compositions, this de�nes a 2-category MgnCat of magnitude categories,
magnitude functors and magnitude natural transformations. We write MgnsCat for the sub-2-
category obtained by restricting to strong magnitude functors.

If C and A are magnitude categories then the category Mgn(C ,A ) of strong magnitude functors
and magnitude natural transformations is a magnitude subcategory of Ser(C ,A ).

The countable direct sums of SerMnsCat restrict to MgnsCat; that is, countable products restrict
and the appropriate coproduct injections are magnitude functors.

The forgetful 2-functor
U: MgnsCat→ Cat

is monadic in the bicategorical sense. In particular, it has a left biadjoint.

De�nition 6.8. The value at the terminal category of the left biadjoint to U is called the magnitude
groupoid of positive real sets and denoted by RSetg.

Since RSetg is series monoidal, by Proposition 5.15 there is a series strong monoidal functor

I : CB −→ RSetg

from the series monoidal category of countable sets for which I(1) is the generator of RSetg, which
generator we shall also denote by 1. Indeed, we shall put n : = I(n). We conjecture that I is
faithful.

There is also a strong magnitude functor

#: RSetg −→ [0,∞] ,

called cardinality, taking the generator 1 to the real number 1. It follows that the composite

CB
I−→ RSetg

#−→ [0,∞]

takes each countable set to its cardinality.
For any magnitude category A , by freeness there is a strong magnitude functor

L : RSetg −→ Mgn(A ,A )

taking the generator 1 ∈ RSetg to the identity functor of A ; see (5.16). This gives an action

• : RSetg ⊗A −→ A

of RSetg on A de�ned by S •A = (LS)A. In particular, we have a monoidal structure

• : RSetg ⊗ RSetg −→ RSetg (6.5)

on RSetg in the monoidal bicategory SerMnsCat; the unit is the generator 1 of RSetg.
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Proposition 6.9. The pseudoalgebras for the pseudomonad RSetg ⊗ − on SerMnsCat are the
magnitude categories.

We de�ne some objects of RSetg by

1

2
= H(1) ,

1

2n
= H◦n(1) ,

1

3
= Σn>0

1

22n
,
1

4
=

1

22
,

m

22n
= m • 1

22n
,

and so on. For any natural number k, let t be the �rst natural number with k ≤ 2t and can de�ne

1

k
= Σn∈N

(
(2t − k)

n

2t(n+1)

)
.

More typically, to obtain an object of cardinality π, express π − 3 = 0.a1a2 . . . in binary form,
let amn = 1 be the nth non-zero term in that expansion. Then

Π = 3 +
1

2m1
+

1

2m2
+ . . .

is an object of RSetg with #Π = π. A more di�cult question is whether Π has interesting auto-
morphisms.

For any magnitude category A , we can de�ne an exponential functor

E : A −→ A (6.6)

by

E(X) = Σn∈N
1

n!
• X•n . (6.7)

We also have the 2-functor

sermn: MgnsCat −→ Cat (6.8)

which takes each magnitude category A to the category sermnA of series monoids in A .

De�nition 6.10. The pseudo-representing object for the 2-functor (6.8) is called the magnitude
category of positive real sets and denoted by RSet. That is, there is an equivalence of categories

MgnsCat(RSet,A ) ∼= sermnA ,

pseudonatural in magnitude categories A .

There is a magnitude functor RSetg −→ RSet taking 1 to the generator 1 of RSet.

Remark 6.11. Here is a construction of RSet in the spirit of Remark 4.7. Begin with the pointwise
series monoidal category R1 = CFN of sequences of countable sets. We have a series strict monoidal
functor H1 : R1 → R1 de�ned as the suspension H1(X0, X1, X2, . . . ) = (0, X0, X1, . . . ). We then
form the series strict monoidal functor H̃1; the formula is

H̃1(X0, X1, . . . ) = (0, X0, X0 +X1, . . . ) = (Σn<0Xn,Σn<1Xn,Σn<2Xn, . . . ) .
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Note that H̃1 ◦H1 = H1 ◦ H̃1. Now form the isocoinserter (6.9) of the identity functor of R1 and
H̃1 in the 2-category SerMnsCat.

R1

1R1

��

H̃1 // R1

P1

��

κ1 +3

R1
P1

// R2

(6.9)

Since we have the isomorphism P1 ◦H1
κ1H1−−−→ P1 ◦ H̃1 ◦H1 = P1 ◦H1 ◦ H̃1, the universal property

of (6.9) yields a unique series strong monoidal functor H2 : R2 → R2 such that H2 ◦ P1 = P1 ◦H1

and H2 ◦ κ1 = κ1 ◦H1. It follows that H̃2 ◦ P1 = P1 ◦ H̃1 and H̃2 ◦ κ1 = κ1 ◦ H̃1. So the universal
property of (6.9) yields a unique series strong monoidal natural isomorphism κ2 : 1R2

⇒ H̃2 such
that κ2 ◦ P1 = κ1. Note also that H̃2 ◦H2 = H2 ◦ H̃2. So we have two 2-cells H2 ◦ κ2 and κ2 ◦H2

from H2 to H̃2 ◦ H2 and we can take their coequi�er P2 : R2 → R in the 2-category SerMnsCat.
From the universal property of the coequi�er, we obtain a unique series strong monoidal functor
H : R → R with P2 ◦H2 = H ◦P2, and then obtain a unique series monoidal natural isomorphism
κ : 1R ⇒ H̃ with κ◦P2 = P2 ◦κ2. Now (6.3) is satis�ed and we have a Zeno functor (H,κ) making
R a magnitude category.

Proposition 6.12. The magnitude category R constructed in Remark 6.11 is equivalent to RSet.

Proof. The universal properties of R2 and R combine to show that strong magnitude functors
F : R → A are in bijection with series strong monoidal functors G : R1 → A equipped with a
series monoidal isomorphism

ν1 : H ◦G⇒ G ◦H1 .

However, R1 = CFN is the coproduct of countably many copies of CF. So, to give G is equivalently
to give a sequence of series strong monoidal functors Gn : CF → A . By Proposition 5.16, to give
such a sequence is equivalent to giving a sequence of series monoids An in A . However, ν1 induces a
series monoid isomorphism νn : HAn ∼= An+1. So the sequence of series monoids is, up to canonical
isomorphism, determined by the single series monoid A = A0. q.e.d.

7 Remarks on integer sets

To obtain reals from integers, Higgs taught us to introduce a halving operation. It is obvious
to all that to obtain integers from natural numbers, we need to introduce a minus operation. A
categorical version of minus might be dual. If we think of the categorical integers as forming the
free symmetric monoidal category on a single generating object, we might think of the categorical
integers as forming a compact closed category in the sense of Kelly [14]; this includes symmetry.

Let symMon denote the groupoid-enriched category of symmetric monoidal categories, sym-
metric strong monoidal functors, and monoidal natural isomorphisms. Let CmpClsd denote the
full sub-groupoid-enriched category of symMon consisting of the compact closed categories. The
inclusion

CmpClsd −→ symMon

has a left biadjoint. The value of this biadjoint at the category FB of �nite sets and bijections
might be a candidate for a category ZSet of integer sets.
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A category IntRel of integer sets and relations was introduced in [13]. It is the free tortile
monoidal category on the symmetric traced monoidal category Rel of sets and relations. The
explicit description can be found in Section 6 of [13]: the objects are pairs (X,U) of sets and the
morphisms R : (X,U)→ (Y, V ) are relations from X + V to Y +U , while the composition uses the
trace. Trace categorizes the cancellation property of addition of natural numbers.

Lemma 7.1. If a morphism R : X + U → Y + U in Rel is the graph of an injective function
f : X + U → Y + U and U is a �nite set then the trace TrUX,Y (R) : X → Y is the graph of an

injective function TrU (f) : X → Y . Indeed, TrU (f)(x) = f◦n(x) ∈ Y where n > 0 is such that
f◦m(x) ∈ U for all m < n. If f : X + U → Y + U is bijective then so is TrU (f) : X → Y .

Proof. This is an easy exercise for a reader who recalls the matrix formula for TrUX,Y (R) in [13].
The reason there is such an n is that U is �nite. q.e.d.

Therefore, we may wish to replace symMon by the groupoid-enriched category symMon∗ of
symmetric monoidal categories for which the tensor unit is initial. Then the appropriate replacement
for FB is the category FI of �nite sets and injective functions; by Lemma 7.1, both of these are
traced monoidal subcategories of Rel.

This produces two candidates IntFI and IntFB for categories of integer sets. The objects are
pairs (X,U) of �nite sets and the morphisms f : (X,U)→ (Y, V ) are injective or bijective functions
f : X+V → Y +U , respectively. The composite g◦f of f : (X,U)→ (Y, V ) and g : (Y, V )→ (Z,W )
is the trace TrV (g#f) of the function g#f : X + W + V → Z + U + V de�ned as follows. For
p ∈ X + V ,

g#f(p) =

{
g(f(p)) ∈ Z + V if f(p) ∈ Y,
f(p) ∈ U otherwise ;

while g#f(p) = g(p) ∈ Z + V for p ∈W .
Of course, N is traced monoidal as an ordered set under addition. We have the inclusion functor

FB → FI and the cardinality functor FI → N which are both traced symmetric strong monoidal.
Since Int is a groupoid-enriched functor, we obtain symmetric strong monoidal functors

IntFB −→ IntFI −→ Z

providing cardinalities for �integer sets�.
A geometric approach, based on the idea that Euler characteristic extends cardinality, is that

of Schanuel [22].

Remark 7.2. There is a classical obstruction to having both associative in�nite sums and negatives.
The only element c with an inverse −c for the binary addition in a series monoid is 0. The proof
goes back to Euler:

0 = 0 + 0 + · · · = (c− c) + (c− c) + · · · = c+ (−c+ c) + (−c+ c) + · · · = c.

A di�erent tack, suggested by Remark 3.6 following Day, is to note that RSetg itself with
the multiplication monoidal structure (6.5), might be considered up to equivalence to be not just
positive but all extended real sets, with addition as the monoidal structure. We do not know
whether this structure is ∗-autonomous.
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8 Categories enriched in a series monoidal category

Let V denote a series monoidal category. It becomes symmetric monoidal under binary summation
according to Proposition 5.14. The usual notion of V -category A makes sense as per [16]. Because
of the symmetry, the opposite A op and tensor product, here written as a sum A + B, of enriched
categories are already de�ned.

What we wish to point out now is the possibility to sum series of V -categories. By Propo-
sition 5.14, we have the symmetric strong monoidal functor Σ: V N → V and so, the symmetric
strong monoidal 2-functor

Σ∗ : V N-Cat −→ V -Cat

in the notation of Eilenberg-Kelly [6]. There is also the symmetric strong monoidal 2-functor

Q: (V -Cat)N −→ V N-Cat

taking a sequence A = (An)n∈N of V -categories to the V N-category QA whose objects are objects
of the cartesian product

∏
n∈N An and whose homs are de�ned by QA (A,B)n = An(An, Bn). Now

de�ne Σ by composing thus:

Σ: (V -Cat)N
Q−→ V N-Cat

Σ∗−−→ V -Cat . (8.1)

Explicitly, for a sequence A = (An)n∈N of V -categories, the objects of ΣA are families A =
(An)n∈N of objects An ∈ An, whereas the homs are de�ned by ΣA (A,B) = ΣnAn(An, Bn). In the
obvious sense:

Proposition 8.1. The 2-category V -Cat is series monoidal with this choice of Σ.

Proposition 8.2. There is a series monoidal 2-functor

SerMnCat→ sMon2-Cat

taking V to V -Cat and F : V → W to F∗ : V -Cat→ W -Cat.

When our base series monoidal category V is cocomplete in a manner allowing discussion of the
bicategory V -Mod of V -categories and V -modules, the operation (8.1) extends to

Σ: (V -Mod)N −→ V -Mod . (8.2)

This provides an example V -Mod of a series monoidal bicategory, leading on to series promonoidal
categories and convolution.

9 ω-Magmas and ω-monoids

It is natural to de�ne monoidal categories before symmetric monoidal categories, yet here, with
the countable version, we have presented the commutative case without mentioning the non-
commutative possibility. The next two sections correct that omission for posterity.

Now we wish to pass to multiplicative terminology rather than additive. We call a series magma
A an ω-magma when the operation Σ: AN → A is denoted by⊗ : Aω → A, where ω = N as a linearly
ordered set, and 0 ∈ A is denoted by 1 ∈ A. The informal notation ⊗n∈ωan = a0⊗a1⊗ . . . is also
helpful.
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We recall (2.2) in the new notation. For any ω-magma A and subset S ⊆ ω, we can de�ne an
operation ⊗S : AS → A whose value at a ∈ AS is

⊗n∈San =⊗n∈ωcn (9.1)

where

cn =

{
an if n ∈ S
1 otherwise .

De�nition 9.1. An ω-monoid A is an ω-magma such that, for all order-preserving functions
ξ : ω → ω,

⊗n∈ω⊗m∈ξ−1(n)am =⊗n∈ωan . (9.2)

Remark 9.2. Each �bre ξ−1(n) of an order-preserving function ξ : ω → ω is either �nite or forms
a �nal segment of ω. The latter case occurs only if ξ has �nite image, and then only for the last
�bre.

Remark 9.3. After submitting the present paper, it came to our notice that (9.2) is also the
�general associativity postulate� (II') of Tarski [29]. He claimed it too restrictive for his purposes.

Example 9.4. Every series monoid is an ω-monoid with ⊗ = Σ and 1 = 0.

Example 9.5. If A admits an associative binary multiplication in SerMn then A becomes an ω-
monoid with ⊗ = P (see (3.1)) and 1 = 0. This was foreshadowed in Remark 3.5.

10 ω-Monoidal categories

For any category A , object I ∈ A , and functor

⊗ : A ω −→ A , (Ai)i∈ω 7−→⊗i∈ωAi ,

each subset S ⊆ ω, determines an operation ⊗S : A S → A whose value at A ∈ A S is

⊗n∈SAn =⊗n∈ωCn (10.1)

where

Cn =

{
An if n ∈ S
I otherwise .

For S, T ⊆ ω and any function ξ : S → T , de�ne ξ∗ : A S → A T by

ξ∗(A)n =⊗ξ(m)=nAm

for all A ∈ A S and n ∈ T .

De�nition 10.1. An ω-monoidal category is a category A equipped with an object I ∈ A , a
functor

⊗ : A ω −→ A , (Ai)i∈ω 7−→⊗i∈ωAi
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and, for all order-preserving functions ξ : ω → ω, natural isomorphisms

A ω

⊗ !!

ξ∗ // A ω

⊗}}

αξ +3

A

A

1A !!

δn // A ω

⊗||

λn +3

A

(10.2)

subject to the conditions that the components of the λn at I are all equal and there are the equations
(10.3) and (10.4) of pasting diagrams.

A ω ζ∗ //

⊗

��

A ω ξ∗ //

⊗

��

A ω

⊗

��

A ω
(ξζ)∗ //

⊗

��

A ω

⊗

��

=

A A

αζ ,4 αξ +3
αξζ +3 (10.3)

A
δn //

1A

��

A ω ξ∗ //

⊗

��

A ω

⊗

��

A
δξ(n) //

1A

��

A ω

⊗

��

=

A A

λn ,4 αξ +3
λξ(n) +3 (10.4)

Example 10.2. Every series monoidal category is ω-monoidal with ⊗ = Σ and I = 0.

Example 10.3. As a categorical version of Example 9.5, if A is a �series rig category�, possibly
without unit, then A becomes ω-monoidal with ⊗ taken to be a categorical version of the P of (3.1)
and I = 0.
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