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Abstract

Projection equations arise in several optimization problems and possess significant applica-
tions in many areas of science and engineering. In this paper, we propose a fractional-order
projection neural network to solve quadratic programming problems. We study stability and
synchronization for a class of delayed projection neural networks of mixed type via impulsive
control. Using concepts of fractional calculus, we investigate the existence of solution and study
its global asymptotic stability. Moreover, we propose an effective impulsive control scheme to
achieve synchronization for the system. We demonstrate the validity and transient behaviour
of the proposed neural network with the help of suitable examples.
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1 Introduction
In recent years, many algorithms have been developed to solve constrained quadratic optimization
due to its tremendous application in various scientific and engineering areas such as signal process-
ing, image processing, pattern recognition and optimal control. Some of these algorithms include
active set methods [1], simplex method for linear programming [2] and interior point methods for
non linear optimization [3]. However, in real world applications, due to time varying characteristics
of the optimization problems, it becomes difficult to obtain the optimal solution efficiently using con-
ventional algorithms due to high computation time. Thus artificial neural networks have emerged as
one of the most promising approach as, due to inherent massive parallelism it can solve optimization
problems in run time much lesser than compared to the traditional algorithms [4]. In [5], neural
network has been introduced for the first time to solve closed-loop circuit optimization problems,
which promoted the use of neural networks for solving linear and nonlinear programming problems.
In [6], Kennedy and Chua studied a neural network to solve nonlinear programming problems by
using finite penalty parameter method and discussed the convergence of network to an approximate
optimal solution. Thereafter several neural networks have been studied extensively to solve various
quadratic programming problems. For more details, we refer to [7–11].

To be more specific, the projection approach has received a remarkable attention in recent years
in designing of neural networks for constrained optimization since many constrained optimization
problems can be converted into equivalent linear projection equations which are easy to analyze.
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In [12], Xia and Wang proposed a projection neural network model to solve monotone variational
inequalities and related optimization problems. In [13], Hu and Wang developed a projection neural
network to solve pseudomonotone variational inequality and pseudoconvex problems. Thereafter,
based on projection methods, several projection neural networks have been proposed and developed
to solve linear and quadratic programming problems (for instance, see [14–19]). Their approaches
mainly deal with inequality constraints, which are converted into equality constraints by adding
slack or surplus variable. These neural networks are endowed with well convergence properties,
which converge to exact optimal solution globally. However, in signal transmission of hardware im-
plementation, time delays occur inevitably. This presence of delay affects the dynamical behaviour
of the system and may lead to oscillation phenomenon and instability of the network [20, 21]. As
a result, several projection neural networks with delay have been proposed to solve optimization
problems.

In addition to this, projection neural networks have emerged out as a promising tool in the field
of fractional calculus also. Due to wide application in almost all branches of sciences, fractional
differential equations have received remarkable attention in the field of mechanics, physics, chem-
istry, informatics, materials and several other applications [22, 23]. To the best of our knowledge,
very few results are available in literature for projection neural networks in the field of fractional
calculus [24, 25]. This work provides a deep analysis of stability and synchronization for a class of
delayed fractional-order projection neural network. Motivated by the above discussion, this paper is
devoted to study of quadratic programming problem, which can be described by a fractional-order
delayed projection neural network. The novelty and main contribution of this paper is as follows:

• A fractional-order projection neural network with delay and piecewise constant argument of
generalized type has been proposed.

• Since the delay term has been incorporated into the model, thus it becomes more realistic to
real world applications or quadratic programming problem.

• The proposed neural network model has been proved to be globally Mittag-Leffler stable and
globally asymptotically synchronized. Thus the network converges at a rate much faster than
the methods derived till now.

The structure of this paper is as follows. Section 2 is divided into two subsections. Subsection 2.1
gives the description of the system model and subsection 2.1 gives some necessary preliminaries.
Section 3 gives the proof of the existence of the equilibrium point of the proposed neural network.
Section 4 addresses the global synchronization of the proposed model. Section 5 provides some
suitable examples to demonstrate the validity of the obtained theoretical results.

2 Problem formulation
2.1 Projection Neural network
In this section, we provide some necessary mathematical background, which is employed to propose
the desired neural network model and further investigate its stability. The projection dynamical
system proposed by Friesz et al. in [26] can be described by the following differential equation;

dx

dt
= λ{PΩ(x− µF (x))− x}, (2.1)
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where µ and λ are constants, Ω is bounded non-empty closed convex subset of Rn, F (x) is continu-
ously differentiable vector-valued function from Rn to Rn and PΩ : Rn → Ω is projection operator
defined by

PΩ(x) = argminy∈Ω‖x− y‖. (2.2)
Let Ω = {x ∈ Rn | di ≤ xi ≤ hi, i = 1, 2, · · · , n}, then PΩ = [PΩ(x1), · · · , PΩ(xn)]T is described by
the following piecewise linear function:

PΩ(xi) =

 di xi < di
ui di ≤ xi ≤ hi
hi xi > hi

.

In [14], the following linear projection neural network model for solving linear projection equation
PΩ(u− α(Mu+ q)) = u is discussed;

du

dt
= λ{−u+ PΩ(u− α(Mu+ q))}, (2.3)

where λ is a scaling constant. Under the assumption of matrix M to be symmetric and positive-
semidefinite, system (2.3) has been proved to be globally convergent to the equilibrium point
and globally asymptotically and exponentially convergent. It has been shown in [8, 27] that the
projected dynamical systems are significantly important for solving linear and nonlinear monotone
variational inequalities and relaxed convex optimization problems. Moreover, many researchers have
used discretization scheme to study various neural networks (for instance, see [28–30]). Therefore,
it becomes important to develop new neural networks, possessing the above good performance
characteristics, to solve a broader class of optimization problems.

Consider the following quadratic programming problem:

min 1
2x

TQx+ cTx

subject to g ≤ Bx ≤ h, (2.4)

In [27], using the projection formulation [31], the above inequality (2.4) has been converted into
following equation:

Dx = PX
(
Dx−D−1Qx−D−1C

)
.

Under the assumption of matrix Q ≤ Q ≤ Q̄, an interval projection neural network has been
presented to solve interval quadratic programming and analyze its stability.

In this paper, we propose the following delayed fractional-order projection neural network with
piecewise constant argument of generalized type:

CDα
t x(t) = PX

(
Bx(t− τ)−B−1Qx(γ(t))−B−1C

)
−Bx(t), t > t0

x(t) = ϕ(t), t ∈ [−τ, t0], (2.5)

where X is a non-empty bounded closed convex set of Rn. We can rewrite system (2.5) as

CDα
t xi(t) = PX

bixi(t− τ)− 1
bi

n∑
j=1

qijxj(γ(t))− 1
bi
ci

− bixi(t), t > t0

xi(t) = ϕi(t), t ∈ [−τ, t0], i, j = 1, 2, · · · , n. (2.6)
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where CDα
t denotes the Liouville-Caputa fractional-order derivative of order α, 0 < α < 1, τ ≥ 0

denotes the transmission delay, ϕ(t) is continuous for t ∈ [t0 − τ, t0]. Q is n× n symmetric matrix,
B = diag(b1, · · · , bn) is positive definite diagonal matrix and γ(t) is the deviating argument. We
set γ(t) = ξk on [θk, θk+1). For θk ≤ t < ξk, γ(t) > t, and thus the system (2.6) consists of advanced
argument. Similarly, for ξk < t < θk+1, γ(t) < t and the system (2.6) is of delayed argument. Thus
the considered system (2.6) of mixed type.

Since the deviating argument γ(t) is discontinuous, the right hand side of (2.6) possesses dis-
continuity at the moments θk, k ∈ N. Consequently, we consider the solution of the equations
as functions, which are continuous and continuously differentiable within the intervals [θk, θk+1).
Namely, by a solution x(t) = (x1(t), · · · , xn(t))T of (2.6), we mean a continuous function on R+,
such that the derivatives exists at each point t ∈ R+, with the possible exception of points θk,
where one sided derivatives exists, and x(t) satisfies the differential equation (2.6) on each inter-
val (θk, θk+1) as well. The optimization techniques employed are the projection methods [31] and
stability analysis is based on direct method of Lyapunov [32].

2.2 Preliminaries
Now we briefly discuss some related definitions and lemmas for later discussion.

Definition 2.1. [33] The Riemann-Liouville fractional integral of fractional-order α > 0 of a
function f(t) is defined as

Iαt f(t) = 1
Γ(α)

∫ t

t0

(t− s)α−1f(s)ds, (2.7)

where Γ(.) is the Gamma function and is given by Γ(z) =
∫∞

0 tz−1e−tdt.

Definition 2.2. [33] The Liouville-Caputa derivative of fractional order α of a function f(t) is
defined as

CDα
t f(t) = 1

Γ(n− α)

∫ t

t0

(t− s)n−α−1f (n)(s)ds (2.8)

where n− 1 < α < n ∈ Z+.

Remark 2.3. 1. For α = n, the Liouville-Caputa fractional-order derivative of order α for a
function f(t) is similar to usual integer-order derivative f (n)(t).

2. The Liouville-Caputa fractional derivative of a constant is zero.

3. The initial time considered in CDα
t f(t) is from t0.

Proposition 2.4. [27] Let x∗ be the solution of the projection equation

Bx = PX(Bx−B−1Qx−B−1C). (2.9)

Then x∗ is an optimal solution of the quadratic problem (2.4).

Definition 2.5. [27] The point x∗ = (x∗1, x∗2, · · · , x∗n)T is said to be an equilibrium point of the
delayed projection neural network (2.5), if it satisfies

0 = PX(Bx∗ −B−1Qx∗ −B−1C)−Bx∗. (2.10)
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From Proposition 2.4 and Definition 2.5, we have the following theorem.

Theorem 2.6. The point x∗ is an equilibrium point of the delayed projection neural network (2.5)
if and only if it is an optimal solution of the quadratic problem (2.4).

Lemma 2.7. [31] Let Ω ⊂ Rn be a closed convex set. Then,

(v − PΩ(v))T (PΩ(v)− u) ≥ 0, ∀u ∈ Ω, v ∈ Rn,
‖PΩ(u)− PΩ(v)‖ ≤ ‖u− v‖, ∀u, v ∈ Rn, (2.11)

where PΩ(u) represents the projection function on Ω.

Lemma 2.8. [24] If h(t) ∈ C1([0,+∞), R) denotes a continuously differentiable function, then the
following inequality holds almost everywhere:

Dα
t |h(t)| ≤ sgn(h(t))Dα

t h(t), 0 < α ≤ 1.

Lemma 2.9. [34] Let V (t) be a continuous function on [t0,∞) satisfying

CDα
t V (t) ≤ −γV (t), α ∈ (0, 1)

for some constant γ. Then

V (t) ≤ V (t0)Eα(−γ(t− t0)α), t ≥ t0.

3 Existence of solution
In this section, we prove that there exists a unique solution to the delayed projection neural network
(2.6). To prove main results, we assume that the system (2.6) satisfies following assumptions:

A1: (σ1 + σ2)
Nα

< 1, where σ1 = 2b̄ = 2 max
i
{|bi|} and σ2 = q∗ = max

i

 1
|bi|

n∑
j=1
|qji|

.
A2: l̄ = maxi{li}, Vi(t+, ei(t) + Lkei(t))) ≤ Vi(t, ei(t)).

A3: µ1 = min1≤i≤n

|bi| − ρ 1
|bi|

n∑
j=1
|qji| − |li|

 > µ2 = max1≤i≤n (|bi|) > 0, where ρ is given by

(4.5).

We define norm as ‖x(t)‖ =
∑n
i=1 supt{e−Nt|xi(t)|}.

Theorem 3.1. If Assumption (A1) holds; then there exists a unique equilibrium point for the
system (2.6).
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Proof. Fix k ∈ N and consider the case θk ≤ ξk ≤ t0 ≤ θk+1.
First, we prove that for every (t0, x0) ∈ [θk, θk+1] × Rn, there exists a unique solution x(t) =
x(t, t0, ϕ(t0)). From (2.6), consider the following equivalent integral equation

xi(t) = ϕi(t0) + 1
Γ(α)

∫ t

t0

(t− s)α−1{−bixi(s)

+ PX(bixi(s− τ)− 1
bi

n∑
j=1

qijxj(ξk)− 1
bi
ci)}ds. (3.1)

Now we construct the sequences xmi (t), · · · , x0
i (t), i = 1, 2, · · · ,m. Thus we have

xm+1
i (t) = ϕi(t0) + 1

Γ(α)

∫ t

t0

(t− s)α−1{−bixmi (s)

+ PX(bixmi (s− τ)− 1
bi

n∑
j=1

qijx
m
j (ξk)− 1

bi
ci)}ds. (3.2)

From equation (3.2), for any two sequences xm+1
i and xmi , we have

xm+1
i (t)− xmi (t) = 1

Γ(α)

∫ t

t0

(t− s)α−1 {−bi(xmi (s)− xm−1
i (s)

}
ds

+ 1
Γ(α)

∫ t

t0

(t− s)α−1{PX(bixmi (s− τ)− 1
bi

n∑
j=1

qijx
m
j (ξk)− 1

bi
ci)

− PX(bixm−1
i (s− τ)− 1

bi

n∑
j=1

qijx
m−1
j (ξk)− 1

bi
ci)}ds. (3.3)

Taking modulus both sides, we obtain

|xm+1
i (t)− xmi (t)| ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1 {|bi||xmi (s)− xm−1
i (s)|

}
ds

+ 1
Γ(α)

∫ t

t0

(t− s)α−1 {|bi||xmi (s− τ)− xm−1
i (s− τ)|

}
ds

+ 1
Γ(α)

∫ t

t0

(t− s)α−1

 1
|bi|

n∑
j=1
|qij ||xmj (ξk)− xm−1

j (ξk)|

 ds. (3.4)

For some constant N > 0, multiplying by e−Nt both sides of (3.4) and using definition of norm, we



Stability and synchronization of delayed fractional-order projection neural network ... 63

obtain

‖xm+1(t)− xm(t)‖ =
n∑
i=1

{
e−Nt|xm+1

i (t)− xmi (t)|
}

≤
n∑
i=1

|bi|
Γ(α)

∫ t

t0

(t− s)α−1e−N(t−s){e−Ns|xmi (s)− xm−1
i (s)|}ds

+
n∑
i=1

|bi|
Γ(α)

∫ τ

t0

(t− s)α−1e−N(t−s+τ){e−N(s−τ)|xmi (s− τ)− xm−1
i (s− τ)|}ds

+
n∑
i=1

|bi|
Γ(α)

∫ t

τ

(t− s)α−1e−N(t−s+τ){e−N(s−τ)|xmi (s− τ)− xm−1
i (s− τ)|}ds

+
n∑
i=1

n∑
j=1

1
|bi|Γ(α) |qji|

∫ t

t0

(t− s)α−1e−N(t−s){e−Ns|(xmi (ξk)− xm−1
i (ξk)|}ds

≤ b̄

Nα

n∑
i=1

sup
t
{e−Nt|ϕmi (t0)− ϕm−1

i (t0)|+ 2 b̄

Nα

n∑
i=1

sup
t
{e−Nt|xmi (t)− xm−1

i (t)|

+ q∗

Nα

n∑
i=1

sup
t
{e−Nt|xmi (t)− xm−1

i (t)|

≤ (σ1 + σ2)
Nα

‖xmi (t)− xm−1
i (t)‖. (3.5)

Repeating above argument, we obtain

‖xm+1(t)− xm(t)‖ ≤
(

(σ1 + σ2)
Nα

)m
‖x1(t)− x0(t)‖. (3.6)

Thus there exists a unique solution x(t, t0, ϕ(t0)) on closed interval [ξk, t0]. Using property of pro-
jection map, x(t) can be continued to θk+1. Since it is a solution to the differential equation (2.6)
on [θk, θk+1). Using similar argument, we can continue x(t) on any interval (θk+1, θk+2]. Continu-
ing in similar manner, we obtain that there exists a unique solution to (2.6). This completes the
proof. q.e.d.

4 Synchronization
In this section, we investigate how drive-response fractional-order projection neural network achieve
synchronization under linear control. Based on the concept of drive-response system, we refer to the
system (2.6) as master (drive) system and characterize the corresponding slave (response) system
as follows:

CDα
t xi(t) = PX

bixi(t− τ)− 1
bi

n∑
j=1

qijxj(γ(t))− 1
bi
ci

− bixi(t) + ui(t), (4.1)

where ui(t) is impulsive control input. We shall use a linear feedback scheme to realize synchro-
nization between system (2.6) and (4.1), that is, we define controller ui(t) as ui(t) = Lik[xi(t) −
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ηi(t)]δ(t − tk), where Lik ∈ Rn represents the control gain matrix, and is a diagonal matrix. The
discrete set {tk} satisfies 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk → ∞ as k → ∞, and δ(·) is the dirac-delta
impulsive function. The error relative to ith node is given by

CDα
t ei(t) = −biei(t) + PX (ei(γ(t))) + Likei(t), (4.2)

where

PX (ei(γ(t))) = PX

bixi(t− τ)− 1
bi

n∑
j=1

qijxj(γ(t))− 1
bi
ci


− PX

biηi(t− τ)− 1
bi

n∑
j=1

qijηj(γ(t))− 1
bi
ci

 (4.3)

Writing (4.2) in compact matrix form, we obtain
CDα

t e(t) = −Be(t) + PX (e(γ(t))) + U(t), t 6= tk, t > t0, (4.4)
∆e(tk) = e(t+k )− e(t−k ) = Lke(t−k ).

Definition 4.1. [34] The master system (2.6) and slave system (4.1) are said to be globally Mittag-
Leffler synchronized, if for ϕ ∈ (C[t0−τ, t0], Rn), there exists a constant λ > 0 and β > 0, such that
‖x(t; t0, ϕ(t0)) − η(t; t0, ψ(t0))‖ ≤ {m(ϕ(t0)− ψ(t0))Eα(−λ(t− t0)α)}β , t ≥ t0, where m(0) = 0,
m(ϕ) ≥ 0 and m(ϕ) is Lipschitzian with respect to ϕ.

Remark 4.2. Global Mittag-Leffler stability implies global asymptotic stability.

Lemma 4.3. Assume that e(t) is the solution of system (4.4). Then under Assumption (A1), for
all t ∈ R+, ‖e(γ(t))‖ ≤ ρ‖e(t)‖, where ρ is given by

ρ = Nα + 2b̄+ l̄

Nαb̄− q∗
, (4.5)

provided Nαb̄ 6= q∗.

Proof. We have
CDα

t ei(t) = −bie(t) + PX(ei(γ(t))) + Ui(t). (4.6)

Then for t ∈ [θk, θk+1), we have

ei(t) = ei(ξk) + 1
Γ(α)

∫ t

ξk

(t− s)α−1 [−biei(s) + PX(ei(γ(s))) + Ui(s)] ds, (4.7)

where γ(t) = ξk if t ∈ [θk, θk+1). Also on t ∈ [θk, θk+1), we have

ei(ξk) = ei(t) + 1
Γ(α)

∫ t

ξk

(t− s)α−1 [−biei(s) + PX(ei(γ(s))) + Ui(s)] ds. (4.8)
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Taking modulus and multiplying by exp(−Nt) both sides, we obtain

n∑
i=1

exp(−Nt)|ei(ξk)|

≤
n∑
i=1

exp(−Nt)|ei(t)|+
1

Γ(α)

∫ t

ξk

(t− s)α−1 exp(−Nt)
n∑
i=1
|bi||ei(s)|ds

+ 1
Γ(α)

∫ t

ξk

(t− s)α−1 exp(−Nt)
n∑
i=1
|bi||ei(s− τ)|ds

+
n∑
i=1

(∑n
j=1 |qji|
|bi|Γ(α)

∫ t

ξk

(t− s)α−1 exp(−Nt)|ei(ξk)|ds
)

+ 1
Γ(α)

∫ t

ξk

(t− s)α−1 exp(−Nt)
n∑
i=1
|li||ei(s)|ds. (4.9)

Following similar steps as in Theorem 3.1 and further taking supremum both sides, we obtain

‖e(ξk)‖

≤ ‖e(t)‖+
(

2b̄+ l̄

Γ(α)

)∫ t

t0

(t− s)α−1 exp(−N(t− s))‖e(t)‖ds+ q∗

Nα
‖e(ξk)‖

≤
(

1 + 2b̄+ l̄

Nα

)
‖e(t)‖+ q∗

Nα
‖e(ξk)‖. (4.10)

Thus we have

‖e(ξk)‖ ≤ ρ‖e(t)‖, (4.11)

where ρ =
1 + 2b̄+l̄

Nα

1− q∗

Nα

> 0. This completes the proof. q.e.d.

Now we study the dynamic behaviour of the error e(t) to check for the global asymptotic
synchronization of system (4.1).

Theorem 4.4. If Assumption (A2)-(A3) hold and the system parameters bi, li, qij satisfy µ1, µ2 >
0, (i, j = 1, 2, · · · , n), then the error system (4.4) is globally Mittag-Leffler stable and hence the
master system (2.6) and the slave system (4.4) are globally asymptotically synchronized.

Proof. We define Lyapunov function as

V (t) =
n∑
i=1

Vi(t) =
n∑
i=1
|ei(t)| (4.12)
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For t = tk, we have

V (t+, e(t+)) =
n∑
i=1

Vi(t+, ei(t+))

=
n∑
i=1

Vi(t+, ei(t) + Lkei(t)). (4.13)

Thus from Assumption (A2), we obtain

V (t+, e(t+)) ≤
n∑
i=1

Vi(t, ei(t)) = V (t, e(t)). (4.14)

Let t ≥ t0 and t ∈ [tk−1, tk), from Lemma 2.8, calculating the fractional-order derivatives of V (t)
along the solutions of (4.1), we have

CDα
t+V (t, e(t)) =

n∑
i=1

sgn(ei(t))CDα
t ei(t),

≤
n∑
i=1

−|bi||ei(t)|+ |bi||ei(t− τ)|+ 1
|bi|

n∑
j=1
|qij ||ej(γ(t))|+ |li||ei(t)|


≤

n∑
i=1
−

|bi| − ρ 1
|bi|

n∑
j=1
|qji| − |li|

 |ei(t)|+ n∑
i=1
|bi||ei(t− τ)|

≤ − min
1≤i≤n

|bi| − ρ 1
|bi|

n∑
j=1
|qji| − |li|

 n∑
i=1
|ei(t)|+ max

1≤i≤n
|bi|

n∑
i=1
|ei(t− τ)|

≤ −µ1V (t, e(t)) + µ2 sup
t−τ≤s≤t

V (s, e(s)), (4.15)

where µ1 = min
1≤i≤n

|bi| − ρ 1
|bi|

n∑
j=1
|qji| − |li|

 > 0, and µ2 = max1≤i≤n |bi| > 0.

From the above approximation, for any solution e(t) of (4.2), which satisfies the Razumikhin
condition [35],

V (s, e(s)) ≤ V (t, e(t)), t− τ ≤ s ≤ t, (4.16)

we obtain

CDα
t+V (t, e(t)) ≤ −(µ1 − µ2)V (t, e(t))

From Assumption (A3), for some λ = µ1 − µ2 > 0, it follows that

CDα
t+V (t, e(t)) ≤ −λV (t, e(t)), t 6= tk, t > t0.
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Using Lemma 2.9, we obtain

V (t, e(t)) ≤ V (t+0 , e(t
+
0 ))Eα(−λ(t− t0)α), t ∈ [t0,∞).

Thus,

‖x(t)− η(t)‖ =
n∑
i=1
|xi(t)− ηi(t)| ≤ Eα(−λ(t− t0)α)

n∑
i=1
|xi(t+0 )− ηi(t+0 )|

≤ mEα(−λ(t− t0)α), t > t0, (4.17)

where m = ‖ϕ(t0)− ψ(t0)‖ ≥ 0 and m = 0 holds if xi(t+0 ) = ηi(t+0 ) for t ∈ [t0 − τ, t0]. From (4.14)
and (4.17), we conclude that the trivial solution of (4.4) is globally Mittag-Leffler stable, that is
the delayed projection neural network (4.1) is globally exponentially (or globally asymptotically)
synchronized. q.e.d.

5 Numerical Examples
Example 5.1. Consider the following three dimensional fractional-order projective neural network
with delay;CDα

t x1(t)
CDα

t x2(t)
CDα

t x3(t)

 = PX

{(
x1(t− τ)
x2(t− τ)
x3(t− τ)

)
−

( 0.84 0.008 0.24
0.008 0.804 0.16
0.24 0.16 0.76

)(
x1(t)
x2(t)
x3(t)

)
−

( 1
−1
0.5

)}
−

(
x1(t)
x2(t)
x3(t)

)
, (5.1)

where X = {xi | − 12 ≤ xi ≤ 12, i = 1, 2, 3} and α ∈ (0, 1). In the absence of any delay, the
solution of the projection system (5.1) is asymptotically stable as shown in sub-figure 1(a). But
as delay is introduced, solution starts losing its stability. As shown in sub figures 1(b)-1(e), the
fractional-order delayed projective system admits a chaotic behavior for τ = 0.05 and α = 0.95.
Sub-figure 1(f) shows the time portrait for unstable solution in the presence of delay.
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τ = 0.05

Figure 1. Effect of delay on behavior of solutions of delayed fractional-order projection neural
network (5.1) for α = 0.95.

Now, we design the controlled response fractional-order projective neural network by choos-
ing the controller gain matrix U(t) as L = diag(10,−5, 8). It can be easily verified that the
synchronization between the original system and the controlled system is achieved. We select
initial states as (4.5, 4.5,−2), (−7, 2.5, 0.5), (0.5, 3.5,−3), (−5,−1.5,−8.5), (−1.5, 2,−2.5). Fig-
ure 2 represents the global asymptotic stability of the controlled system to the equilibrium point
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(11.2228,−3.7996, 8.5367).
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(a) Global asymptotically stable solution (x1(t))
in the presence of control
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Figure 2. Global asymptotically stable solutions of system (5.1) in presence of control for τ = 0.05
and α = 0.95.

Example 5.2. Consider the Example (5.1) for the case when matrix Q is not symmetric and other
parameters remain unchanged [25].

Q =

 1.04 −0.42 0.5
−0.10 0.92 −0.06
0.14 0.06 0.096

 (5.2)

In the absence of any delay, the solution of the projection system (5.2) is asymptotically stable
(see [25]), but as delay is introduced, solution starts losing its stability. Figure 3 displays the
chaotic behavior of the fractional-order delayed projective system for τ = 0.05 and α = 0.95.
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Figure 3. Chaotic behaviors of delayed fractional-order projection neural network (5.2) for α =
0.95.

In this case we choose the controller gain matrix U(t) as L = diag(6,−5,−8). It can be easily
verified that the synchronization between the original system and the controlled system is achieved.
Figure 4 represents the global asymptotic stability of the controlled system to the equilibrium point
(−5.44656,−4.80175,−4.49087).
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(a) Global asymptotically stable solution (x1(t))
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Figure 4. Global asymptotically stable solutions of system (5.2) in presence of control for τ = 0.05
and α = 0.95.

6 Discussion
In this work, we have investigated the qualitative behavior of a fractional order projection neural
network with time delay and piecewise constant argument of generalized type. We have explored
the stability and synchronization for the proposed neural network model via introduction of an
impulsive control. We have presented the conditions for the stability of the network under some
mild conditions, in contrast to the existing neural networks and the related dynamics, which needs
additional conditions on synaptic weights for convergence. We have precisely investigated the
convergence dynamics of the related dynamical system and have derived sufficient conditions for
the global convergence. From application aspect, the proposed neural network model can be used to
solve linear and convex quadratic programming problems. Thus, it possesses a remarkably extensive
range of applications compared to the existing optimization neural networks and consequently, can
be used to solve a wide range of optimization problems. Moreover, the convergence rate of our
model is higher because the solution is global Mittag Leffler stable.
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