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Abstract

In this paper, a fractional model for population growth of species within a closed system is con-
sidered. A numerical method which is based on the implementation of the fractional Legendre
functions with a pseudospectral approach is applied. The aim is to show the effectiveness of
fractional Legendre functions for the numerical simulation of fractional models.
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1 Introduction

Fractional calculus is regarded as an effective tool for the modelling of many physical phenomena.
Its efficiency arises from the relaxing properties of fractional derivative operators, which enable to
consider uncertainty and vagueness of physical phenomena. Since fractional approach is successfully
applied to several kinds of models, it is inevitable to consider the population dynamics with a
fractional approach.

Population dynamics is an essential branch of life sciences that studies size and age composition
of populations as dynamical systems. An important model of population dynamics was presented
by Volterra.

The Volterra’s model for the population of a species within a closed system is defined as:

dp

dt
= ap− bp2 − cp

∫ t

0

p(x)dx, (1.1)

p(0) = p0, (1.2)

where a > 0 is the birth rate coefficient, b > 0 is the competition between species, c > 0 is the
toxicity coefficient, p0 is the initial population and p(t) is the population at time t. The coefficient
c indicates the essential behaviour of the population evolution before it falls to zero in the long run.
In the case c = 0, we have the well-known logistic equation. The last term contains the integral that
indicates the total metabolism or total amount of toxins produced. The individual death rate is
proportional to this integral, and so the population death rate due to toxicity must include a factor
u. The presence of the toxic term due to the system being closed always causes the population
level to fall to zero in the long run. The relative size of the sensitivity to toxins, c, determines the
manner in which the population evolves before its fated decay [1].

The time and population can be suitably scaled by applying the non-dimensional variables

t =
tc

b
, u =

pb

a
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in order to lead to the non-dimensional problem

κ
du

dt
= u− u2 − u

∫ t

0

u(x)dx, (1.3)

u(0) = u0, (1.4)

where u(t) is the scaled population of identical individuals at time t, and κ = c
ab is a prescribed

non-dimensional parameter. The analytical solution of equation (1.3)

u(t) = u0 exp

(
1

κ

∫ t

0

[
1− u(τ)−

∫ τ

0

u(x)dx

]
dτ

)
, (1.5)

shows that u(t) > 0 for all t when u0 > 0. Problem (1.3)-(1.4) is studied extensively in the literature
(see [2, 3] and references therein).

A fractional approach to problem (1.3)-(1.4) allows the establishment of the following fractional
differential equation to describe the population growth of species within a closed system with a
general sense:

κ
dαu

dtα
= u− u2 − u

∫ t

0

u(x)dx, (1.6)

u(0) = u0, (1.7)

where α ∈ (0, 1] is a constant describing the order of fractional derivative and κ is the same
parameter of the model (1.3). The most important advantage of using fractional derivative operator
is its nonlocal property. It is well-known that the integer order differential operator is a local
operator but the fractional order differential operator is non-local. This means that the next state
of a system depends not only upon its current state but also upon all of its historical states. This
makes the model more realistic. However, equation (1.6) has not been so far extensively studied
except for a few papers (e.g., see [4, 5]).

An important contribution to the numerical approximation of fractional population model is
the paper by Maleki et al. [5]. They presented a multi-domain Legendre-Gauss pseudospectral
method for approximate solutions of the fractional population model. In this method the Volterra
population model is replaced with a singular Volterra integro differential equation (SVDIE). Then,
by choosing a step size, the replaced problem is converted into a sequence of SVIDEs in subintervals.

On the other hand, a useful treatment to obtain approximate solutions of fractional differential
equations is replacing the power series term by order α as

∑n
i=0 cix

iα. This is implemented in
Adomian decomposition method, homotopy perturbation method and He’s variational methods.
Momani and Xu implemented homotopy and Adomian decomposition methods on the fractional
population model in [6] and [7]. However, as it will be illustrated by means of numerical experiments,
results are in some cases not sufficiently accurate.

The numerical approximation of Volterra type differential equations has been comprehensively
studied in the literature [8, 9, 10, 11]. Many of the methods devised to approximate classical
Volterra population models are however not suitable for application to the fractional case.

For instance, Dehghan presented a rational pseudospectral method for the classical Volterra
population model in [6]. However, the rational Legendre polynomials are not appropriate for
approximation of fractional differential equations.
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Orthogonal polynomials and functions are applicable to different differential problems due to
their appropriate properties that reduce the solutions of differential equations to algebraic systems.
An extension of Legendre polynomials to the fractional case is constructed by Rida and Yousef
previously in [12]. However the proposed method was not easy to implement on fractional differ-
ential equations due to its complexity. Another method inspired with the idea of fractional power
series is the fractional order Legendre functions (FDF) in paper of Kazem et al. [13]. Kazem et al.
presented an alternative way of generating orthogonal functions of the form ϕn(x) =

∑n
i=0 cix

iα to
solve fractional differential equations more accurately. They called them as fractional order Leg-
endre functions, presented the operational matrix and applied them on some linear and nonlinear
differential equations in combination with the tau method. FDFs will be defined in Section 2 in
detail.

In this paper, we aim to show the feasibility and efficiency of fractional Legendre functions for the
approximation of the fractional population model (1.6). Here, it is useful to note that for α = 1 case,
they coincide with shifted Legendre polynomials. Throughout the paper, numerical experiments are
carried out and their results support the effectiveness of fractional Legendre functions for solutions
of fractional differential equations.

In the present paper, the following definitions of fractional derivative will be employed.

Definition 1.1. A real function f(x), x > 0 is said to be in space Cµ, µ ∈ R if there exists a real
number p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to be in the space
Cnµ if and only if fn ∈ Cµ, n ∈ N.

Definition 1.2. The Riemann-Liouville fractional integral operator of order α > 0, of a function
f ∈ Cµ, µ ≥ −1, is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0,

I0f(t) = f(t).

Definition 1.3. The fractional derivative of f(t) in the Caputo sense is defined as

Dαf(t) = Im−αDmf(t),

for m− 1 < α ≤ m, m ∈ N, t > 0 and f ∈ Cm−1.

The rest of the paper is organized as follows: In section 2, a pseudo spectral approximation based
on fractional Legendre functions will be presented for equation (1.6). Then, numerical experiments
and their results are given to show the effectiveness of the pseudospectral fractional Legendre
functions method on approximation of equation (1.6) in Section 3.

2 A pseudospectral approach for the fractional population model

We introduce in this section the fractional order Legendre functions and we present some of their
properties. Then, a pseudospectral technique based on these functions and applied to equation
(1.6) is investigated. Finally, convergence properties will be presented.
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2.1 Fractional order Legendre functions

The shifted Legendre polynomials Ln(t) are constructed by means of the transformation z = 2t− 1
from standard Legendre polynomials. The shifted Legendre polynomials are orthogonal with respect
to the weight function ws(t) = 1 in the interval (0, 1) with the orthogonal property∫ 1

0

Ln(t)Lm(t)dt =
1

2n+ 1
δnm.

It is well known that the sequece of Li(t) can be obtained by means of the recursive relationship

Li+1(t) =
(2i+ 1)(2t− 1)

i+ 1
Li(t)−

i

i+ 1
Li−1(t), i = 1, 2, ...,

L0(t) = 1, L1(t) = 2t− 1.

The fractional order Legendre functions (FLF) can be defined by the change of variable t = xα,
where and α > 0, on shifted Legendre polynomials. Let the FLFs Li(x

α) be simply denoted by
Lαi (x). The fractional order Legendre functions are particular solutions of normalized eigenfunctions
of the singular Sturm-Liouville problem

((x− x1+α)L′αi (x))′ + α2i(i+ 1)xα−1Lαi (x) = 0, x ∈ (0, 1).

Then, Lαi (x) can be obtained as follows

Lαi+1(x) =
(2i+ 1)(2xα − 1)

i+ 1
Lαi (x)− i

i+ 1
Lαi−1(x), i = 1, 2, ...,

Lα0 (x) = 1, Lα1 (x) = 2xα − 1.

The analytic form of Lαi (x) of degree iα is given by

Lαi (x) =

i∑
s=0

bs,ix
sα,

where

bs,i =
(−1)i+s(i+ s)!

(i− s)!(s!)2

and, moreover, Lαi (0) = (−1)i and Lαi (1) = 1.
The FLFs are orthogonal with respect to the weight function w(x) = xα−1 in the interval (0, 1]

with the orthogonal property (See [13])∫ 1

0

Lαn(x)Lαm(x)w(x)dx =
1

(2n+ 1)α
δnm.

Lemma 2.1. The Caputo fractional derivative of order γ > 0 of FLFs can be obtained in the form
of

DγLαi (x) =

i∑
s=0

b′s,i
Γ(sα+ 1)

Γ(sα− γ + 1)
xsα−γ ,

where b′s,i = 0 when sα ∈ N0 and sα < γ, in other cases b′s,i = bs,i.

For the proof we refer to [13].
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2.2 The pseudospectral technique

For the pseudospectral technique, let us consider the problem

Lu = 0,

u(0) = u0,

where L is an operator, u(t) is the unknown function and u(0) = u0 denotes the initial condition.
To use the pseudospectral method for solving problem (1.1), a set of known functions, {ϕn(t)}n≥0,
are chosen as basis and u(t) is approximated in terms of these functions:

uN (t) =

N∑
n=0

anϕn(t).

Then, the operator L is applied on the approximate function and form the residual function

res(t) = LuN (t).

The next task is to choose the coefficients of the series to minimize the residual function. To do
this, N nodal points are selected and the residual function is set equal to zero at these points [8]

res(ti) = 0, i = 1, 2, ..., N.

These equations with the initial condition, at which the function u is substituted with uN ,
form a system of N + 1 algebraic equations. By solving this system of equations, we can find the
coefficients ans and so the approximation function can be determined. Also we refer the interested
reader to [14].

It is important to note that appropriate Lobatto-Gauss-Legendre nodes fractional Legendre
functions in the case 0 ≤ α < 1 are used to get a better approximation.

2.3 Convergence

Suppose that
Dkαf(x) ∈ C(0, 1]

for k = 0, 1, ...,m and
Pαm = Span{Lα0 (x), Lα1 (x), ..., Lαm−1(x)}.

If fm = ATϕ is the best approximation to f from Pαm then the error bound is presented as
follows:

‖f(x)− fm(x)‖w ≤
Mα

Γ(mα+ 1)

√
1

(2m+ 1)α
,

where Mα ≥ |Dmαf(x)| , x ∈ (0, 1]. For details and the proof see [15] and [13].
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3 Numerical experiments

In the present section, numerical experiments will be presented to show the effectiveness of fractional
Legendre functions on problem (1.1) by comparisons with other methods.

There have been many other numerical techniques in the literature for the classical Volterra
population model. The present method asserts a pseudospectral approach based on shifted Legendre
polynomials for this classical Volterra population model since the fractional Legendre functions
coincide with shifted Legendre polynomials in the case α = 1.

Table 1 gives the comparison for umax of problem (1.1) of present method with Adomian De-
composition Method (ADM), Composite Spectral Functions (CSF) and Rational Legendre Method
(RLM). It can be concluded from Table 1 that the shifted Legendre polynomials are applicable for
problem (1.1) with a pseudospectral approach. However, CSF and RLM give better accuracy for
umax. Here, it is important to note that determination of umax can be enhanced by some extra
techniques like determination of place of umax. Here, different N values 20 − 30 are used to get
umax for different κ values. The maximum value is presented as umax.

Table 1. A comparison for absolute errors of umax for α = 1.

K ADM [17] CSF [18] RLM [8] (N = 30) Present method
0.02 2.0× 10−2 9.7× 10−7 1.17× 10−4 6.8× 10−5

0.04 1.2× 10−2 7.8× 10−7 3.91× 10−5 4.5× 10−5

0.1 4.6× 10−3 5.9× 10−7 1.21× 10−6 4.8× 10−5

0.2 1.1× 10−3 6.8× 10−7 4.75× 10−8 3.0× 10−6

Table 2 shows that the method works very efficiently by comparing the residues for different
α = γ values when N = 30. Again, Table 3 is presented to show the effectiveness of fractional
Legendre functions on problem (1.6) for 0 < α < 1. In Table 3, umax values of successful Multi
Domain Pseudospectral Method (MDPM) are presented to compare with the present method when
α = 0.75. In Table 3 the classical shifted Legendre polynomials are also implemented on problem
(1.6) to show the effectiveness of the fractional Legendre functions on fractional models.

Table 2. Residue errors ‖res‖∞ for different α, γ values.

K α = γ = 0.25 α = γ = 0.75 α = γ = 1 RLM (α = γ = 1)
0.02 2.77× 10−16 2.49× 10−16 3.88× 10−16 1.88× 10−5

0.04 2.11× 10−16 1.38× 10−16 2.22× 10−13 1.43× 10−8

0.1 1.66× 10−16 1.66× 10−16 2.22× 10−16 1.07× 10−10

0.2 1.81× 10−16 1.11× 10−16 1.66× 10−16 3.53× 10−11

In Figure 1, other numerical methods ADM and Pade approximants are compared with the
present method. However, name of ADM method is skipped due to the equivalence with Pade
approximants for α = 1, κ = 0.1, N = 20 case.
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Table 3. Absolute errors of umax for different γ values, κ = 0.2, α = 0.75.

Method N = 15 N = 20 N = 25
MDPM [5] 0.636284 0.636283 0.636282
γ = 1 0.636109 0.636154 0.636177
γ = 0.75 0.636230 0.636243 0.636038

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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t)

Present method
Pade approximants

Figure 1. A comparison when N = 20, α = 1, K = 0.1.

In Figure 2, solutions of the proposed method when γ = 1 are presented for different α values
and N = 20. The solutions are valid when we compare with the findings in [5].

To show the effectiveness of the fractional Legendre functions, solutions of the method for
different α = γ values is illustrated in Figure 3 for N = 20. It gives a better convergence than
Figure 2.
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Figure 2. Resulting graph of u(t) for different
α values, N = 20.
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Figure 3. Resulting graph of u(t) for different
α = γ values, N = 20.

Lastly, Figure 4 shows the effect of different κ values on the solution of problem (1.1) when
α = γ = 1, N = 20. The results are valid when we analyze the similar figures in [5].
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Figure 4. Resulting graph of u(t) for different κ values, N = 20.

This section shows that the pseudospectral fractional Legendre functions method is feasible and
efficient for approximate solution of fractional population model when a pseudospectral approach
is considered.

4 Conclusions

In the present paper, an efficient pseudospectral method is presented via fractional Legendre func-
tions for the fractional Volterra population model. Obtained numerical results support that the
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presented method is valid and sufficiently accurate for the fractional population growth model.
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