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Abstract

Generalizing distributions is important for applied statisticians and recent literature has sug-

gested several ways of extending well-known distributions. We propose a new class of distri-

butions called the Marshall-Olkin Burr X family, which yields flexible shapes for its density

such as symmetrical, left-skewed, right-skewed and reversed-J shaped, and can have increas-

ing, decreasing,constant, bathtub and upside-down bathtub hazard rates shaped. Some of

its structural properties including quantile and generating functions, ordinary and incomplete

moments, and mean deviations are obtained. One special model of this family, the Marshall-

Olkin-Burr-Lomax distribution, is investigated in details. We also derive the density of the

order statistics. The model parameters are estimated by the maximum likelihood method. For

illustrative purposes, three applications to real life data are presented.
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1 Introduction

Generalizing distributions is an old practice and has ever been considered as precious as other

practical problems in applied probability and statistics. The modern era on lifetime models aims to

study new classes in order to explain how the lifetime phenomenon arises in many fields like biol-

ogy, medicine, public health, engineering, industry, communications, computer science, insurance,

life-testing and many others. For example, the classical distributions such as exponential, Rayleigh,

Weibull and gamma are very limited in their characteristics and are unable to show wide flexibility.

In many practical situations, classical distributions do not provide adequate fits to real data. For

example, if the data are asymmetric, the normal distribution can not be a good choice. So, several

generators having one or more extra shape parameters have been proposed in the statistical litera-

ture to generate new models. Marshall and Olkin (1997) pioneered an ingenious general method of

adding a shape parameter to a family of distributions. The new parameter gives more flexibility to

the generated distribution. Let Ḡ(x) = 1−G(x) be the baseline survival function (sf) of a random

variable X. Let g(x) = d
dx G(x) and g(x) be the probability density function (pdf) and cumulative

distribution function (cdf) of X. Then, the sf of the Marshall-Olkin (MO for short) family is defined

by

F̄MO(x;α) =
α Ḡ(x)

1− ᾱ Ḡ(x)
, α > 0 (1.1)

where ᾱ = 1 − α is an additional positive parameter. Clearly, α = 1 leads to Ḡ(x, α) = F̄ (x).

The cdf and pdf of the MO family are, respectively, given by
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FMO(x;α) =
G(x)

1− ᾱ Ḡ(x)
, (1.2)

fMO(x;α) =
α g(x){

1− ᾱ Ḡ(x)
}2 . (1.3)

The Burr X (BX) (Burr, 1942) distribution has wide applications in agriculture, health, biology,

actuarial sciences, lifetime and survival analysis. The BX model is also known as the generalized

Rayleigh (Surles and Padgett, 2001) distribution. Its cdf is given by

Π(x;λ, θ) =
[
1− e−(λx)2

]θ
, x > 0 (1.4)

where λ > 0 is a scale parameter and θ > 0 is a shape parameter. Recently, Santos-Neto et al.

(2014) used the adequate function HR(x) = − log[1− R(x)] in (0,∞) for any baseline cdf R(x) in

order to define a new generator cdf based on a lifetime distribution. We assume that R(x) depends

on a parameter vector ξ. The corresponding pdf is hR(x) = d
dxHR(x) = r(x)

1−R(x) , where r(x) is the

baseline pdf.

Further, we propose the BX-R family of distributions using Santos-Neto et al.s approach and taking

the BX cdf in (1.4) for the lifetime distribution. We can write

Π(x) =
{

1− e−[λHR(x)]2
}θ
. (1.5)

Furthemore, the basic motivations for using the MOBX-G family in practice are the following:

• to make the kurtosis more flexible compared to the baseline model;

• to produce a skewness for symmetrical distributions;

• to construct heavy-tailed distributions that are not longer-tailed for modeling real data;

• to generate distributions with symmetric, left-skewed, right-skewed and reversed-J shaped;

• to define special models with all types of the hrf;

• to provide consistently better fits than other generated models under the same baseline distribu-

tion.

The rest of the paper is organized as follows. In section 2, the probability density function (pdf),

cumulative distribution function (cdf), hazard rate function (hrf) and quantile function (qf) are

given. In section 3, mixture representation of the density is given and the asymptotic and shapes

of pdf and hrf are given. In section 4, some mathematical properties are discussed. In section 5, we

gave an expression to calculate stochastic ordering and reliability (stress-strength). In section 6,

the expression of ith order statistics is given and estimation of parameters is discussed for complete

samples as well as for censored samples. In section 7, four special models are considered and one of

them is discussed in detail. In section 8, simulation is carried out and application on real life data

is given to see the goodness of fit of the proposed family.

2 The new family

Inserting Eq. (1.5) in Eq. (1.2), the cdf of the new Marshall-Olkin Burr X (MOBX) family is

defined by
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F (x;α, λ, θ, ξ) =

{
1− e−[λHR(x)]2

}θ
1− ᾱ

{
1−

[
1− e−{λHR(x)}2

]θ} . (2.1)

The pdf and hrf corresponding to Eq. (2.1) are, respectively, given by

f(x;α, λ, θ, ξ) =
2λ2θhR(x)HR(x) e−[λHR(x)]2

{
1− e−[λHR(x)]2

}θ−1

{
1− ᾱ

[
1−

{
1− e−[λHR(x)]2

}θ]}2 , (2.2)

and

γ(x;α, λ, θ, ξ) =
2λ2θhR(x)HR(x) e−[λHR(x)]2

{
1− e−[λHR(x)]2

}θ−1

{
1−

[
1− e−{λHR(x)}2

]θ}{
1− ᾱ

[
1−

{
1− e−[λHR(x)]2

}θ]} . (2.3)

Henceforth, we denote by X ∼ MOBX(λ, θ, α) a random variable having the family density

(2.2), where the baseline parameter vector ξ in R(x) and r(x) is omitted.

The quantile function (qf) of X is determined by inverting (2.1). It can be expressed in terms of

the baseline qf QR(u) = R−1(u) as

QX(u) = R−1

1− exp

−{− 1

λ2
ln

[
1−

(
uα

1− ᾱu

) 1
θ

]} 1
2

 , (2.4)

where and X = Q(u) follows the MOBX family.

where U ∼ u(0, 1). Then, QX(U) follows the MOBX family.

Generating new families from existing distributions makes sense when there are important properties

in the new family and some characteristics of flexibility in applications. This is the case in the

present family. We shall omit the dependence on the parameters in F (.), f(.), etc.

3 Asymptotic and shapes

Let a = inf{x|G(x) > 0}, the asymptotics of equations (2.2), (2.1) and (2.3) as x→ a are given by

F (x) ∼ [λHR(x)]2 θ

α
as x→ a,

f(x) ∼ 2 θ λ2θ hR(x)HR(x)2 θ−1

α
as x→ a,

h(x) ∼ 2 θ λ2θ hR(x)HR(x)2 θ−1

α
as x→ a.
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The asymptotics of equations (2.2), (2.1) and (2.3) as x→∞ are given by

F (x) ∼ αθ e−[λHR(x)]2 as x→∞,
f(x) ∼ αθ λ2 hR(x)e−[λHR(x)]2 as x→∞,
h(x) ∼ αθ λ2 hR(x) as x→∞.

The shapes of the density and hazard functions can be described analytically. The critical points

of the MOBX density function are the roots of the equation:

r′(x)

r(x)
+

r(x)

1−R(x)
− r(x) [1−R(x)]

−1

{log [1−R(x)]}
− 2

r(x)
{
λ2 [− log {1−R(x)}]

}
1−R(x)

+ (θ − 1)
2λ2r(x) {− log [1−R(x)]} e−λ2{− log[1−R(x)]}2

[1−R(x)]
{

1− e−λ2[− log{1−R(x)}]2
}

−
2ᾱλ2θr(x)e−λ

2{− log[1−R(x)]}2
{

1− e−λ2[− log{1−R(x)}]2
}θ−1

[1−R(x)]
{

1− ᾱ
[
1−

{
1− e−λ2[− log{1−R(x)}]2

}θ]} = 0

This equation may have more than one root. The critical points of γ(x) are obtained from the

equation:

r′(x)

r(x)
+

r(x)

1−R(x)
− r(x) [1−R(x)]

−1

{log [1−R(x)]}
− 2

r(x)
{
λ2 [− log {1−R(x)}]

}
1−R(x)

+ (θ − 1)
2λ2r(x) {− log [1−R(x)]} e−λ2{− log[1−R(x)]}2

[1−R(x)]
{

1− e−λ2[− log{1−R(x)}]2
}

+ 2λ2r(x) {− log [1−R(x)]} e−λ
2{− log[1−R(x)]}2

{
1− e−λ2[− log{1−R(x)}]2

}θ−1

1−
{

1− e−λ2[− log{1−R(x)}]2
}θ

−
ᾱλ2θr(x) e−λ

2{− log[1−R(x)]}2
{

1− e−λ2[− log{1−R(x)}]2
}θ−1

[1−R(x)]
{

1− ᾱ
[
1−

{
1− e−λ2[− log{1−R(x)}]2

}θ]} = 0

By using most symbolic computation software platforms, we can examine these two equations to

determine the local maximums and minimums and inflexion points.

3.1 Mixture representation

In this section, we present useful linear representations for Eqs. (2.2) and (2.1). Using the gener-

alized binomial theorem

(1− z)−k =

∞∑
i=0

(
k + i− 1

i

)
zi,
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and log-power expansion, we get

[log (1 + z)]
a

= a

∞∑
k=0

(
k − a
k

) k∑
j=0

(−1)j

a− j

(
k

j

)
Pj,kz

k,

where ck = (−1)k

k+1 , pj,0 = 1, and Pj,k is determined recursively by

Pj,k =
1

k

k∑
m=1

(jm− k +m)cmPj,k−m.

pj,0 = 1 and ck = (−1)k

k+1

(”http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/”)

Now Equation (2.2) becomes

f(x) =

∞∑
u,k=0

au+k hu+k(x). (3.1)

where

au+k =

∞∑
j=0

wθ(i+1)−1

(u+ k + 1)

[
2λ2θ

∞∑
l=0

(
θ(i+ 1)− 1

l

)
(−1)l

∞∑
m=0

(−1)m (l + 1)mλ2m

m!
Vu+k

]

and wθ(i+1)−1 =

j∑
i=0

(
j

i

)
(j + 1) ᾱj (−1)i

, Vu+k = (−1)aa

∞∑
k=0

(
k − a
k

) ∞∑
q=0

(−1)q

a− q

(
k

q

)
Pq,k (−1)k

Similarly we can write the MOBX family cdf as a mixture of exp-G densities as

F (x) =

∞∑
k=0

au+k+1Hu+k+1(x), (3.2)

where hm+1(x) = (m+ 1)Rm(x) r(x) is the exp-R density with power parameter u+ k + 1.

Equations (3.1) and (3.2) are linear combinations of the cdfs and pdfs of the exp-R distribution.

These linear combination require to be computed numerically in software such as MAPLE, MATH-

EMATICA and Ox. Eq. (3.1) is important to derive some mathematical properties of the EG

distribution from those exp-R properties. The mathematical properties of the exp-R model were

studied by several authors, e.g. Mudholkar et al.(1995), Gupta et al.(1998), Gupta and Kundu

(1999) and Nadarajah and Kotz (2006).

4 Mathematical properties

In this section, we obtain ordinary and incomplete moments, mean deviations about the mean and

the median and moment generating function (mgf) of X using Eq. (3.1) from those quantities of

the exp-R model. From now on, let Yu+k+1 ∼ exp-R with power parameter u+ k + 1.
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4.1 Moment

Based on the linear representation (3.1), we can write

µ′r =

∞∑
u,k=0

au+k E(Y ru+k), (4.1)

where E(Y ru+k) = (u + k + 1)
∞∫
−∞

xr Ru+k(x) r(x) dx = (u + k + 1)
1∫
0

QR(x)n uk du. Explicit

expressions for moments of several exponentiated distributions were derived by several authors.

They can be used to obtain µ′r. Here, we give only one example by taking the baseline Lomax

distribution with shape parameter b > 0 and scale parameter a > 0, and cdf R(x) = 1−
(
1 + x

a

)−b
.

The rth moment of the MOBX-Lomax distribution becomes

µ′r =

∞∑
u,k=0

au+k (u+ k + 1) b

∞∑
n=0

(
u+ k

n

)
(−1)n ar B (r + 1, b(n+ 1)− r)

The central moments (µs) and cumulants (Ks) of X are determined from (4.1) as

µs =
p∑

n=0

(
s

n

)
(−1)n µ′1 µ

′
s−n and Ks = µ′s −

s−1∑
n=1

(
s− 1

n− 1

)
Kn µ

′
s−n respectively, where K1 =

µ′1. Thus, K2 = µ′2−(µ′1)2, K3 = µ′3−3µ′2µ
′
1+2(µ′1)3, K4 = µ′4−4µ′3µ

′
1−3(µ′2)2+12µ′2 (µ′1)2−6(µ′1)4,

etc. The skewness γ1 = K3

K
3
2
2

and kurtosis γ2 = K4

K2
2

can be calculated from the third and fourth

standardized cumulants.

Based on the linear representation (3.1), we can write moment generating function is

MX(t) =

∞∑
u,k=0

au+kMu+k(t), (4.2)

where Mu+k(t) =
∞∫
0

et x hu+k(x) dx

The incomplete moments play an important role to obtain Lorenz and Bonferroni curves, mean

deviations, Zenga index, mean residual life and mean waiting time. The rth incomplete moment of

X can be determined as

mr(y) =

y∫
−∞

xr f(x) dx =

∞∑
u,k=0

R(y)∫
−∞

QR(u)n uk du (4.3)

The last integral can be computed for most baseline G distributions. A general expression

for the first incomplete moment of X can be obtained from (3.1) as m1(y) =
∞∑

u,k=0

au+k Ju+k(y),

where Ju+k(z) =
y∫
−∞

xhu+k(x) dx =
R(y)∫
−∞

Qr(u)uk du is the basic quantity to compute the first

incomplete moment of the exp-R distribution.
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For a given probability p, the Lorenz and Bonferroni curves are given by L(π) = m1(q)
µ′1

and

B(π) = m1(q)
π µ′1

, respectively, where µ′1 = E(X) and q = QX(π) is the qf of X at π given by (2.4).

The mean deviations about the mean δ1 = E(|X−µ′1|) and about the median δ2 = E(|X−M |)
of X can be expressed as δ! = 2µ′1 F (µ′1) − 2m1(µ′1) and δ2 = µ′1 − 2m1(M), respectively, where

µ′1 = E(X), M = Median(X) = QX(0.5) is the median, F (µ′1) is easily evaluated from (2.1) and

m1(z) is the first incomplete moment given by (4.3) with r = 1.

5 Stochastic ordering

The concept of stochastic ordering are frequently used to show the ordering mechanism in life time

distributions. For more detail about stochastic ordering see (Shaked et al ,(1994)). A random

variable is said to be stochastically greater (X ≤st Y ) than Y if FX(x) ≤ FY (x) for all x. In the

simillar way, X is said to be stochastically greater (X ≤st Y ) than Y in the

• stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x.

• hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x.

• mean residual order (X ≤mrl Y ) if mX(x) ≥ mY (x) for all x.

• likelihood ratio order (X ≤hr Y ) if fX(x) ≥ fY (x) for all x.

• reversed hazard rate order (X ≤rhr Y ) if FX(x)
FY (x) is decreasing for all x.

The stochastic orders defined above are related to each other, as the following implications

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y (5.1)

Let X1 ∼ MOBXG(θ, λ, α1) and X2 ∼ MOBXG(θ, λ, α2). Then according to the definition of

likelihood ratio ordering d
dx

[
f(x)
g(x)

]
.

f(x)

g(x)
=

(
1− ᾱ2ξ

1− ᾱ1ξ

)2

Let ξ =

{
1−

[
1− e−{λH(x)}2

]θ}
and ξ′ = −2λ2θh(x)H(x)e−[λH(x)]2

{
1− e−[λH(x)]2

}θ−1

Since, α1 < α2,

d

dx
log

[
f(x)

g(x)

]
=

2ξ′ (ᾱ1 − ᾱ2)

(1− ᾱ1ξ) (1− ᾱ2ξ)
< 0

Hence, f(x)/g(x) is decreasing in x. That is X ≤lr Y . The remaining statements follow from

the implications (5.1).
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6 Stress and strength analysis

In the context of reliability, the stress-strength model defines the life of a element which has a

random strength X1 that is subjected to a accidental stress X2. The component fails at the instant

that the stress applied to it exceeds the strength, and the component will function suitably whenever

X1 > X2. Hence, R = P (X2 < X1) is a measure of component reliability. It has many applications

especially in the area of engineering. We derive the reliability R when X1 and X2 have independent

MOBX(λ1, θ1, α) and MOBX(λ2, θ2, α) distributions with the common shape parameter and scale

parameter. From equations (2.1) and (2.2), the reliability reduces to

R = P (X1 < X2) =

∞∫
0

f1(x)F2(x)dx. (6.1)

From equations (3.1) and (3.2), we have

R = P (X1 < X2) =

∞∑
u+k=0

∞∑
n+p=0

bu+kbn+p+1

∞∫
0

hu+k(x)Hn+p+1(x)dx (6.2)

where G(x) and g(x) be the cdf and pdf of any base line distribution.

7 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let

X1, X2, ..., Xn be a random sample from MOBX family of distributions. Let Xi:n denote the ith

order statistic, then the pdf of Xi:n is

f(Xi:n) =
1

β (i, n− i+ 1)
,

n−i∑
j=0

(
n− i
j

)
(−1)j f(x)F (x)j+i−1.

Using equations (3.1) and (3.2), we get

fi:n(x) =
1

β (i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)i

[ ∞∑
n,p=0

bn+p+1R
n+p+1(x)

]i+j−1

×
[ ∞∑
u,k=0

au+k (u+ k + 1) r(x)Ru+k(x)
]

(7.1)

Using power series expansion(see Granshteyn-Ryzhik (2007) pages [17,18])( ∞∑
i=0

ai x
i

)n
=

∞∑
i=0

ci x
i

c0 = ai0 and cm = (ma0)−1
m∑
k=0

(
k(n+ 1)−m

)
ak cm−k
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we can write equation (7.1) as

fi:n(x) =

∞∑
u,k=0

∞∑
n,p=0

Vu,k,n,p hu+k+n+p+1(x), (7.2)

where

Vu,k,n,p =

n−i∑
j=0

(
n− i
j

)
(−1)i au+k cn+p (u+ k + 1)

(u+ k + n+ p+ 2)β (i, n− i+ 1)

and

hm(x) = (m+ 1) r(x)Rm(x).

The result in equation (7.2) is the final result of this section.

7.1 Estimation of parameters

Let X = (x1, ..., xn) be a random sample of size n form a MOBX family of distributions. Let

Θ = (θ, α, λ, ξ)T is the parameter vector. Then the log-likelihood function of Θ is

l = n log(2λ2 θ α) +

n∑
i=1

log hR(x) +

n∑
i=1

logHR(x)− λ2
n∑
i=1

[HR(x)]
2

+ (θ − 1)

n∑
i=1

log z − 2

n∑
i=1

log
[
1− ᾱ

{
1− zθ

}]
(7.3)

where z = 1− e−λ2 [HR(x)]2 .

The component of score vector are

Uθ =
n

θ
−

n∑
i=1

log z − 2

n∑
i=1

[
ᾱzθ log z

1− ᾱ(1− zθ)

]
= 0,

Uα =
n

α
− 2

n∑
i=1

[
(1− zθ)

1− ᾱ(1− zθ)

]
= 0,

Uλ =
2nλ

λ2
+ (θ − 1)

n∑
i=1

z′i:λ
z
− 2

n∑
i=1

[
ᾱ θ zθ−1z′i:λ

1− ᾱ(1− zθ)

]
= 0,

Uξ =

n∑
i=1

[
hξR(x)

hR(x)

]
+

n∑
i=1

[
hR(x)hξR(x)

HR(x)

]
− 2λ2

n∑
i=1

[
HR(x)hR(x)hξR(x)

]
= 0,

+ (θ − 1)

n∑
i=1

[
´zi:ξ
z

]
− 2

n∑
i=1

[
ᾱθzθ−1

1− ᾱ(1− zθ)
´zi:ξ

]
= 0.

where hξ(x) means the derivative of the function h with respect to ξ.
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8 Censoring

In the failure censoring scheme, the n experimental units are placed under observation in a typ-

ical life test and the number of uncensored observations r is predetermined. The data consist of

observations are x(1), x(2), ..., x(r) the ordered lifetimes of these life testing items, this means that

we have no information about n− r survival item except that their lifetimes are greater than x(r).

The experiment is terminated when the rth item fails and remaining n − r items are regarded as

censored data. The likelihood function for x(1), x(2), ..., x(r) failed observations, (Cohen , 1965) is,

L =
n!

(n− r)!

r∏
i=1

g(x(i))
[
Ḡ(x(0))

]n−r
, (8.1)

where T , r is time and number of survival and g(x(i)), Ḡ(x(0)) are the pdf and sf of the base line

distribution.

If T is fixed and r is a random variable the censoring is said to be single censored type I. And if

”r” is fixed and ”T” is a random variable the censoring is said to be single censored type II. When

x(0) = T and x(0) = x(r) in equation (8.1) we get the likelihood functions for censoring type I

and type II respectively, if r = n equation (8.1) turns out to be likelihood function for complete

samples. Substituting the equations (2.2) and (2.1) in equation (8.1) the log likelihood function is.

L = log
n!

(n− r)!
+ r log 2 + r2 log λ+ r log θ +

r∑
i=1

log z′ +

r∑
i=1

log z

−
r∑
i=1

λ2z2 + (θ − 1)

r∑
i=1

log
(

1− e−λ
2z2
)
− 2

r∑
i=1

log

[
1− ᾱ

{
1−

(
1− e−λ

2z2
)θ}]

+ (n− r) logα+ (n− r) log

[
1−

(
1− e−λ

2z20

)θ]
− (n− r) log

[
1− ᾱ

{
1−

(
1− e−λ

2z20

)θ}]
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Taking derivative with respect to α, λ and θ we get following results.

∂

∂α
logL =

1

α
− 2

r∑
i=1


{

1 −
(

1 − e−λ
2z2i

)θ}
[
1 − ᾱ

{
1 −

(
1 − e−λ

2z2i

)θ}]
− (n− r)


[
1 −

(
1 − e−λ

2z20

)θ]
{

1 − ᾱ

[
1 −

(
1 − e−λ

2z20

)θ]}


∂

∂θ
logL =

r

θ
+

r∑
i=1

log
(

1 − e−λ
2z2i

)
− 2ᾱ

r∑
i=1


(

1 − e−λ
2z2i

)θ
log
(

1 − e−λ
2z2i

)
1 − ᾱ

[
1 −

(
1 − e−λ

2z2i

)θ]


+ (n− r)


(

1 − e−λ
2z20

)θ
log
(

1 − e−λ
2z20

)
1 − ᾱ

[
1 −

(
1 − e−λ

2z20

)θ]
− (n− r)ᾱ


(

1 − e−λ
2z20

)θ
log
(

1 − e−λ
2z20

)
1 − ᾱ

[
1 −

(
1 − e−λ

2z20

)θ]


∂

∂λ
logL =

2r

λ
− 2λ

r∑
i=1

z2i + 2(θ − 1)λ

r∑
i=1

(
z2i e

−λ2z2i

1 − e−λ
2z2i

)
− 4ᾱλθ

r∑
i=1


z2i e

−λ2z2i

(
1 − e−λ

2z2i

)θ
1 − ᾱ

[
1 −

(
1 − e−λ

2z2i

)θ]


− (n− r)


2θz20e

−λ2z20

(
1 − e−λ

2z20

)θ[
1 −

(
1 − e−λ

2z20

)θ]
− (n− r)


2ᾱλθz20e

−λ2z20

(
1 − e−λ

2z20

)θ
1 − ᾱ

[
1 −

(
1 − e−λ

2z20

)θ]


where zi = log(1 − R(xi)) and z0 = log(1 − R(x0)). Setting these equations equal to zero and

solving these equations simultaneously yields the the maximum likelihood estimates.

9 Special sub-models

In this section, we present some special member of Marshall-Olkin Burr-X family (MOBX), namely

the Marshall-Olkin Burr X-Weibull (MOBXW) , Marshall-Olkin Burr X-Frechet (MOBXFr), Marshall-

Olkin Burr X-Burr(MOBXB) and Marshall-Olkin Burr X-Lomax (MOBXLx). We provide plots

of the density and hazard rate functions for some parametric values to illustrate the flexibility of

family of the distributions. One special models in the family is described with some details.Further

we letting scale parametr λ = 1 for each submodel.

9.1 MOBX-Modified Weibull distribution

Let Modified Weibull distribution is the first parent distribution with cdf and pdf as R(x) =

1 − exp(−a x − b xc) and r(x) = (a + b c xc−1) exp(−a x − b xc) respectively. Then the cdf of

MOBX-MW distribution is as under.

F (x) =

{
1− exp

[
− (a x+ b xc)

2
]}θ

1− ᾱ
{

1− [1− exp {−(a x+ b xc)2}]θ
} (9.1)

The pdf corresponding to (9.1) is
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f(x) =
2 a bα θ (a+ b c xc−1) e−(a x+b xc)2

{
1− exp

[
− (a x+ b xc)

2
]}θ−1

{
1− ᾱ

[
1− {1− exp [−(a x+ b xc)2]}θ

]}2 (9.2)

where α is Marshall Olkin parameter, a , b is scale and c , θ are the shape parameters. A random

variable with density (9.2) is denoted by X ∼MOBXMW (θ, α, a, b, c).

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

x

pd
f

c = 0.1  θ = 0.1  b = 2.5  a = 1  α = 2.5
c = 0.1  θ = 1  b = 2.2  a = 0.2  α = 1.5
c = 0.1  θ = 2  b = 0.2  a = 1.5  α = 0.2
c = 1  θ = 1.5  b = 2.5  a = 0.1  α = 0.5
c = 0.4  θ = 2.5  b = 2  a = 0.3  α = 0.3

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

hr
f

c = 0.1  θ = 0.2  b = 0.8  a = 1.1  α = 3
c = 0.2  θ = 2  b = 0.1  a = 2  α = 2
c = 0.1  θ = 1.5  b = 0.2  a = 1.5  α = 0.2
c = 0.2  θ = 1  b = 2.5  a = 0.2  α = 1.5
c = 0.5  θ = 1  b = 0.5  a = 0.2  α = 1.5

Figure 1. Plots of pdf and hrf for MOBXW distribution.

9.2 MOBX-Burr distribution

Let Burr distribution is the second parent distribution with cdf and pdf as R(x) = 1− (1 + xa)−b

and r(x) = a b xa−1 (1 + xa)−b−1 respectively. Then the cdf of MOBXB is as under

F (x) =

{
1− e−[log(1+xa)−b]2

}θ
1− ᾱ

{
1− e−[log(1+xa)−b]2

}θ (9.3)

The pdf corresponding to (9.3) is as under

f(x) =
2 a b xa−1 α θ log(1 + xa)−b e−[log(1+xa)−b]2

{
1− e−[log(1+xa)−b]2

}θ−1

(1 + xa)
{

1− ᾱ
[
1− e−{log(1+xa)−b}2

]θ}2 (9.4)

where α is Marshall Olkin parameter, a , b and θis the shape parameters. A random variable

with density (9.4) is denoted by X ∼MOBXB(θ, α, a, b).
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Figure 2. Plots of pdf and hrf for MOBXB distribution.

9.3 MOBX-Frechet distribution

Let Frechet distribution is the third parent distribution with cdf and pdf as R(x) = exp
[
−
(
x
b

)−a]
and r(x) = a

ba x
−a−1 exp

[
−
(
x
b

)−a]
respectively. Then the cdf of Marshall Olkin Burr X Frchet

distribution is as under

F (x) =

{
1− e−

[
log

{
1−exp

[
−( xb )

−a
]}]2}θ

1− ᾱ
{

1− e−
[
log

{
1−exp

[
−( xb )

−a
]}]2}θ (9.5)

The pdf corresponding to (9.5) is becomes

f(x) =
2 θ α a x−a−1 e

[
−( xb )

−a
] [

log
{

1− exp
[
−
(
x
b

)−a]}]
ba
{

1− exp
[
−
(
x
b

)−a]}
e

[
log

{
1−exp

[
−( xb )

−a
]}]2

×

{
1− e−

[
log

{
1−exp

[
−( xb )

−a
]}]2}θ

1− ᾱ
{

1− e−
[
log

{
1−exp

[
−( xb )

−a
]}]2}θ (9.6)

where α is a Marshall Olkin parameter,b is scale parameter and a and θ are the shape parameters.

A random variable with density (9.6) is denoted by X ∼MOBXFr(θ, α, a, b).

9.4 MOBX-Lomax distribution

Let Lomax distribution is the fourth parent distribution with cdf and pdf as R(x) = 1− (1 + x
b )−a

and r(x) = a
b (1 + x

b )−a−1 respectively. Then the cdf of Marshall Olkin Burr X Lomax distribution
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Figure 3. Plots of pdf and hrf for MOBXFr distribution.

is as under

F (x) =

{
1− e−[a log(1+ x

b )]
2}θ

1− ᾱ
{

1− e−[a log(1+ x
b )]

2}θ (9.7)

The pdf corresponding to (9.7) is given as

f(x) =
2 θ α a log

(
1 + x

b

)
e−[a log(1+ x

b )]
2 {

1− e−[a log(1+ x
b )]

2}θ−1

b (1 + x
b )
{

1− ᾱ
[
1− e−{a log(1+ x

b )}2]θ}2 (9.8)

where α is a Marshall Olkin parameter,b is scale parameter and a and θ are the shape parameters.

A random variable with density (9.8) is denoted by X ∼MOBXLx(θ, α, a, b).

The hazard rate function can be obtained as

γ(x;α) =
2 θ a log(1 + x

b ) e−[a log(1+ x
b )]

2 {
1− e−[a log(1+ x

b )]
2}θ−1

(1 + x
b )
{

1−
[
1− e−{a log(1+ x

b )}2]θ}{1− ᾱ
[
1−

{
1− e−[a log(1+ x

b )]
2}θ]} (9.9)

The mixture representation of MOBXLx from equations (3.1) and (3.2) is

f(x) =

∞∑
u,k=0

au+k(u+ k + 1)
a

b

(
1 +

x

b

)−a−1
[
1−

(
1 +

x

b

)−a]u+k

F (x) =

∞∑
u,k=0

au+k+1

[
1−

(
1 +

x

b

)−a]u+k+1
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Figure 4. Plots of pdf and hrf for MOBXLx distribution.

The quantile function of MOBXLx from equations (2.4) is

Qx(u) = b
[
(1− t)− 1

a − 1
]

and t = 1− exp

{
− ln

[
1−

(
uα

1−ᾱu

) 1
θ

] 1
2

}
.

The rth moment of MOBXLx from equations (4.1)

µ′r =

∞∑
u,k=0

au+k(u+ k + 1)
a

b

∞∑
j=0

(
u+ k

j

)
(−1)jbr+1β(r + 1, a(j + 1)− r).

The moment generating function can be obtained by equation (4.2)

M(t) =

∞∑
u,k=0

au+k(u+ k + 1)
a

b

∞∑
j=0

(
u+ k

j

) ∞∑
I=0

(
a(j + 1)− i

i

)
(−1)2i+j+1

bi
Γ(i+ 1)

ti+1
.

The rth Incomplete moments can be obtained by equation (4.3)

µIr =

∞∑
u,k=0

au+k(u+ k + 1)
a

b

∞∑
j=0

(
u+ k

j

)
(−1)jbr+1β x

b
(r + 1, a(j + 1)− r).

The first Incomplete moment is obtain by Setting r = 1 we get

µI1 =

∞∑
u,k=0

au+k(u+ k + 1)
a

b

∞∑
j=0

(
u+ k

j

)
(−1)jb2β x

b
(2, a(j + 1)− 1)

or

µIr =

∞∑
j=0

bjβ xb (2, a(j + 1)− 1).
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Mean deviations about mean and median can be obtained as

D(µ) = µF (µ)− 2

∞∑
j=0

bjβµ
b
(2, a(j + 1)− 1)

D(M) = µ− 2

∞∑
j=0

bjβM
b

(2, a(j + 1)− 1)

Let b is the common parameter between two MOBXLx distributions such as MOBXLx(θ1, α1, a1, b)

and MOBXLx(θ2, α2, a2, b). Then from equations (6.2) we have reliability.

R =

∞∑
u,k=0

∞∑
n,p=0

au+k bn+p+1 (u+ k+ 1) a1

∞∑
i,j=0

(
u+ k

j

)(
n+ p+ 1

i

)
(−1)i+j

b

a2 (j + 1) + a1 i

We have the pdf of ith order statistic from equation (7.1).

fi:n(x) =

∞∑
u,k=0

∞∑
n,p=0

Vu,k,n,p (u, k, n, p+ 1)
a

b

∞∑
q=0

(
u+ k + n+ p+ 1

q

)
(−1)q

(
1 +

x

b

)−a (q+1)−1

Let X1, X2, ..., Xn be a sample of size n from X∼MOBXLx, then the log-likelihood function

from (7.3) can be expressed as

` = n log
(
2 θ α a2

)
+

n∑
i=1

log
[
log
(

1 +
x

b

)]
−

n∑
i=1

(
a log

(
1 +

x

b

))2

− (θ − 1)

n∑
i=1

log z − n log b−
n∑
i=1

log
(

1 +
x

b

)
− 2

n∑
i=1

log
[
1− ᾱzθ

]
The components of score vector are.

Uθ =
n

θ
−

n∑
i=1

log z − 2

n∑
i=1

[
−ᾱzθ log z

1− ᾱzθ

]

Uα =
n

α
− 2

n∑
i=1

[
−zθ

1− ᾱzθ

]

Ua =
2n

a
− 2a

n∑
i=1

[
λ log

(
1 +

x

b

)]2
− (θ − 1)

n∑
i=1

z′

z
− 2

n∑
i=1

θzθz′i:a
1− ᾱzθ

Ub =

n∑
i=1

[ (
1 + x

b

)−1

b2 log
(
1 + x

b

)]− 2(a)2
n∑
i=1

[
log
(
1 + x

b

)]2
b
(
1 + x

b

) +
n

b3

n∑
i=1

(
1 +

x

b

)−1

− 2

n∑
i=1

θzθz′i:b
1− ᾱzθ

where z = 1− e−( a log(1+ x
b ))

2
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10 Simulation of the MOBXLx distribution

In this section, we study the performance of the method of MLE of MOBXLx as a submodel of the

MOBX family by conducting various simulations for different sizes (n=50,100,250 and 500) by using

R-Language. We simulate 1000 samples for the true parameters values I:a=1,b=1.5, θ=1, α=5, II

:a=2,b=2, θ=1, α=1 and II :a=0.5,b=0.5, θ=1, α=1 in order to obtain average estimates (AEs),

biases and mean square errors (MSEs) of the parameters. They are listed in Table 1. The MSE

decreases as the sample size increases.The results indicate that the maximum likelihood method

performs quite well in estimating the model parameters of the proposed distribution.

Table 1. Estimated AEs, Biases, and MSEs of the MLEs of parameters of MOBXLx distribution

based on 1000 simulations of with n=50,100,n=250 and n=500.

I II III

n parameters A.E Bias MSE A.E Bias MSE A.E Bias MSE

50 a 1.351 0.351 2.128 2.176 0.176 0.356 0.557 0.057 0.024
b 0.754 1.746 2.201 2.316 0.316 0.514 0.649 0.149 0.171
θ 1.129 0.129 0.259 1.036 0.051 0.086 1.059 0.079 0.114
α 4.551 0.449 1.034 1.143 0.143 0.544 1.085 0.085 0.168

100 a 0.820 0.180 0.419 2.080 0.080 0.159 0.518 0.018 0.009
b 0.273 1.227 1.922 2.132 0.132 0.244 0.580 0.080 0.091
θ 1.102 0.102 0.184 1.051 0.036 0.052 1.079 0.059 0.102
α 4.640 0.360 0.021 1.128 0.128 0.434 1.004 0.019 0.118

250 a 0.629 0.071 0.152 2.028 0.028 0.060 0.507 0.008 0.003
b 0.115 1.085 1.826 2.030 0.030 0.116 0.546 0.046 0.033
θ 1.155 0.155 0.109 1.003 0.006 0.020 1.003 0.050 0.036
α 4.703 0.297 0.014 1.106 0.106 0.173 0.995 0.005 0.051

500 a 0.616 0.054 0.146 1.992 0.008 0.032 0.492 0.007 0.001
b 0.113 1.007 1.725 1.988 0.012 0.076 0.503 0.003 0.020
θ 1.086 0.086 0.054 1.006 0.003 0.010 1.050 0.003 0.031
α 4.728 0.272 0.007 1.061 0.061 0.105 0.981 0.004 0.045

11 Application

In this section, the flexibility of the MOBXLx model is illustrated by means of three real life data

sets. The required numerical computations are carried out using the R software. The TTT and

kernel density curve are plotted to identify the shape of the hazard function and density.

The first data set deals with the fatigue life of 6061-T6 aluminum coupons cut parallel with the

direction of rolling and oscillated at 18 cycles per second given in Birnbaum and Saunders (1969).

The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data are:

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112,113, 114, 114, 114,

116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124,128, 128, 129, 129, 130, 130, 130, 131,

131, 131, 131, 131, 132, 132, 132, 133, 134,134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139,

139, 141, 141, 142, 142, 142,142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155,

156, 157, 157,157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212. This data

have recently been used by Bourguignon et al.(2014), Mahmoudi (2014), Singh (2015), and Ghosh

(2015).
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We compare MOBXLx to Weibull log-logistic (WLL), Weibull-Lomax (WLx), Beta-inverted ex-

ponential (BIE), Gamma-Kumaraswamy (GKw), exponentiated Weibull-logarithmic (EWL), Burr

type X (BX) and Lomax models. Their corresponding densities are:

fWLL(x) =
λθα a−αxα−1e−λ[(1+( xa )

α
)−1]

θ [(
1 +

(
x
a

)α)− 1
]θ−1

1 +
(
x
a

)α
fWLo(x) =

αa

b

[
1 +

x

b

]a−1 [(
1 +

x

b

)a
− 1
]α−1

exp

[
−
[(

1 +
x

b

)a
− 1
]α]

fBIE(x) =
θ

β(a, b)x2
e−

aθ
x

[
1− e− θx

]b−1

fEWL(x) =
a θ α bαxα−1e−b x

α [
1− e−bxα

]a−1

log (1− θ)
[
θ (1− e−bxα)

a − 1
]

The second data set represents the annual flood discharge rates for the 39 years (1935-1973) at Floyd

River located in James, Iowa, USA. The Floyd River data were reported by Mudholkar(1993) and

Akinsete et al(2008). The data are: 1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440,

5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250, 2260, 318,1330, 970, 1920, 15100,

2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300,4740, 13400, 2940, 5660. This data have also

been analysed by Alzaatreh et al.(2015) and Tahir et al. (2015).

We compare MOBXLx with Kumaraswamy-Half-Cauchy (KwHC), beta -half-Cauchy (BHC), Pois-

son power Cauchy (PPC), Gamma-half-Cauchy (GH), half-Cauchy (HC) models their corresponding

densities are:

fKHC(x) =
2a a b

απa

[
1 +

(x
α

)2
]−1 [

tan−1
(x
α

)]a−1 [
1−

(
2π−1 tan−1

(x
α

))a]b−1

fBHC(x) =
2a

απaβ(a, b)

[
1 +

(x
α

)2
]−1 [

tan−1
(x
α

)]a−1 [
1− 2π−1 tan−1

(x
α

)]b−1

fHC(x) =
2

πα

[
1 +

(x
α

)2
]−1

fGHC(x) =
2

παΓ(λ) θλ

[
1 +

(x
α

)2
]−1 [

− log
[
1− 2π−1 tan−1

(x
α

)]λ−1
]

×
[
1− 2π−1 tan−1

(x
α

)] 1
θ−1

fPPC(x) =
2λθ

(
x
α

)θ−1 (
2π−1 tan−1

(
x
α

))λ−1
e−(2π−1 tan−1( xα ))

λ

απ(1− e−1)
[
1 +

(
x
α

)2θ]
The third data set given by Abouammoh et al.(1994) which represent 40 patients suffering from

leukemia. The data are: 115 ,181, 255, 418, 441, 461, 516, 739, 743 ,789 ,807, 865, 924, 983,

1024,1062, 1063,1165, 1191,1222,1251,1277, 1290 ,1357,1369, 1408 ,1455, 1478, 1222 1549, 1578,
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1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815 ,1852. This data have been used by Elbatal and

Hiba (2014) and Elbatal (2013).

We compare MOBXLx with exponentiated generalized inverse Weibull (EGIW), Generalized inverse

Weibull (GIW), Weibull Burr XII (WBXII), transmuted generalized linear exponential (TGLED),

Kumaraswamy Lomax(KLx) models. Their corresponding densities are:

fTGLED(x) = θ (a+ bx)

(
ax+

b

2
x2

)θ−1

e−
(
ax+

b

2
x2

)θ [
1− λ+ 2λe−

(
ax+

b

2
x2

)θ]

fKwLo(x) =
a λ θ

b

(
1 +

x

b

)−a−1
(

1−
(

1 +
x

b

)−a)λ−1
[

1−
(

1−
(

1 +
x

b

)−a)λ]θ−1

fWBXII(x) =
λθ a bαxα−1

1 +
(
x
b

)α ((
1 +

xα

b

)a
− 1

)θ−1

exp

[
−λ
((

1 +
xα

b

)a
− 1

)θ]

fEGIW (x) = a b θ λθx−θ−1e−(λx )
θ (

1− e−(λx )
θ)a−1

[
1−

(
1− e−(λx )

θ)a]b−1

Table 2. MLEs and their standard errors (in parentheses) for data set 1.

Distribution λ θ α a b

MOBXLx - 149.089 147.088 3.694 42.565

- (59.900) (46.890) (9.693) (26.594)

WLL 19.950 0.378 235.96 15.845 -

(13.72) (0.233) (27.32) (9.79) -

WLx - - 9.804 0.360 24.413

- 3.034 0.161 24.721 -

BIE - 630.667 - 1.833 173.402

- (1.357) - (0.124) (4.618)

EWL 3.05 0.138 - 5.14 0.009

(1.355) (1.199) - (6.305) (0.002)

BX - - - 9.273 0.0123

- - - 1.663 0.00046

12 Concluding remarks
In this paper, the Marshall-Olkin Burr-X family of distributions is proposed and some of its mathematical

properties are studied. One special models(MOBXLx) in the family is studies in detail. The maximum

likelihood method is employed for estimating the model parameters. We fit the sub model MOBXLx to

three real data sets to demonstrate its usefulness. The new model provides consistently a better fit than

other competing models. We hope that the proposed model will attract wider applications in areas such as

engineering, survival and lifetime data,hydrology, economics, among others.
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(a) Estimated pdf for data set 1. (b) Estimated cdf for data set 1.
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(c) Estimated pdf for data set 2. (d) Estimated cdf for data set 2.
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Figure 5. Estimated pdf’s and cdf’s for data set 1 and 2 .

Table 3. The AIC, A*, W* and K-S values for data set 1.

Distribution ˆ̀ AIC A W K-S p-value(K-S)

MOBXLx 455.13 920.27 0.2492 0.0362 0.050 0.956

WLL 462.43 933.2 0.924 0.141 0.099 0.272

WLx 461.08 928.17 0.779 0.118 0.090 0.375

BIE 456.15 918.31 0.2813 0.0668 0.758 0.756

EWL 456.60 921.204 0.3417 0.0707 0.6942 0.665

BX 461.12 926.25 0.4262 0.0724 0.110 0.168
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(e) Estimated pdf for data set 3. (f) Estimated cdf for data set 3.
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Figure 6. Estimated pdf’s and cdf’s for data set 3 .

Table 4. MLEs and their standard errors (in parentheses) for data set 2

Distribution λ θ α a b

MOBXLx - 8.878 1.916 0.016 23.020

- (2.532) (3.009) (0.010) (10.615)

KHC - - 32.8645 0.4837 27.4076

- - (9.5156) (0.1112) (7.8963)

BHC - - 27.7847 0.4196 21.3848

- - (8.4903) (0.0878) (6.5972)

PPC 59.9368 0.8812 47.2306 - -

(1.7063) (0.1108) (1.5768) - -

GHC 45.9778 0.1554 4.4487 - -

(101.8881) (0.1758) (34.8257) - -

HC - - 3262.2630 - -

- - (661.1149) - -
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Table 5. The AIC, CAIC , BIC, A* values for data set 2

Distribution ˆ̀ AIC A∗ W ∗ K-S P-value

MOBXLx 376.3736 762.7472 0.1698 0.0207 0.0646 0.9936

KHC 389.8590 785.7180 0.2852 0.0374 0.2886 0.0022

BHC 392.0631 790.1262 0.2650 0.0347 0.2796 0.0034

PPC 378.3070 762.6140 0.4023 0.0571 0.0816 0.9387

GHC 376.3683 775.8736 0.5121 0.0733 0.0648 0.9932

HC 379.6545 761.3090 0.4130 0.0611 0.1388 0.4029

Table 6. MLEs and their standard errors (in parentheses) for data set 3

Distribution λ θ α a b

MOBXLx - 0.954 73.569 0.139 302.791

- 0.79 33.0 0.97 230.410

EGIW 1.102 0.453 - 0.933 1.09

0.002 0.001 - 0.0090 3.742

GIW 3.261 0.298 - - 0.792

1.85 0.124 - - 9.586

WBXII 50.531 6.456 0.915 0.127 31.063

35.278 2.124 0.523 0.079 3.208

KLx 10.63 79.22 0.36 62.86 -

17.27 91.21 - 0.068 4.631

Table 7. The AIC, A*, W* and K-S values for data set 3

Distribution ˆ̀ AIC A∗ W ∗ K-S p-value(K-S)

MOBXLx 305.3 620.7 0.960 0.149 0.106 0.7590

EGIW 354.7 717.4 3.012 0.525 0.835 0.0070

GIW 397.7 801.5 4.013 0.724 0.733 0.0081

WBXII 323.3 657.6 1.422 0.242 0.143 0.3470

KwLx 311.5 631.0 2.044 0.345 0.178 0.1570
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Figure 7. TTT and kernal density plots for data set 1,2 and 3 respectivly.
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