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2Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
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Abstract

In this paper, we study convergence characteristics of a class of continuous time fractional-order
cellular neural network containing delay. Using the method of Lyapunov and Mittag-Leffler
functions, we derive sufficient condition for global Mittag-Leffler stability, which further implies
global asymptotic stability of the system equilibrium. Based on the theory of fractional calcu-
lus and the generalized Gronwall inequality, we approximate the solution of the corresponding
neural network model using discretization method by piecewise constant argument and obtain
some easily verifiable conditions, which ensures that the discrete-time analogues preserve the
convergence dynamics of the continuous-time networks. In the end, we give appropriate exam-
ples to validate the proposed results, illustrating advantages of the discrete-time analogue over
continuous-time neural network for numerical simulation.
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1 Introduction

The Fractional-calculus as a generalization of integer order differentiation and integral to non-
integer order was first introduced 300 years ago, though their applications are rather recent. It has
wide range of applications in control theory [1], viscoelasticity [2], signal processing [3] and social
sciences [4].
It has been recognized that the integral derivative of a function is related only to its nearby points,
while fractional derivative is related to all of the function history. It can be interpreted in other
way that the future state of the system depends on its present state as well as upon its history
values starting from the initial point. Thus fractional-order model possesses memory, and due to
this, it becomes precise to describe the state of the neurons. Fractional derivative has ability to
model memory and hereditary properties, since the fractional-derivative is non-local. Thus the
models containing fractional derivative are very crucial. Recently, it has been found that the
fractional-order calculus could be used in the study of Hopfield neural networks. Various results
on fractional-order neural networks have been obtained as a result of development of fractional
calculus [5–8]. The discrete time fractional-order artificial neural networks were presented in [9,10].
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Due to finite switching speeds of the amplifiers, time-delay is inevitable, which can also result in
oscillations or instability of dynamic system. Thus, it becomes an interesting topic to study the
stability of fractional-order neural networks containing delays. Also in some literatures, chaos and
chaotic synchronization has been discussed [11–13].

In [14], Zhang et al. have investigated the Mittag-Leffler stability for a fractional-order neural
network. In this paper, we study the Mittag-Leffler stability for a fractional-order neural network by
introducing time delay term. Moreover, we derive sufficient approximating results for the solutions
of fractional-order delayed neural network via solutions of corresponding fractional-order delayed
neural network with piecewise constant arguments of generalized type. Having obtained sufficient
conditions for the convergence dynamics of the continuous-time network, we propose an innovative
method for obtaining discrete-time analogues from the continuous-time network. In particular, we
propose a novel method to obtain a discrete-time fractional-order dynamical system whose dynamics
is inherited from the continuous-time dynamic system. The discretization method proposed in this
paper is different form the other discretization methods (such as predictor-corrector and Euler
method), in the sense that our method is an approximation via piecewise constant arguments of
generalized type, which has not been obtained in the related field of neural networks so far. Thus
the results obtained are new and more general than the previous results derived in literature.

In this paper, we consider the following delayed fractional-order neural network model described
by the following differential equation:

Dα
t xi(t) = −aixi(t) +

m∑
j=1

bijf(xj(t)) +

m∑
j=1

cijg(xj(t− τ)) + Ii t ∈ [0, T )

xi(t) = ϕi(t), t ∈ [−τ, 0], T <∞, i = 1, 2, · · · ,m, (1.1)

where m represents the number of units in the neural network; Dα
t denotes the Liouville-Caputa

fractional derivative of order α, 0 < α ≤ 1; x(t) = (x1(t), x2(t), · · · , xm(t))T ∈ Rm corresponds to
the state vector at time t; f(.) and g(.) denote the activation functions; Ii are constants denote the
external bias on the ith neuron; the positive constants ai > 0 denote the rates with which the ith

neuron will reset its potential to the resting state in isolation when disconnected from the networks
and external inputs; the constants bij and cij denote the connections of jth neuron to ith neuron at
time t and t− τ ; τ is the transmission delay respectively; ai = diag(a1, a2, · · · , am), bij , cij are the
connection weight matrices; and Ii = (I1, I2, · · · , Im)T are external inputs. The initial conditions
are ϕi(t) ∈ C([−τ, 0],Rm), where C([−τ, 0],Rm) denotes the Banach space of continuous m−real
vector functions defined on [−τ, 0]. [p] denotes the integer part of p.

The structure of this paper is as follows. In Section 2, we give some preliminaries regarding fractional
order differential systems. In Section 3, we establish the Mittag-Leffler stability of system (1.1) by
constructing suitable Lyapunov function. In Section 4, using discretization scheme, we show that
that the solution zhi (t) of (4.2) approximates the solution xi(t) of (1.1) uniformly on any compact
interval [0, T ), T < ∞. Later, we prove that the error function converges to the actual solution
for h → 0 uniformly. Moreover, in Section 5, we present some numerical results to illustrate the
effectiveness of the derived results followed with conclusion in Section 6.
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2 Preliminaries on fractional - order differential systems

For the convenience of reader, we recall some definitions and lemmas of fractional calculus in this
section (for instance, see [15–17]).

Definition 2.1. [20] The Riemann-Liouville fractional integral with fractional-order α > 0 of
function f(t) is defined as

t0I
α
t f(t) =

1

Γα

∫ t

t0

(t− s)α−1f(s)ds, (2.1)

where Γ(.) is the Gamma function and is given by Γ(z) =
∫∞

0
tz−1e−tdt.

Definition 2.2. [19] The Liouville-Caputa derivative of fractional order α of a function f(t) is
defined as

CD
α
t0,tf(t) =

1

Γ(n− α)

∫ t

t0

(t− s)n−α−1f (n)(s)ds (2.2)

where n− 1 < α < n ∈ Z+.

Remark 2.3. For sake of simplicity, we denote

CD
α
t0,tf(t) = Dα

t f(t). (2.3)

Remark 2.4. When α→ 1, the fractional order derivative Dα
t f(t) converges to the integer order

derivative f ′(t).

Definition 2.5. [19] The two-parameter Mittag-Leffler function is defined as:

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, (2.4)

where α > 0, β > 0 and z ∈ C, where C denotes the complex plane. When β = 1, we have

Eα,1(z) = Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
(2.5)

Further, for α = 1, β = 1, we have E1,1(z) = ez.

Lemma 2.6. [19] The following properties exist for the Mittag-Leffler function.

1. There exists constants N1, N2 ≥ 1 such that for any 0 < α < 1,

‖Eα,1(Atα)‖ ≤ N1‖eAt‖,
‖Eα,α(Atα)‖ ≤ N2‖eAt‖, (2.6)

where A denotes denotes matrix, ‖.‖ denotes any vector or induced matrix norm.
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2. If α ≥ 1, then for β = 1, 2, α

‖Eα,β(Atα)‖ ≤ ‖eAt
α

‖, t ≥ 0. (2.7)

Consider an n−dimensional fractional-order system given by

t0D
α
t = f(t, x(t)), x(t0) = xt0 . (2.8)

Definition 2.7. (Generalized Mittag-Leffler stability [14]) The equilibrium point x∗ = (x∗1, x
∗
2, · · · , x∗m)T

of system (2.8) is said to be globally Mittag-Leffler stable, if

‖x(t)− x∗‖ ≤ [m(xt0 − x∗)Eα(−γ(t− t0)α)]
b,

where γ > 0, b > 0, m(0) = 0, m(x) ≥ 0 and m(x) satisfies locally Lipschitz condition on x ∈ Rm
with Lipschitz constant m0.

Remark 2.8. The global Mittag-Leffler stability implies global asymptotic stability.

Theorem 2.9. (The Second Method of Lyapunov [14]) For t0 = 0, the fractional-order system (2.8)
is Mittag-Leffler stable at the equilibrium point x∗ = 0, if there exists a continuously differentiable
function V (t, x(t)) satisfying

α1‖x‖a ≤ V (t, x(t)) ≤ α2‖x‖ab, (2.9)

Dβ
t V (t, x(t)) ≤ −α3‖x‖ab, (2.10)

where V (t, x(t)) : [0,∞) ×D → R satisfies locally Lipschitz condition on x; D ⊂ Rm is a domain
containing origin; t ≥ 0, β ∈ (0, 1), α1, α2, α3, a and b are arbitrary positive constants. If the
assumptions hold globally on Rm, then x∗ = 0 is globally Mittag-Leffler stable.

Theorem 2.10. (The Extended Second Method of Lyapunov [14]) For t0 = 0, the fractional-order
system (2.8) is Mittag-Leffler stable at the equilibrium point x∗ = 0, if there exists a continuous
function V (t, x(t)) satisfying

α1‖x(t)‖a ≤ V (t, x(t)) ≤ α2‖x(t)‖ab, (2.11)

Dβ
t V (t+, x(t+)) ≤ −α3‖x‖ab, (holding almost everywhere) (2.12)

where V (t, x(t)) : [0,∞) ×D → R satisfies locally Lipschitz condition on x; V̇ (t, x(t)) is piecewise
continuous, and lims→t+ V̇ (s, x(s)) exists for any t ∈ [0,∞); D ⊂ Rm is a domain containing origin
and V (t+, x(t+)) = lims→t+ V (s, x(s)); t ≥ 0, β ∈ (0, 1), α1, α2, α3, a and b are arbitrary positive
constants. If the assumptions hold globally on Rm, then x∗ = 0 is globally Mittag-Leffler stable.

Theorem 2.11. [14] If h(t) ∈ C1([0,+∞),R), then the following inequality holds almost every-
where.

Dα
t |h(t+)| ≤ sgn(h(t))Dα

t h(t), 0 < α < 1, (2.13)

where h(t+) = lims→t+ h(s), where sgn denotes the signum function.
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Lemma 2.12. [20] Let m be a positive integer such that m − 1 < α < m; if x(t) ∈ Cm−1[a, b],
then

Iαt D
α
t x(t) = x(t)−

m−1∑
k=0

xk(a)

k!
(t− a)k. (2.14)

In particular, if 0 < α ≤ 1 and x(t) ∈ C[a, b], then we have the Fundamental Theorem of Calculus

Iαt D
α
t x(t) = x(t)− x(a). (2.15)

Lemma 2.13. [33] Suppose that α > 0, x(t) be a non-negative function locally integrable on
0 ≤ t < T (for some T ≤ +∞) and v be a non-negative, non-decreasing continuous function defined
on 0 ≤ t < T , v(t) ≤M (real constant). Furthermore, if u(t) is non-negative and locally integrable
on 0 ≤ t < T such that

x(t) ≤ u(t) + v(t)

∫ t

0

(t− s)α−1x(s)ds,

on 0 ≤ t < T . Then

x(t) ≤ u(t) +

∫ t

0

[ ∞∑
m=1

(v(t)Γ(α))m

Γ(nα)
(t− s)mα−1u(s)

]
ds, t ∈ [0, T ). (2.16)

Henry [18] obtained (2.16) for u and v constant. For the use of (2.16), see [19].

Remark 2.14. If in Lemma 2.13, u(t) is a non-decreasing function on 0 ≤ t < T , then

x(t) ≤ u(t)Eα,1(v(t)Γ(α)tα), t ∈ [0, T ). (2.17)

3 Global Mittag-Leffler stability

In this section, we obtain sufficient condition for global Mittag-Leffler stability of the system (1.1),
which further implies the global asymptotic stability of the equilibrium point.

We introduce the following conditions on our model system (1.1).

A1. The activation functions f(.) and g(.) are continuous and Lipschitz, i.e. for some x, y ∈ R,
there exist positive constants Lf and Lg such that

|f(x)− f(y)| ≤ Lf |x− y|,
|g(x)− g(y)| ≤ Lg|x− y|.

A2. There exists positive constant ci(i = 1, 2, · · · ,m) such that

ci =
1

ai

 m∑
j=1

|bji|Lf +

m∑
j=1

|cji|Lg

 < 1. (3.1)
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A3. The system parameters ai, bij , cij (i, j = 1, 2, · · · ,m) satisfy

min
1≤i≤m

ai − Lf m∑
j=1

|bji|

 > max
1≤i≤m

Lg m∑
j=1

|cji|

 > 0. (3.2)

A4. The time delay term τ is a positive real number.

Remark 3.1. The problems of existence and uniqueness of equilibrium solutions of fractional order
delayed neural networks have been studied by several authors in literature. For more details, refer
to [20–22]. For convenience of reader, we give the proof of existence and uniqueness of equilibrium
point of system (1.1) as following theorem.

Theorem 3.2. If the Assumptions (A1)-(A2) hold, then there exists a unique equilibrium point
of system (1.1).

Proof. Define ‖x‖ = ‖x‖1, that is ‖x‖ =
∑m
i=1 |xi| for any x = (x1, x2, · · · , xm)T ∈ Rm. Consider

the mapping
F (y) = (F1(y1), F2(y2), · · · , Fm(ym))

T
, where y = (y1, y2, · · · , ym)T ∈ Rm and

Fi(yi) =

m∑
j=1

bijf
(yj
aj

)
+

m∑
j=1

cijg
(yj
aj

)
+ Ii, (i = 1, 2, · · · ,m).

We will show that F is a contraction mapping on Rm. From Assumption (A1), for any two vectors
y, z ∈ Rm, we have

|Fi(y)− Fi(z)| =

∣∣∣∣∣∣
m∑
j=1

bij

(
f
(yj
aj

)− f(
zj
aj

))∣∣∣∣∣∣+

∣∣∣∣∣∣
m∑
j=1

cij

(
g
(yj
aj

)− g(
zj
aj

))∣∣∣∣∣∣
≤

 m∑
j=1

|bij |Lf
aj

+

m∑
j=1

|cij |Lg
aj

 |yj − zj |
From Assumption (A2), we obtain

‖F (y)− F (z)‖ =

m∑
i=1

|Fi(y)− Fi(z)|

≤
m∑
i=1

m∑
j=1

1

aj
(|bij |Lf + |cij |Lg) |yj − zj |

=

m∑
i=1

 m∑
j=1

1

ai
(|bji|Lf + |cji|Lg)

 |yi − zi|
< c‖y − z‖,
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where c = max{c1, c2, · · · , cm}. Thus we have ‖F (y) − F (z)‖ < c‖y − z‖. Hence the mapping
F : Rm → Rm is a strict contraction mapping on Rm with Lipschitz constant c. Thus there exists
a unique fixed point y∗ ∈ Rm such that F (y∗) = y∗, that is

y∗i =

m∑
j=1

bijf
(y∗j
aj

)
+

m∑
j=1

cijg
(y∗j
aj

)
+ Ii, (i = 1, 2, · · · ,m).

Denote x∗i =
y∗i
ai

for i = 1, 2, · · · ,m. Then we have

−aix∗i +

m∑
j=1

bijf(x∗j ) +

m∑
j=1

cijg(x∗j ) + Ii = 0, (i = 1, 2, · · · ,m).

Thus x∗ = (x∗1, x
∗
2, · · · , x∗m)T is the unique equilibrium point of system (1.1). q.e.d.

Now we prove the Mittag-Leffler stability of the unique equilibrium point of system (1.1).

Let x∗ = (x∗1, x
∗
2, · · · , x∗m)T be the unique equilibrium point of (1.1). Then for e ∈ Rm, e =

(e1, e2, · · · , em)T , it can be derived from (1.1) that the error ei(t) = xi(t)− x∗i satisfies

Dα
t ei(t) = −aiei(t) +

m∑
j=1

bij
(
f(x∗j + ej(t))− f(x∗j )

)
+

m∑
j=1

cij
(
g(x∗j + ej(t− τ))− g(x∗j )

)
ei(t) = ϕi(t)− x∗i , t ∈ [−τ, 0] i = 1, 2, · · · ,m. (3.3)

Theorem 3.3. If Assumptions (A1)−(A4) hold, then the equilibrium point x∗ = (x∗1, x
∗
2, · · · , x∗m)T

of system (1.1) is globally Mittag-Leffler stable.

Proof. We construct a Lyapunov function as

V (t, e(t)) = ‖e(t)‖ =

m∑
i=1

|ei(t)|. (3.4)

It can be observed that the Lyapunov function satisfies equation (2.9) of Theorem 2.10. From
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Assumptions (A1), (A3) and Theorem 2.11, the following inequality holds almost everywhere;

Dα
t V (t+, e(t+)) =

m∑
i=1

Dα
t |ei(t+)| ≤

m∑
i=1

sgn(ei(t))D
α
t ei(t)

≤
m∑
i=1

−ai|ei(t)|+ m∑
j=1

Lf |bij ||ej(t)|+
m∑
j=1

Lg|cij ||ej(t− τ)|


= −

m∑
i=1

ai − m∑
j=1

Lf |bji|

 |ei(t)|+ m∑
j=1

m∑
i=1

Lg|cij ||ej(t− τ)|

≤ −k1V (t, e(t)) + k2 sup
t−τ≤s≤t

V (s, e(s)),

where

k1 = min
1≤i≤m

ai − Lf m∑
j=1

|bji|

 > 0, and k2 = max
1≤i≤m

Lg m∑
j=1

|cji|

 > 0. (3.5)

Thus from above estimate, for any solution e(t) of (3.3), that satisfies the Razumikhin condition

V (s, e(s)) ≤ V (t, e(t)), t− τ ≤ s ≤ t,

we have
Dα
t V (t+, e(t+)) ≤ −(k1 − k2)V (t, e(t)). (3.6)

Form Assumption (A3), there exists a real number γ > 0, such that

k1 − k2 ≥ γ.

Thus it follows that
Dα
t V (t+, e(t+)) ≤ −γV (t, e(t)). (3.7)

It can be observed that the condition (2.12) of Theorem 2.10 is satisfied. Thus, we have

‖e(t)‖ = V (t, e(t)) ≤ V (0, e(0))Eα(−γtα). (3.8)

Hence,

‖x(t)− x∗‖ =

m∑
i=1

|xi(t)− x∗i | ≤ Eα(−γtα)

m∑
i=1

|xi(0)− x∗i |

= ‖ϕi(0)− x∗‖Eα(−γtα)

≤ ‖ϕ0 − x∗‖τEα(−γtα).

Let m = ‖ϕ0 − x∗‖τ , where m ≥ 0 and m = 0 holds only if ϕi(0) = x∗, (i = 1, 2, · · · ,m). Then
‖x(t)− x∗‖ ≤ mEα(−γtα). Thus system (1.1) is globally Mittag-Leffler stable. q.e.d.

Remark 3.4. Since the equilibrium point x∗ of system (1.1) is globally Mittag-Leffler stable. Thus
from Remark 2.8, it is globally asymptotically stable.
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4 Approximation Results

4.1 Formulation of discrete-time analogue: Euler’s polygonal lines of order α

Recently, many researchers have applied the discretization method to discretize various cellular
neural networks [23–29]. But discretizing the fractional-order differential equations is of main
interest. In [30], Riccati’s fractional-order differential equation is discretized. It has been observed
that as the fractional-order parameter α → 1, Euler’s discretization method is obtained. In [31],
logistic fractional-order differential equation is discretized using same method. In [32], discretization
method is applied to Chua’s system, which is one of the autonomous differential equations capable
of generating chaotic behavior. Fixed points and their asymptotic stability are also investigated.
Chaotic attractor, bifurcation and chaos for different values of the fractional-order parameter have
been discussed. In the next result, we propose a numerical discretization scheme using piecewise
constant arguments of generalized type, which has not been derived till now to the best of author’s
knowledge.

Let 0 < α ≤ 1, and consider the following fractional-order delayed neural network.

Dα
t xi(t) = −aixi(t) +

m∑
j=1

bijf(xj(t)) +

m∑
j=1

cijg(xj(t− τ)) + Ii t ∈ [0, T )

xi(t) = ϕi(t), t ∈ [−τ, 0], T <∞, i = 1, 2, · · · ,m. (4.1)

Let γh(t) = h

[
t

h

]
, where [.] is the usual greatest integer function and h is a positive number in the

interval (0, τ ]. In fact we can consider h =
τ

ν
with ν ≥ 1 is an integer. It is clear that γh(t) = hn

for hn ≤ t ≤ h(n+ 1), and n is a positive integer, also we have γh(τ) = νh.

The corresponding differential equation with piecewise constant arguments

γh(t) = h

[
t

h

]
is given by

Dα
t z

h
i (t) = −aizhi (γh(t)) +

m∑
j=1

bijf(zhj (γh(t)))

+

m∑
j=1

cijg(zhj (γh(t− τ))) + Ii, (4.2)

with initial conditions

zhi (nh) = ϕi(nh), n = −ν, · · · , 0. (4.3)

By the solution of above system (4.2)-(4.3), we mean a function zh = (zhi ), i = 1, 2, · · · ,m defined
on {−jh : j = 0, 1, · · · , such that − τ ≤ −jh ≤ 0} by (4.3), which satisfy the following properties
on R+;

1. The functions zhi are continuous for each i = 1, 2, · · · ,m on R+.
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2. The corresponding derivatives of zhi (t) exist at each point t ∈ R+ with the possible exception
of the points jh(j = 0, 1, · · · ) where finite one-sided derivatives exists, for each i = 1, 2, · · · ,m.

3. The function zhi satisfies (4.2) on each interval I(j,h) = [jh, (j + 1)h) for j = 0, 1, · · · .

On I(n,h) we can rewrite equation (4.2)-(4.3) as

Dα
t z

h
i (t) = −aizhi (nh) +

m∑
j=1

bijf(zhj (nh)) +

m∑
j=1

cijg(zhj (h(n− ν))) + Ii.

(4.4)

As γh has been applied also in the linear part, the discretization method obtained is the α-fractional
polygonal of Euler [30]. Our discretization method proceed as follows:

1. Let t ∈ [0, h), then
t

h
∈ [0, 1). Thus we get, for t ∈ [0, h)

Dα
t z

h
i (t) = −aizhi (0) +

m∑
j=1

bijf(zhj (0)) +

m∑
j=1

cijg(zhj (h(0− ν))) + Ii,

and by the Fundamental Theorem of Fractional Calculus (2.15), the solution of (4.4) is given
by

zhi (t) = zhi (0) +
1

Γα

∫ t

0

(t− s)α−1
(
− aizhi (0) +

m∑
j=1

bijf(zhj (0))

+

m∑
j=1

cijg(zhj (h(0− ν))) + Ii
)
ds,

or

zhi (t) = zhi (0) +
tα

Γ(α+ 1)

(
− aizhi (0) +

m∑
j=1

bijf(zhj (0))

+

m∑
j=1

cijg(zhj (h(0− ν))) + Ii
)
,

and by the continuity of zhi (t) at t = h, we obtain

zhi (h) =

(
1− ai

hα

Γ(α+ 1)

)
zhi (0) (4.5)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(zhj (0)) +

m∑
j=1

cijg(zhj (h(0− ν))) + Ii

 .
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2. Let t ∈ [h, 2h), then
t

h
∈ [1, 2). Then we have

Dα
t z

h
i (t) = −aizhi (h) +

m∑
j=1

bijf(zhj (h)) +

m∑
j=1

cijg(zhj (h(1− ν))) + Ii.

The solution on [h, 2h) of above is given as

zhi (t) = zhi (h) +
1

Γα

∫ t

h

(t− s)α−1
(
− aizhi (h) +

m∑
j=1

bijf(zhj (h))

+

m∑
j=1

cijg(zhj (h(1− ν))) + Ii
)
ds,

or

zhi (t) = zhi (h)− ai
(t− h)α

Γ(α+ 1)
zhi (h)

+
(t− h)α

Γ(α+ 1)

 m∑
j=1

bijf(zhj (h)) +

m∑
j=1

cijg(zhj (h(1− ν))) + Ii

 ,

and by the continuity of zhi (t) at t = 2h, we obtain

zhi (2h) =

(
1− ai

hα

Γ(α+ 1)

)
zhi (h) (4.6)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(zhj (h)) +

m∑
j=1

cijg(zhj (h(1− ν))) + Ii

 .

Using (4.5), we can rewrite (4.6) as

zhi (2h) =

(
1− ai

hα

Γ(α+ 1)

)(
1− ai

hα

Γ(α+ 1)

)
zhi (0)

+

(
1− ai

hα

Γ(α+ 1)

)
hα

Γ(α+ 1)

( m∑
j=1

bijf(zhj (0))

+

m∑
j=1

cijg(zhj (h(0− ν))) + Ii
)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(zhj (h)) +

m∑
j=1

cijg(zhj (h(1− ν))) + Ii

 .

Repeating the process, it can be easily deduced that for nh ≤ t < (n + 1)h, the solution of IVP
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(4.4) can be given as

zhi (t) = zhi (nh)− ai
(t− nh)α

Γ(α+ 1)
zhi (nh) (4.7)

+
(t− nh)α

Γ(α+ 1)

 m∑
j=1

bijf(zhj (nh)) +

m∑
j=1

cijg(zhj (h(n− ν))) + Ii

 .

Replacing t = (n+ 1)h in (4.7) and using continuity of zhi , we obtain

zhi ((n+ 1)h) =

(
1− ai

hα

Γ(α+ 1)

)
zhi (nh) (4.8)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(zhj (nh)) +

m∑
j=1

cijg(zhj (h(n− ν))) + Ii

 .

Define sequence ahi (n) = zhi (nh). This sequence satisfies the following non-linear system of delay
difference equations

ahi (n+ 1) =

(
1− ai

hα

Γ(α+ 1)

)
ahi (n) (4.9)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(ahj (n)) +

m∑
j=1

cijg(ahj (n− ν)) + Ii

 .

with initial condition
ahi (n) = ϕi(nh) n = −ν, · · · , 0. (4.10)

The initial value problem (4.9)-(4.10) is a discretization of the original problem (4.1).



Uniform Euler approximation of solutions of fractional-order delayed cellular neural network 183

From the above recurrence relation and initial conditions, we obtain

ahi (0) = ϕi(0) (4.11)

ahi (1) =

(
1− ai

hα

Γ(α+ 1)

)
ahi (0)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(ahj (0)) +

m∑
j=1

cijg(ahj (0− ν)) + Ii


=

(
1− ai

hα

Γ(α+ 1)

)
ϕi(0) (4.12)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(ϕj(0)) +

m∑
j=1

cijg(ϕj(0− ν)) + Ii


ahi (2) =

(
1− ai

hα

Γ(α+ 1)

)
ahi (1)

+
hα

Γ(α+ 1)

 m∑
j=1

bijf(ahj (1)) +

m∑
j=1

cijg(ahj (1− ν)) + Ii


=

(
1− ai

hα

Γ(α+ 1)

)(
1− ai

hα

Γ(α+ 1)

)
ϕi(0)

+

(
1− ai

hα

Γ(α+ 1)

)
hα

Γ(α+ 1)

 m∑
j=1

bijf(ϕj(0)) +

m∑
j=1

cijg(ϕj(0− ν)) + Ii


+

hα

Γ(α+ 1)

 m∑
j=1

bijf(ahj (1)) +

m∑
j=1

cijg(ϕj(1− ν)) + Ii

 . (4.13)

Based on the above calculations, we can deduce that

ahi (n+ 1) =

(
1− ai

hα

Γ(α+ 1)

)(n+1)

ϕi(0)

+

n∑
k=0

(
1− ai

hα

Γ(α+ 1)

)(n−k)
hα

Γ(α+ 1)

[ m∑
j=1

bijf(ahj (k))

+

m∑
j=1

cijg(ahj (k − ν)) + Ii
]

(4.14)

From the initial conditions, the above sequence ahi (n) is well defined. Hence the solution of system
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(4.3), for t ∈ I(n,h), can be written as

zhi (t) = ahi (n) +
1

Γα

∫ t

nh

(t− s)α−1
(
− aiahi (n) +

m∑
j=1

bijf(ahj (n))

+

m∑
j=1

cijg(ahj (n− ν)) + Ii
)
ds (4.15)

are the α-fractional Euler method. We can write the above result as the following theorem.

Theorem 4.1. The system (4.2)-(4.3) has a unique solution, for t ∈ I(n,h), in the following form:

zhi (t) =

[
1− ai

(
(t− nh)α

Γ(α+ 1)

)]
ahi (n) (4.16)

+

(
(t− nh)α

Γ(α+ 1)

) m∑
j=1

bijf(ahj (n)) +

m∑
j=1

cijg(ahj (n− ν)) + Ii

 .

for t ≥ 0, i = 1, 2, · · · ,m and the sequence ahi (.) satisfies the non linear difference equation (4.9)
with the initial conditions given by (4.10).

Note 4.2. The approximation method with piecewise constant argument described above is valid
only if the solutions of system of non-linear delayed differential equations (4.1), (4.3) and (4.9)-(4.10)
are unique.

4.2 Approximation Results in Bounded Intervals: Error function

In this section, it is proved that system (4.1) can be approximated for t ∈ [0, T ) by the Euler
schema.

To prove the result, we use the particular form of Lemma 2.12, i.e. for 0 < α ≤ 1 and x(t) ∈ C[a, b],

Iαt D
α
t x(t) = x(t)− x(a). (4.17)

Let there exists a positive constant r. Then for every h ∈ (0, r) and t ∈ I(n,h) = [nh, (n+1)h), n ≥ 0,
we define

εhi (t) := xi(t)− zhi (t). (4.18)

We can rewrite (4.18) as

εhi (t) = xi(t)− zhi (t)− ϕi(0) + ϕi(0)

= [xi(t)− ϕi(0)]− [zhi (t)− ϕi(0)]

= Iαt D
α
t xi(t)− Iαt Dα

t z
h
i (t). (4.19)

Since from Definition (2.1), we have

Iαt f(t) =
1

Γα

∫ t

0

(t− s)α−1f(s)ds. (4.20)
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Using (4.20) in equation (4.19), we obtain

εhi (t) =
1

Γα

∫ t

0

(t− s)α−1Dα
t

[
xi(s)− zhi (s)

]
ds

=
−ai
Γα

∫ t

0

(t− s)α−1
[
xi(s)− zhi (γh(s))

]
ds (4.21)

+
1

Γα

∫ t

0

(t− s)α−1
m∑
j=1

bij
[
f(xj(s))− f(zhj (γh(s)))

]
ds

+
1

Γα

∫ t

0

(t− s)α−1
m∑
j=1

cij
[
g(xj(s− τ))− g(zhj (γh(s− τ)))

]
ds.

Note that
|xi(s)− zhi (γh(s))| ≤ |xi(s)− xi(γh(s))|+ |xi(γh(s))− zhi (γh(s))|.

Using Lipschitz continuity of f(.) and g(.), we have

|εhi (t)| ≤ ai
Γα

∫ t

0

(t− s)α−1|εhi (γh(s))|ds

+
ai
Γα

∫ t

0

(t− s)α−1|xi(s)− xi(γh(s))|ds

+
Lf
Γα

∫ t

0

(t− s)α−1
m∑
j=1

|bij | |εhj (γh(s))|ds

+
Lf
Γα

∫ t

0

(t− s)α−1
m∑
j=1

|bij | |xi(s)− xi(γh(s))|ds

+Lg
1

Γα

∫ t

0

(t− s)α−1
m∑
j=1

|cij | |εhj (γh(s− τ))|ds

+Lg
1

Γα

∫ t

0

(t− s)α−1
m∑
j=1

|cij | |xj(s− τ)− xj(γh(s− τ))|ds.
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Now we take the sum of the above inequalities from 1 to m, and obtain

m∑
i=1

|εhi (t)|

≤
m∑
i=1

ai
Γα

∫ t

0

(t− s)α−1

(
m∑
i=1

|εhi (γh(s))|

)
ds

+
Lf
Γα

∫ t

0

(t− s)α−1
∑

1≤i,j≤m

|bij |

(
m∑
i=1

|εhi (γh(s))|

)
ds

+
Lg
Γα

∫ t

0

(t− s)α−1
∑

1≤i,j≤m

|cij |

(
m∑
i=1

|εhi (γh(s− τ))|

)
ds (4.22)

+

m∑
i=1

ai
Γα

∫ t

0

(t− s)α−1

(
m∑
i=1

|xi(s)− xi(γh(s))|

)
ds

+
Lf
Γα

∫ t

0

(t− s)α−1
∑

1≤i,j≤m

|bij |

(
m∑
i=1

|xi(s)− xi(γh(s))|

)
ds

+
Lg
Γα

∫ t

0

(t− s)α−1
∑

1≤i,j≤m

|cij |

(
m∑
i=1

|xi(s− τ)− xi(γh(s− τ))|

)
ds.

Define m(t) = sup−τ≤s≤t
∑m
i=1 |εhi (s)| and the module of continuity w(x, h, T ) = max{

∑m
i=1 |xi(s)−

xi(γh(s))| : −τ ≤ s ≤ T}. Therefore, we can write equation (4.22) for t ≥ 0 as

m(t) ≤ u(t) +
β

Γα

∫ t

0

(t− s)α−1m(s)ds, (4.23)

where

β :=

m∑
i=1

ai +
∑

1≤i,j≤m

(|bij |Lf + |cij |Lg) , (4.24)

and

u(t) :=
βtα

Γ(α+ 1)
w(x, h, T ).

Since u(t) is non negative, non-decreasing and locally integrable function on [0, T ), β is a positive
constant, then by Lemma 2.13, (2.17) holds, i.e.

m(t) ≤ βtα

Γ(α+ 1)
w(x, h, T )Eα,1 (βtα) , t ∈ [0, T ).

Using (2.7) we obtain

m(t) ≤ βtα

Γ(α+ 1)
w(x, h, T )eβt, t ∈ [0, T ).

From the hypothesis of theorem, it follows that on [0, T ), εhi (t) → 0 uniformly as h → 0. We can
summarize the above result as the following theorem.
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Theorem 4.3. Assume that the assumptions (A1) and (A2) holds. Then for every h ∈ (0, r), the
solution x of the system (1.1) can be approximated using constant argument and the approximation
satisfies:

|xi(t)− zhi (t)| ≤ βtαeβt

Γ(α+ 1)
w(x, h, T ), (4.25)

where β is given by (4.24) and w(x, h, T ) = max{
∑m
i=1 |xi(s)− xi(γh(s))| : −τ ≤ s ≤ T}. Further-

more, zhi (t)→ xi(t) uniformly as h→ 0, and

|xi(t)− zhi (t)| ≤ βtαeβtw(x, h, T )

Γ(α+ 1)
, t ∈ [0, T ). (4.26)

On [τ, T ) the functions xi and zhi are Lipschitz functions, and hence

w(x, h, T ) ≤ ch on [τ, T ),

with c a positive constant. If the initial function ϕ is Lipschitz on [−τ, 0], then w(x, h, T ) ≤ ch on
[0, T ).

Corollary 1. If the initial function ϕ is Lipschitz on [−τ, 0], then the estimations in (4.25) and
(4.26) become

|xi(t)− zhi (t)| ≤ βTαeβT

Γ(α+ 1)
ch, t ∈ [0, T ),

|xi(nh)− zhi (nh)| ≤ βe[β+ln(α)]T

Γ(α+ 1)
ch, n ≤

[
T

h

]
and for α→ 1 the result is also true.

The results are true for the systems purely ordinary and purely delayed.

Corollary 2. The assertion of Theorem 4.3 remains true if f(·) ≡ 0, i.e. the x solution of the
system of differential equations

Dα
t xi(t) = −aixi(t) +

m∑
j=1

cijg(xj(t− τ)) + Ii t ∈ [0, T )

xi(t) = ϕi(t), t ∈ [−τ, 0], T <∞, i = 1, 2, · · · ,m.

can be approximated using constant argument and the approximate satisfies:

|xi(t)− zhi (t)| ≤ β1T
αeβ1T

Γ(α+ 1)
ch, t ∈ [0, T ),

|xi(nh)− zhi (nh)| ≤ β1e
[β1+ln(α)]T

Γ(α+ 1)
ch, n ≤

[
T

h

]
and for α→ 1 the result is also true, with β1 =

∑m
i=1 ai +

∑
1≤i,j≤m |cij |Lg.
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Corollary 3. The assertion of Theorem 4.3 remains true if g(·) ≡ 0, i.e. the x solution of the
system of differential equations

Dα
t xi(t) = −aixi(t) +

m∑
j=1

bijf(xj(t)) + Ii t ∈ [0, T )

xi(0) = x0
i , i = 1, 2, · · · ,m.

can be approximated using constant argument and the approximate satisfies:

|xi(t)− zhi (t)| ≤ β2T
αeβ2T

Γ(α+ 1)
ch, t ∈ [0, T ),

|xi(nh)− zhi (nh)| ≤ β2e
[β2+ln(α)]T

Γ(α+ 1)
ch, n ≤

[
T

h

]
and for α→ 1 the result is also true, with β2 =

∑m
i=1 ai +

∑
1≤i,j≤m |bij |Lf .

5 Numerical Result

In this section we present two numerical examples to validate the obtained theoretical results.
However, before to present the details we note that the sequence ahi in Theorem 4.1 can be rewritten.
Indeed, we have that if ahi (n) = zhi (nh), then the sequences satisfy the following difference equations

zhi (t) = ahi (n) +
1

Γα

∫ t

nh

(t− s)α−1
(
− aiahi (n) +

m∑
j=1

bijf(ahj (n))

+

m∑
j=1

cijg(ahj (n− ν)) + Ii
)
ds. (5.1)

The above problem (5.1) is a discretization of the original system (1.1).

Example 5.1. Consider the following fractional-order bi-directional neural network without delay:

Dα
t x1(t) = −x1(t) + 2f(x2(t)) + 5

Dα
t x2(t) = −x2(t)− 1.5f(x1(t)) + 10 (5.2)

with x1(0) = 0.5, x2(0) = 1.

The activation function is f(·) = tanh(·).

In discrete form, we can write equation (5.2) as

ah1 (n+ 1) =

(
1− hα

Γ(α+ 1)

)
ah1 (n) +

hα

Γ(α+ 1)
(2f(ah2 (n) + 5)

ah2 (n+ 1) =

(
1− hα

Γ(α+ 1)

)
ah2 (n) +

hα

Γ(α+ 1)
(−1.5f(ah1 (n) + 10)
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Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 0.5000 1.0000 0.5000 1.0000

0.75 3.1427 4.8282 3.9266 4.9781
1.50 5.0183 6.6172 4.7145 5.8738
2.25 5.9837 7.5345 5.1331 6.3525
3.00 5.9837 7.5345 5.4008 6.6591
3.75 6.4788 8.0050 5.5892 6.8753
5.25 6.8629 8.3698 5.8403 7.1638
6.25 6.9297 8.4332 5.9550 7.2957
8.50 6.9815 8.4824 6.1329 7.5004
10.25 6.9951 8.4954 6.2271 7.6088

For α = 0.6, h = 0.25

Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 0.5000 1.0000 0.5000 1.0000

1.20 4.5899 6.1175 4.4832 5.6080
2.40 5.6167 7.1327 5.2037 6.4324
3.20 6.2061 7.7153 5.4630 6.7299
4.40 6.5444 8.0496 5.7175 7.0223
5.60 6.7385 8.2415 5.8869 7.2171
7.20 6.9139 8.4149 6.0427 7.3964
9.20 6.9716 8.4720 6.1754 7.5493
10.60 6.9837 8.4839 6.2441 7.6284
11.40 6.9906 8.4908 6.2772 7.6665

For α = 0.6, h = 0.20

Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 0.5000 1.0000 0.5000 1.0000

1.10 3.4040 4.6975 4.4079 5.5167
1.50 3.4040 4.6975 4.7447 5.9030
2.20 4.4136 5.7665 5.1324 6.3484
3.10 5.1405 6.5349 5.4443 6.7071
3.70 5.1405 6.5349 5.5904 6.8751
5.20 6.0389 7.4844 5.8416 7.1643
6.20 6.3091 7.7699 5.9562 7.2963
8.50 6.6429 8.1226 6.1369 7.5046
10.30 6.8154 8.3050 6.2324 7.6146

For α = 0.6, h = 0.10

Table 1. Actual versus Approximated solution for system (5.2) for α = 0.6

t |εx1(t))| |εx2(t)|
0 0 0

0.75 0.7839 0.1499
1.50 0.3038 0.7434
2.25 0.8506 1.1820
3.00 0.5829 0.8754
3.75 0.8896 1.1297
5.25 1.0226 1.206
6.25 0.9747 1.1375
8.50 0.8486 0.9820
10.25 0.7680 0.8866

For α = 0.6, h = 0.25

t |εx1(t)| |εx2(t)|
0 0 0

1.20 0.1067 0.5095
2.40 0.4130 0.7003
3.20 0.7431 0.9854
4.40 0.8269 1.0273
5.60 0.8516 1.0244
7.20 0.8712 1.0185
9.20 0.7962 0.9227
10.60 0.7396 0.8555
11.40 0.7134 0.8243

For α = 0.6, h = 0.20

t |εx1(t))| |εx2(t)|
0 0 0

1.10 1.0039 0.8192
1.50 1.3407 1.2055
2.20 0.7188 0.5819
3.10 0.3038 0.1722
3.70 0.4499 0.3402
5.20 0.1973 0.3201
6.20 0.3529 0.4736
8.50 0.5060 0.6180
10.30 0.5830 0.6904

For α = 0.6, h = 0.10

Table 2. Error for different h for system (5.2)
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Figure 1. Actual versus Approximated solution for system (5.2) for various h with α = 0.6.
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The verification for results has been performed for different values of h and α = 0.6. Table 1 and
Figure 1(a)-1(c) containing solutions at different values of h and α = 0.6 are given below. Table 2
illustrates the difference between the actual solution and approximated solution for different values
of h, where absolute error εi = |exacti − approximatei|, i = 1, 2 for different values of h.

Comparing the above tables and figures, we can say that the solution of system (5.2) can be
approximated through the discretized system. Since error is decreasing with increase in the value
of t, thus the obtained numerical results are in support of theoretical analysis done in sub section
4.

Now, for error estimation, we proceed as follows. In this case, a1 = a2 = 1, b11 = 0, b12 = 2, b21 =
−1.5, b22 = 0, Lf = 1 and cij = 0, for 1 ≤ i, j ≤ 2. Thus for some c > 0, using Corollary 3, we have

β2 =
∑2
i=1 ai +

∑
1≤i,j≤2 |bij |Lf = 5.5. Then for t ∈ [0, T ), T <∞,

|x1(t)− zh1 (t)| ≤ 5.5Tαe5.5T

Γ(1 + α)
ch,

|x2(t)− zh2 (t)| ≤ 5.5Tαe5.5T

Γ(1 + α)
ch, (5.3)

and for n ≤
[T
h

]
,

|x1(nh)− zh1 (nh)| ≤ 5.5e[5.5+ln(α)]T

Γ(1 + α)
ch,

|x2(nh)− zh2 (nh)| ≤ 5.5e[5.5+ln(α)]T

Γ(1 + α)
ch. (5.4)

Varying α and h for different values, we get different approximations for x1(t) and x2(t). Moreover,
it is clear from (5.3) and (5.4) that zhi (t) → xi(t) uniformly as h → 0 supporting the theoretical
analysis done in sub-section 4.2.

Example 5.2. Consider the following fractional order delayed neural network model;

Dα
t x1(t) = −x1(t) + 0.5 tanh(x1(t− τ)) + 10

Dα
t x2(t) = −x2(t) + 1.5 tanh(x2(t− τ)) + 20 (5.5)

with initial conditions (10, 5) for t ∈ [−τ, 0]. We discuss three different cases of h for τ = 0.05 in
this example.

Table 3 and Figures 2(a)-2(c) depict the comparison of solutions of system (5.5) for different values
of h for α = 0.8 and fixed delay τ = 0.05. Table 4 illustrates the difference between actual
solution and approximated solution for different values of h, where absolute error is εi = |exacti −
approximatei|, i = 1, 2 for different values of h. As t is increasing, the difference between the
actual solution and the approximated solution is decreasing. In other way, we can say that the
approximated solution is converging to the actual solution.

For this example, error estimation proceeds as follows. In this case, a1 = a2 = 1, bij = 0, for
1 ≤ i, j ≤ 2 and c11 = 0.5, c12 = 0, c21 = 0, c22 = 1.5, Lg = 1. Thus for some c > 0, using Corollary
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Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 10.0000 5.0000 10.0000 5.0000

1.20 10.4201 19.0764 10.0929 8.0666
2.40 10.4313 19.3555 10.1327 9.3790
3.20 10.4472 19.8532 10.1686 10.5632
4.40 10.4590 20.2169 10.2010 11.6318
5.60 10.4666 20.4524 10.2302 12.5959
7.20 10.4730 20.6538 10.2803 14.2508
9.20 10.4781 20.8141 10.3211 15.5981
10.60 10.4806 20.8926 10.3386 16.1747
11.40 10.4818 20.9293 10.3544 16.6950

For α = 0.8, h = 0.05

Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 10.0000 5.0000 10.0000 5.0000

1.20 10.0851 7.8083 10.0378 7.6659
2.40 10.2143 12.0720 10.1009 9.7467
3.20 10.2629 13.6769 10.1576 11.6198
4.40 10.3033 15.0084 10.2106 13.3696
5.60 10.3368 16.1132 10.2611 15.0331
7.20 10.3876 17.7909 10.3415 17.3537
9.20 10.4226 18.9460 10.3880 18.5654
10.60 10.4358 19.3807 10.4016 18.8685
11.40 10.4467 19.7414 10.4101 19.0200

For α = 0.8, h = 0.10

Actual versus Approximated solution
t x1(t)actual x2(t)actual x1(t)approx x2(t)approx
0 10.0000 5.0000 10.0000 5.0000

1.20 10.5280 24.4866 10.2524 13.3293
2.40 10.5209 21.6558 10.3258 15.7503
3.20 10.3976 17.8010 10.3744 17.4539
4.40 10.4403 20.0968 10.4137 18.6528
5.60 10.4983 21.5996 10.4393 19.4964
7.20 10.4604 20.2626 10.4699 20.5078
9.20 10.4838 21.0791 10.4851 21.0087
10.60 10.4787 20.8650 10.4895 21.1543
11.40 10.4792 20.9018 10.4926 21.2567

For α = 0.8, h = 0.20

Table 3. Actual versus Approximated solution for τ = 0.05 for system (5.5)

t |εx1(t)| |εx2(t)|
0 0 0

1.20 0.3272 11.0098
2.40 0.2986 9.9765
3.20 0.2786 9.2900
4.40 0.2580 8.5851
5.60 0.2364 7.8565
7.20 0.1927 6.4030
9.20 0.1570 5.2160
10.60 0.1420 4.7179
11.40 0.1274 4.2343

For α = 0.8, h = 0.05, τ = 0.05

t |εx1(t)| |εx2(t)|
0 0 0

1.20 0.0473 0.1424
2.40 0.1134 2.3253
3.20 0.1053 2.0571
4.40 0.0927 1.6388
5.60 0.0757 1.0801
7.20 0.0461 0.4372
9.20 0.0346 0.3806
10.60 0.0342 0.5122
11.40 0.0366 0.7214

For α = 0.8, h = 0.10, τ = 0.05

t |εx1(t))| |εx2(t)|
0 0 0

1.20 0.2756 11.1573
2.40 0.1951 5.9055
3.20 0.0232 0.3471
4.40 0.0266 1.4440
5.60 0.0590 2.1032
7.20 0.0095 0.2452
9.20 0.0013 0.0704
10.60 0.0108 0.2893
11.40 0.0134 0.3549

For α = 0.8, h = 0.20, τ = 0.05

Table 4. Error for α = 0.8, τ = 0.05 for system (5.5)
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Figure 2. Actual versus Approximated solution for system (5.5) with α = 0.8, τ = 0.05
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2, we have β1 =
∑2
i=1 ai +

∑
1≤i,j≤2 |cij |Lg = 4. Then for t ∈ [0, T ), T < ∞, we can give error

estimate as

|x1(t)− zh1 (t)| ≤ ch
4

Γ(1 + α)
Tαe4t,

|x2(t)− zh2 (t)| ≤ ch
4

Γ(1 + α)
Tαe4t. (5.6)

and for n ≤
[T
h

]
,

|x1(nh)− zh1 (nh)| ≤ ch
4

Γ(1 + α)
e(4+ln(0.8)T ,

|x2(nh)− zh2 (nh)| ≤ ch
4

Γ(1 + α)
e(4+ln(0.8)T . (5.7)

In this case also, by varying h for different values, we can obtain various estimates for x1(t) and
x2(t) and clearly from (5.6) and (5.7), zhi (t)→ xi(t) uniformly as h→ 0 supporting the theoretical
analysis done in sub-section 4.2.

6 Conclusion

This work is devoted to study Mittag-Leffler stability for a delayed fractional-order cellular neural
network containing along with the approximation of solution of model system (1.1) using discretiza-
tion scheme. Later, it is proved that the solution of the original problem can be approximated for
large t in a bounded interval [0, T ) using discretization with piecewise constant arguments of gener-
alized type. Furthermore, the error function is estimated which establishes the uniform convergence
of the fractional polygonal lines of order α as h tends to zero. Under the obtained sufficient condi-
tions, the discrete-time analogue preserves the unique equilibrium of the continuous-time network.
Moreover, the global Mittag-Leffler stability and hence global asymptotic stability indicates an im-
provement over the uniform stability of the continuous-time network established in [20,21]. Hence
the proposed study can be used to describe some essential aspects of fractional calculus in delayed
and non-delayed neural network model system for approximating the solutions.
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