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Abstract

In this work, we formulate a numerical scheme for the solution of the Bagley-Torvik equation
using an integral representation in complex plane. The resultant integral is approximated
to high order accuracy using quadrature. The accuracy of numerical algorithm depends on
the selection of optimal contour of integration. Several contour have been developed in the
literature for solving FDEs. In the present work, we will investigate the applicability of optimal
contours for solving Bagley-Torvik equation. We compared our results with other methods
available in the literature to validate the efficiency and accuracy of the method for various
optimal contour of integrations.
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1 Introduction

The most general form of Bagley-Torvik (BT) equation is,

a1
d2v(t)

dt2
+ b1

dαv(t)

dtα
+ c1v(t) = h(t), (1.1)

where a1, b1, c1 are real numbers, a1 6= 0, α = 3
2 . BT equation was developed in the work of [8],

it was further discussed in work of [9]. BT equation uses to model the dynamics of rigid plate in
fluid. The most suitable initial conditions used for this model may be specified as,

v(k)(0) = v
(k)
0 , k = 0, 1, ...,m− 1, and m− 1 < α ≤ m. (1.2)

where the Reimann-Liouville differential operators of order α > 0, defines as

Dαv(t) =
1

Γ(m− α)

dm

dtm

∫ t

0

v(u)

(t− u)α−m+1
du, (1.3)

where the integer m is given as m − 1 < α ≤ m. For more detail see for example [1, 2, 13, 14]. In
the present work, we use laplace transform and quadrature method to approximate the solution
of BT equation. We consider how the theoretical results may be applied in practical cases. In
particular we consider the performance of existing numerical methods for solving Bagley-Torvik
equation when the equation to be solved depend upon parameters that must be estimated and are
subject to errors.
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Definition 1.1. If c(> −1) ∈ R then:

£[tc] =
Γ(c+ 1)

sc+1
, where R(s) > 0. (1.4)

Lemma 1.2. The expression for the Laplace transformation of fractional order differential opera-
tor, when m− 1 < α ≤ m, m ∈ N, can be given as [10]:

£

[(
dαf

dtα

)
(t)

]
=
smF (s)− sm−1f(0)− sm−2f ′(0)− ...− fm−1(0)

sm−α
. (1.5)

2 Methodology

In the present procedure by the application of Lemma 1.2 to equation (1.1), when α = 3/2, we get

V̂ (s) =
[
a1s

2 + b1s
3
2 + c1

]−1

G(s), (2.1)

where
G(s) =

[(
a1s

3
2 + b1s

)
v(0) +

(
a1s

1
2 + b1

)
v′(0)

]
s−

1
2 + Ĥ(s) (2.2)

and
Ĥ(s) = £(h(t)). (2.3)

Now using inverse Laplace transform formula, we get

v(t) = £−1(V̂ (s)) =
1

2πι

∫
Γ

estV̂ (s)ds, R(s) > 0. (2.4)

where Γ represents the path of integration, which satisfy s = s(u) given by equation (3.1). Using
equation (3.1) in (2.4), the solution v(t) may be given as an integral in u,

v(t) =
1

2πι

∫
Γ

es(u)tV̂ (s(u))s′(u)du. (2.5)

For a quadrature step k > 0, if we set sj = s(uj), s
′
j = s′(uj), where uj = jk for −N ≤ j ≤ N , we

get the quadrature formula

vN (t) =
k

2πι

N∑
j=−N

esjtV̂ (sj)s
′
j . (2.6)

To find approximate solution vN , we solve system of 2N + 1 equations (2.7) where, −N ≤ j ≤ N.

V̂ (sj)
[
a1s

2
j + b1s

3
2
j + c1

]
= G(sj) (2.7)

3 Contour of integration

We remarked that the numerical solution V̂ (sj) determined the approximate solution (2.6) for all
t > 0. In practice, accuracy of the approximate solution depends on the use of optimal contour Γ.
A number of such contour available one such path is due to [5] given as

s = ω + λ(1− sin(δ − iu)), (C1) (3.1)
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Very recently the authors [4] proposed two new types of hyperbolic and parabolic contour, which
circumvented the slow decay due to Talbot [7]. The parabola is parameterized as

s = µ(iu+ 1)2,−∞ < u <∞, (C2) (3.2)

while the hyperbola is redefined as

s = µ(1 + sin(iu− σ)),−∞ < u <∞, (C3). (3.3)

For both the path of integration the parameter µ uses to controls width of the path, while the
parameter σ, is using to adjust the asymptotic angle. It is shown in the work of [4] the parabolic
path (3.2), exhibit the geometric convergence rate, namely

EN ≈ O(8.12−N ), when N →∞, (3.4)

while in the case of hyperbolic contour (3.3), the convergence rate is

EN = O(10.2−N ), when N →∞. (3.5)

4 Numerical examples

In case of practically relevant and more applied problem, we always forced to use some numerical
method, when analytical method is not available. In this section we validate our numerical scheme
for the following relevant and important problems.

Example 1. Here we apply the present numerical method to the Bagley-Torvik equation [11],

a1
d2v

dt2
+ b1

dαv

dtα
+ c1v(t) = h(t), 0 < t ≤ 1. (4.1)

In this case we choose the parameters values as a1 = 1, b1 = 1, c1 = 1. The function h(t) = 1+t,
and the fractional order α = 3

2 , and the initial conditions as v(0) = 1 and v′(0) = 1. The exact
solution for this problem is v(t) = 1 + t. We apply Laplace transform based-numerical scheme
to obtain the numerical solution. We used the three different types of contours C1, C2 and C3

for approximating the problem (4.1). In this computations we used different types of quadrature
points 2N + 1. We compared our results with an another method [11], we can see that the present
numerical scheme for BT equation achieved better accuracy. These results have been shown in
Figure(1) and in Table (1). From above the discussion we observed that for a specific range of N
the different paths have their own importance. To avoid the computations cost, we use path C3,
while for better accuracy and using low quadrature order we must use path C2, while this have
been keenly observed that for long computations we can find more than better accuracy via path
C1.
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Figure 1. Numerical solution: Plots of absolute error versus N, for the given three types of
contours corresponding to problem (4.1).

Example 2. we consider the Bagley-Torvik equation [12],

a1
d2v

dt2
+ b1

dαv

dtα
+ c1v(t) = h(t), 0 ≤ t ≤ 1 (4.2)

For this problem we choose different values of parameters, a1 = 1, b1 = c1 = 0.5, function h(t) = 8,
and α = 3

2 , and the initial conditions as v(0) = v′(0) = 0. The present LT based numerical scheme
is applied to obtain the numerical solution of the problem. The same optimal paths and optimal
parameters corresponding to the three paths C1, C2 and C3 haven been used. The results are shown
in Table 2, it can observed that the present LT numerical scheme produced better results than the
results obtained in [12].
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N Abs. error (C1) Abs. error (C2) Abs. error (C3)
5 1.40e-001 2.97e-004 5.7908e-006
7 5.50e-002 5.95e-006 2.3164e-008
10 1.57e-002 1.51e-008 5.2944e-012
20 7.31e-004 1.74e-013 8.7907e-012
23 4.12e-004 4.53e-015 3.3646e-011
30 3.60e-005 1.25e-012 1.9011e-009
40 2.06e-006 5.18e-011 9.2017e-007
50 1.10e-007 2.53e-009 2.0542e-005
120 8.94e-016 6.42e-002 2.4019e+009
[11] 1.2700e-005

Table 1. LT Numerical solution: (C1) related parameters, t = 0.1, θ = 0.1, δ = 0.3812, w =
02, r = 0.3431 and t0 = 0.01, T = 1: (C2) related parameters µ = πN/12t, k = 3/N . (C3) related
parameters σ = 1.1721, Aσ = cosh−1 (2σ/(4σ − π) sinσ), k = Aσ/N , µ = (4πσ − π2)N/Aσt,
corresponding to (4.1).

N Abs. error (C1) Abs. error (C2) Abs. error (C3)
10 7.7161e-003 4.9000e-008 1.0000e-009
20 1.0552e-005 1.0000e-009 1.0000e-009
23 9.8800e-007 1.0000e-009 1.0000e-009
50 1.0000e-009 1.0000e-009 1.0000e-009
60 1.0000e-009 1.0000e-009 2.9000e-008
90 1.0000e-009 2.0000e-009 1.1000e-001
100 1.0000e-009 1.3700e-007 9.5387e-000
[12] 1.932e-006

Table 2. LT Numerical solution: (C1) related parameters, t = 0.1, θ = 0.1, δ = 0.3812, w =
02, r = 0.3431 and t0 = 0.01, T = 1: (C2) related parameters µ = πN/12t, k = 3/N . (C3) related
parameters σ = 1.1721, Aσ = cosh−1 (2σ/(4σ − π) sinσ), k = Aσ/N , µ = (4πσ − π2)N/Aσt,
corresponding to (4.2).

5 Conclusion

In the present work we constructed Laplace transform based numerical scheme for Bagley-Torvik
equation. The LIT have been carried out by quadrature rule equipped with optimal paths of in-
tegrations. We conclude that this technique is very useful tool for approximating the solution of
the Bagley-Torvik equation with high accuracy. From comparison we have observed that the cor-
responding methodology is more efficient for approximating the solution of Bagley-Torvik equation
than other various methods. Therefore we finally conclude that by better selection of quadrature
and contour we can improve the corresponding LT technique.
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