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Abstract

This paper investigates a new approach to studying several fractional derivatives in the dis-
tributional sense based on the products of distributions and the delta sequence with compact
support. Furthermore, we consider an asymptotic expression to the fractional derivative of
the delta function and show that it is the first-order approximation in the Schwartz space.
At the end of paper, we provide several asymptotic formulas to more complicated fractional
derivatives of distributions.
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1 Fractional derivatives of distributions

Classical fractional derivatives first mentioned in the letter from Leibniz to L’Hôpital dated 30
September 1695, can be regarded as a branch of analysis which deals with integral and differential
equations often with weakly singular kernels. A lot of contributions to the theory of fractional
calculus up to the middle of the 20th century were made by many famous mathematicians including
Laplace, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Heaviside, Weyl, Erdélyi and
others [1, 2, 3, 4]. After 1970s, there was a clear movement from theoretical research of fractional
calculus to its applications in various fields [5, 6, 7, 8]. In the recent work of [9], we applied Caputo
fractional derivatives and the following generalized Taylor’s formula for 0 < α < 1

ϕ(t) =

m∑
i=0

(CD̂
iα
0,tϕ)(0)

Γ(iα+ 1)
tiα +

(CD̂
(m+1)α
0,t ϕ)(ζ)

Γ((m+ 1)α+ 1)
t(m+1)α

to give meaning to the distributions δk(x) and (δ′)k(x) for all k ∈ R. These can be regarded as
powers of Dirac delta functions and have applications to quantum theory. Up to now, fractional
calculus has been found in almost every realm of science and engineering. In this paper, we use a new
technique to compute fractional derivatives of complicated distributions by generalized convolutions,
Heaviside functions and Faà di Bruno formula, and deliver several asymptotic formulas for them.

Let D(R) be the Schwartz space [10] of infinitely differentiable functions on R with compact support,
and D′(R) be the space of distributions defined on D(R). Further, we shall define a sequence ϕ1,
ϕ2, · · · , ϕn, · · · which converges to zero in D(R) if all these functions vanish outside a certain fixed
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bounded interval, and converge uniformly to zero (in the usual sense) together with their derivatives
of any order. The functional δ is defined as

(δ(x− a), ϕ(x)) = ϕ(a)

where ϕ ∈ D(R). Clearly, δ(x − a) is a linear and continuous functional on D(R), and hence
δ(x− a) ∈ D′(R).

Define

θ(x− a) =

{
1 if x > a,
0 if x < a

which obviously is discontinuous at x = a. Then

(θ(x− a), ϕ) =

∫ ∞
a

ϕ(x)dx for ϕ ∈ D(R),

which implies θ(x− a) ∈ D′(R).

It follows from

(θ′(x− a), ϕ) = −(θ(x− a), ϕ′) = −
∫ ∞
a

ϕ′(x)dx = ϕ(a) = (δ(x− a), ϕ(x)), ϕ ∈ D(R)

that
θ′(x− a) = δ(x− a).

Consider

(x− a)λ+ =

{
(x− a)λ if x > a,
0 if x ≤ a

where Reλ > −1.

Let D′(R+) be the subspace of D′(R) (all distributions on D(R)) with support contained in R+.
Then

Φλ =
xλ−1

+

Γ(λ)
∈ D′(R+)

is an entire function of λ on the complex plane [10, 11], and

xλ−1
+

Γ(λ)

∣∣∣∣∣
λ=−n

= δ(n)(x), n = 0, 1, 2, · · · , (1)

d

dx
Φλ = Φλ−1, (2)

Φλ ∗ Φµ = Φλ+µ (3)

where λ and µ are arbitrary complex numbers.

Assume λ is a complex number. We define the fractional derivative of g of order λ as the convolution

g−λ =
dλ

dxλ
g = g ∗ Φ−λ, g ∈ D′(R+)
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if Reλ ≥ 0, and the fractional integral if Reλ < 0.

Let m− 1 < λ < m ∈ Z+ and g(x) be a distribution in D′(R+). We derive that

g−λ(x) = g(x) ∗ x
−λ−1
+

Γ(−λ) = g(x) ∗ dm

dxm
xm−λ−1
+

Γ(m−λ)

= dm

dxm

(
g(x) ∗ x

m−λ−1
+

Γ(m−λ)

)
= g(m)(x) ∗ x

m−λ−1
+

Γ(m−λ) ,

which indicates there is no difference between the Riemann-Liouville derivative and the Caputo
derivative of the distribution g(x) (both exist clearly). Based on this fact, we only call the fractional
derivative of distribution for brevity.

It follows from equation (3) that

(g ∗ Φλ) ∗ Φµ = g ∗ (Φλ ∗ Φµ) = g ∗ Φλ+µ (4)

for any distribution g(x) in D′(R+).

Setting µ = −λ, we see that differentiation and integration of the same order are mutually inverse
processes, and the sequential fractional derivative law holds from equation (3)

dλ

dxλ

(
dµg

dxµ

)
=
dλ+µg

dxλ+µ
=

dµ

dxµ

(
dλg

dxλ

)
for any complex numbers λ and µ.

Clearly, we may write

dλ

dxλ

(
xµ+

Γ(µ+ 1)

)
=

xµ−λ+

Γ(µ+ 1− λ)
(5)

by replacing λ by −λ, µ by µ+ 1 in equation (3). In particular, for µ = 0, we get

dλ

dxλ
θ(x) =

x−λ+

Γ(1− λ)
= Φ1−λ.

Writing µ = −k − 1 in equation (4) for nonnegative integer k, we find

dλ

dxλ
δ(k)(x) =

x−k−λ−1
+

Γ(−k − λ)
= Φ−k−λ.

Setting λ by −λ in the above, we obtain

d−λ

dx−λ
δ(k)(x) =

x−k+λ−1
+

Γ(−k + λ)

which implies

δ(k)(x) =
dλ

dxλ
xλ−k−1

+

Γ(λ− k)
.
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Let us consider the function given by

f(x) =

{
1 if 0 ≤ a < x < b,
0 otherwise.

Then
f(x) = θ(x− a)− θ(x− b)

in the distributional sense and

dλ

dxλ
f(x) =

dλ

dxλ
(θ(x− a)− θ(x− b)) =

(x− a)−λ+

Γ(1− λ)
−

(x− b)−λ+

Γ(1− λ)
.

It seems impossible to define products of two arbitrary distributions in general [12, 13]. However,
the product of an infinitely differentiable function ϕ(x) with a distribution f(x) is given by

(ϕ(x)f(x), ψ(x)) = (f(x), ϕ(x)ψ(x))

which is well defined since ϕ(x)ψ(x) ∈ D(R) if ψ(x) ∈ D(R).

It follows that
ϕ(x)δ(x) = ϕ(0)δ(x)

since
(ϕ(x)δ(x), ψ(x)) = (δ(x), ϕ(x)ψ(x)) = ϕ(0)ψ(0) = ϕ(0)(δ(x), ψ(x)).

Theorem 1.1 Let ϕ(x) ∈ Cm[0,∞) and m− 1 < λ < m ∈ Z+. Then

dλ

dxλ
(θ(x)ϕ(x)) = ϕ(0)

x−λ+

Γ(1− λ)
+ · · ·+ ϕ(m−1)(0)

xm−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

ϕ(m)(t)(x− t)m−λ−1dt.

Proof. Clearly,

dλ

dxλ
(θ(x)ϕ(x)) = (θ(x)ϕ(x)) ∗

x−λ−1
+

Γ(−λ)
= (θ(x)ϕ(x)) ∗ dm

dxm
xm−λ−1

+

Γ(m− λ)

=
dm

dxm
(θ(x)ϕ(x)) ∗

xm−λ−1
+

Γ(m− λ)

where 0 < m− λ < 1.

First we assume that ϕ(x) ∈ C∞[0,∞). By definition, we come to

(
d

dx
(θ(x)ϕ(x)), ψ(x)) = −(θ(x)ϕ(x), ψ′(x)) = −

∫ ∞
0

ϕ(x)ψ′(x)dx

= −ϕ(x)ψ(x)|∞0 +

∫ ∞
0

ϕ′(x)ψ(x)dx = (ϕ(0)δ(x) + θ(x)ϕ′(x), ψ(x))
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which implies
d

dx
(θ(x)ϕ(x)) = ϕ(0)δ(x) + θ(x)ϕ′(x).

Evidently from recursion we get

d2

dx2
(θ(x)ϕ(x)) =

d

dx
(ϕ(0)δ(x) + θ(x)ϕ′(x))

= ϕ(0)δ′(x) + ϕ′(0)δ(x) + θ(x)ϕ′′(x),

where θ(x)ϕ′′(x) is defined in the distributional sense.

This claims in general

dm

dxm
(θ(x)ϕ(x)) = ϕ(0)δ(m−1)(x) + · · ·+ ϕ(m−1)(0)δ(x) + θ(x)ϕ(m)(x).

Secondly, we suppose that ϕ(x) ∈ Cm[0,∞) and ϕ1(x) ∈ Cm(R) such that ϕ1(x) = ϕ(x) for
x ∈ [0,∞). Furthermore, we let ρ(x) be a fixed infinitely differentiable function on R with four
properties

(i) ρ(x) ≥ 0,

(ii) ρ(x) = 0 for |x| ≥ 1,

(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1
ρ(x)dx = 1.

Obviously, the Temple sequence δn(x) = nρ(mx) is an infinitely differentiable sequence converging
to δ in D′(R) as n→∞. Then the convolution given by

ψn(x) = ϕ
(m)
1 (x) ∗ δn(x) =

∫ ∞
−∞

ϕ
(m)
1 (x− y)δm(y)dy

is an infinitely differentiable sequence and uniformly converges to ϕ
(m)
1 (x) as n → ∞ on every

compact subset L ⊂ R. Indeed, ϕ
(m)
1 (x) is uniformly continuous on L since it is continuous on L.

Therefore, for all ε > 0 there exists δ > 0, such that

|ϕ(m)
1 (x− y)− ϕ(m)

1 (x)| < ε

for all x ∈ L and |y| < δ. Choosing n > 1/δ, we arrive at

|ψn(x)− ϕ(m)
1 (x)| ≤

∫ ∞
−∞
|ϕ(m)

1 (x− y)− ϕ(m)
1 (x)|δm(y)dy < ε

holds for all y ∈ L.

It follows that

dm

dxm
θ(x)ψn(x) = ψn(0)δ(m−1)(x) + · · ·+ ψ(m−1)

n (0)δ(x) + θ(x)ψ(m)
n (x)
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since ψn(x) is an infinitely differentiable sequence.

Clearly,

lim
n→∞

∫ ∞
−∞

θ(x)ψ(m)
n (x)ϕ(x)dx =

∫ ∞
0

ϕ(m)(x)ϕ(x)dx

for all ϕ(x) ∈ D(R) and

lim
n→∞

ψn(0) = ϕ1(0) = ϕ(0),

· · ·
lim
n→∞

ψ(m−1)
n (0) = ϕ

(m−1)
1 (0) = ϕ(m−1)(0).

Therefore,

dm

dxm
(θ(x)ϕ(x)) = ϕ(0)δ(m−1)(x) + · · ·+ ϕ(m−1)(0)δ(x) + θ(x)ϕ(m)(x).

for all ϕ(x) ∈ Cm[0,∞), which implies that

dλ

dxλ
(θ(x)ϕ(x)) = (ϕ(0)δ(m−1)(x) + · · ·+ ϕ(m−1)(0)δ(x) + θ(x)ϕ(m)(x)) ∗

xm−λ−1
+

Γ(m− λ)

= ϕ(0)
x−λ+

Γ(1− λ)
+ · · ·+ ϕ(m−1)(0)

xm−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

ϕ(m)(t)(x− t)m−λ−1dt.

This completes the proof of Theorem 1.1. �

In particular,

d
1
2

dx
1
2

(θ(x)x) =
d

1
2

dx
1
2

x+ =
2√
π
x

1
2
+,

d
1
2

dx
1
2

θ(x) =
1√
π
x
− 1

2
+

using Γ(1/2) =
√
π.

Remark 1: Theorem 1.1 is an extension of Theorem 4.2 given in [11], where ϕ(x) ∈ C∞[0,∞) is
assumed and its proof is more complicated via integration by parts.

Assume that

ϕ(m)(t) =

∞∑
k=0

ϕ(m+k)(0)

k!
tk.

Making the substitution t = ux, we have∫ x

0

tk(x− t)m−λ−1dt = xm−λ+k

∫ 1

0

uk(1− u)m−λ−1du = xm−λ+kΓ(k + 1) Γ(m− λ)

Γ(m− λ+ k + 1)
.
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Therefore,

dλ

dxλ
(θ(x)ϕ(x)) =

(
ϕ(0)

x−λ+

Γ(1− λ)
+ · · ·+ ϕ(m−1)(0)

xm−λ−1
+

Γ(m− λ)

)
+

∞∑
k=0

ϕ(m+k)(0)xm−λ+k
+

Γ(m− λ+ k + 1)

=

∞∑
k=−m

ϕ(m+k)(0)xm−λ+k
+

Γ(m− λ+ k + 1)
.

In particular, for λ = 1/2 (thus m = 1) and ϕ(x) = ex, we get

d
1
2

dx
1
2

(θ(x)ex) =
x
− 1

2
+√
π

+

∞∑
k=0

x
k+ 1

2
+

Γ(k + 3
2 )

=

∞∑
k=−1

x
k+ 1

2
+

Γ(k + 3
2 )
.

In general, we have the following theorem.

Theorem 1.2 Let ϕ1(x) ∈ Cm[a, b] and ϕ2(x) ∈ Cm[c, d], and let f(x) be the function given by

f(x) =

 ϕ1(x) if 0 ≤ a < x < b,
ϕ2(x) if b ≤ c ≤ x < d,
0 otherwise,

where m− 1 < λ < m ∈ Z+. Then

dλ

dxλ
f(x) = (ϕ1(a)− ϕ1(b))

(x− a)−λ+ − (x− b)−λ+

Γ(1− λ)
+ · · ·+

(ϕ
(m−1)
1 (a)− ϕ(m−1)

1 (b))
(x− a)m−λ−1

+ − (x− b)m−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

(θ(t− a)− θ(t− b))ϕ(m)
1 (t)(x− t)m−λ−1dt

+ (ϕ2(c)− ϕ2(d))
(x− c)−λ+ − (x− d)−λ+

Γ(1− λ)
+ · · ·+

(ϕ
(m−1)
2 (c)− ϕ(m−1)

2 (d))
(x− c)m−λ−1

+ − (x− d)m−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

(θ(t− c)− θ(t− d))ϕ
(m)
2 (t)(x− t)m−λ−1dt.

Proof. It follows from Theorem 1.1 and identities

f(x) = ϕ1(x)(θ(x− a)− θ(x− b)) + ϕ2(x)(θ(x− c)− θ(x− d)),

and

dλ

dxλ
θ(x− a) =

(x− a)−λ+

Γ(1− λ)
,

ϕ(x)δ(x− a) = ϕ(a)δ(x− a).
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This completes the proof. �

Similarly, we have the following Theorem 1.3 from identity

f(x) = ϕ1(x)(θ(x− a)− θ(x− b)) + ϕ2(x)θ(x− c).

Theorem 1.3 Let ϕ1(x) ∈ Cm[a, b] and ϕ2(x) ∈ Cm[c,∞), where c ≥ b, and let f(x) be the
function given by

f(x) =

 ϕ1(x) if 0 ≤ a < x < b,
ϕ2(x) if x ≥ c,
0 otherwise.

Then

dλ

dxλ
f(x) = (ϕ1(a)− ϕ1(b))

(x− a)−λ+ − (x− b)−λ+

Γ(1− λ)
+ · · ·+

(ϕ
(m−1)
1 (a)− ϕ(m−1)

1 (b))
(x− a)m−λ−1

+ − (x− b)m−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

(θ(t− a)− θ(t− b))ϕ(m)
1 (t)(x− t)m−λ−1dt

+ ϕ2(c)
(x− c)−λ+

Γ(1− λ)
+ · · ·+

ϕ
(m−1)
2 (c)

(x− c)m−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

θ(t− c)ϕ(m)
2 (t)(x− t)m−λ−1dt.

where m− 1 < λ < m ∈ Z+.

We consider the function defined as

f(x) =

{
ex if 0 < x < 1,
1 if x ≥ 1.

Note that this function is even discontinuous at x = 1. However, we can find f ( 1
2 )(x) in the

distributional sense by Theorem 1.3. Indeed,

f ( 1
2 )(x) =

d
1
2 f(x)

dx
1
2

= (e0 − e1)
x
− 1

2
+ − (x− 1)

− 1
2

+

Γ(1/2)
+

1

Γ(1/2)

∫ x

0

(θ(t)− θ(t− 1))et(x− t)−1/2dt

+
(x− 1)

− 1
2

+

Γ(1/2)

= (1− e)
x
− 1

2
+√
π

+ e
(x− 1)

− 1
2

+√
π

+
1√
π

∫ x

0

(1− θ(t− 1))et(x− t)−1/2dt.
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In particular, we arrive at for x ≥ 1

f ( 1
2 )(x) = (1− e)x

− 1
2

√
π

+ e
(x− 1)−

1
2

√
π

+
1√
π

∫ 1

0

et(x− t)−1/2dt

= (1− e)x
− 1

2

√
π

+ e
(x− 1)−

1
2

√
π

+
1√
π

∞∑
k=0

1

k!

∫ 1

0

tk(x− t)−1/2dt

using

et =

∞∑
k=0

tk

k!
.

Similarly,

f ( 1
2 )(x) = (1− e)x

− 1
2

√
π

+
1√
π

∫ x

0

et(x− t)−1/2dt

= (1− e)x
− 1

2

√
π

+
1√
π

∞∑
k=0

1

k!

∫ x

0

tk(x− t)−1/2dt

= (1− e)x
− 1

2

√
π

+
1√
π

∞∑
k=0

1

k!
xk+1/2

∫ 1

0

tk(1− t)−1/2dt

= (1− e)x
− 1

2

√
π

+

∞∑
k=0

xk+1/2

Γ(k + 3/2)

if 0 < x < 1.

The Leibniz’s Rule of differentiation in distribution is given in the following based on the generalized
convolution.

Theorem 1.4 Let f be an arbitrary distribution in D′(R+) and ϕ be an infinitely differentiable
function. Then

dλ

dxλ
(ϕ(x)f(x)) =

∞∑
k=0

(
λ

k

)
dλ−k

dxλ−k
f(x) · ϕ(k)(x) =

∞∑
k=0

Γ(λ+ 1)

k! Γ(λ− k + 1)

dλ−k

dxλ−k
f(x) · ϕ(k)(x)

holds for m− 1 < λ < m ∈ Z+.

It follows from Theorem 1.4 and ϕ(x) ∈ C∞(R) that

dλ

dxλ
(θ(x)ϕ(x)) =

∞∑
k=0

(
λ

k

)
ϕ(k)(x)

dλ−k

dxλ−k
θ(x)

=

∞∑
k=0

(
λ

k

)
ϕ(k)(x)

xk−λ+

Γ(1− λ+ k)
.

Note that the product ϕ(k)(x)
xk−λ+

Γ(1− λ+ k)
is well defined in the distributional sense since ϕ(k)(x)

is an infinitely differentiable function.
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Let f(x) be the function given in Theorem 1.2. Then

dλ

dxλ
f(x) =

∞∑
k=0

(
λ

k

)
ϕ

(k)
1 (x)

(
(x− a)k−λ+ − (x− b)k−λ+

Γ(1− λ+ k)

)

+

∞∑
k=0

(
λ

k

)
ϕ

(k)
2 (x)

(
(x− c)k−λ+ − (x− d)k−λ+

Γ(1− λ+ k)

)
,

if ϕ1(x) and ϕ2(x) are infinitely differentiable functions on their respective intervals.

Similarly, we let ϕ1(x) ∈ C∞[a, b] and ϕ2(x) ∈ C∞[c,∞), where c ≥ b, and let f(x) be the function
given by

f(x) =

 ϕ1(x) if 0 ≤ a < x < b,
ϕ2(x) if x ≥ c,
0 otherwise.

Then

dλ

dxλ
f(x) =

∞∑
k=0

(
λ

k

)
ϕ

(k)
1 (x)

(
(x− a)k−λ+ − (x− b)k−λ+

Γ(1− λ+ k)

)

+

∞∑
k=0

(
λ

k

)
ϕ

(k)
2 (x)

(x− c)k−λ+

Γ(1− λ+ k)
.

2 Fractional derivatives of composite functions

Now, we assume that ϕ(x) is a composite function

ϕ(x) = F (h(x)).

The m-th order derivative of ϕ(x) can be obtained with the help of Faà di Bruno formula [14]:

dm

dxm
F (h(x)) = m!

m∑
k=1

F (k)(h(x))
∑ m∏

r=1

1

ar!

(
h(r)(x)

r!

)ar
,

where the sum
∑

extends over all combinations of non-negative integer values of a1, a2, · · · , am
such that

m∑
r=1

rar = m and

m∑
r

ar = k.

The following can be derived from Theorem 1.1 and Faà di Bruno formula.

Theorem 2.1 Let F (x) and h(x) be functions in Cm[0,∞). Then

dλ

dxλ
(θ(x)F (h(x))) = F (h(0))

x−λ+

Γ(1− λ)
+ · · ·+ F (m−1)(h(0))

xm−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

F (m)(h(t))(x− t)m−λ−1dt
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where m− 1 < λ < m ∈ Z+ and

dm−1

dxm−1
F (h(0)) = (m− 1)!

m−1∑
k=1

F (k)(h(0))
∑m−1∏

r=1

1

ar!

(
h(r)(0)

r!

)ar
,

where the sum
∑

and coefficients ar have the meaning explained above.

As an example, we find out
dλ

dxλ
(θ(x) ln(1 + x)) for m− 1 < λ < m ∈ Z+. Clearly,

ln(m)(1 + x) = (−1)m−1(m− 1)!(1 + x)−m.

By Theorem 2.1 or 1.1, we have

dλ

dxλ
(θ(x) ln(1 + x)) =

x1−λ
+

Γ(2− λ)
+ · · ·+ (−1)m−2(m− 2)!

xm−λ−1
+

Γ(m− λ)

+
(−1)m−1(m− 1)!

Γ(m− λ)

∫ x

0

(x− t)m−λ−1

(1 + x)m
dt.

It follows from [15] that

dm

dxm

(
x

x2 + b2

)
=

(−1)mm!

(x2 + b2)m+1

∑
0≤2k≤m+1

(−1)k
(
m+ 1

2k

)
b2kxm+1−2k,

dm

dxm

(
b

x2 + b2

)
=

(−1)mm!

(x2 + b2)m+1

∑
0≤2k≤m

(−1)k
(
m+ 1

2k + 1

)
b2k+1xm−2k

we are able to get

dλ

dxλ

(
θ(x)

(
x

x2 + 1

))
and

dλ

dxλ

(
θ(x)

(
1

x2 + 1

))
.

from Theorem 2.1.

Remark 2: We can compute the fractional derivative

dλ

dxλ
(θ(x)f(x)g(x))

based on the classical Leibniz’s rule

(f(x)g(x))(m) =

m∑
k=0

(
m

k

)
f (k)(x)g(m−k)(x).

Hence,

dλ

dxλ
(θ(x)xex) =

x1−λ
+

Γ(2− λ)
+ · · ·+ (m− 1)

xm−λ−1
+

Γ(m− λ)

+
1

Γ(m− λ)

∫ x

0

(m+ t)et(x− t)m−λ−1dt.
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by using
(xex)(m) = (m+ x)ex.

Furthermore, we can carry out
dλ

dxλ
(θ(x)x sinx)

based on the formula

(x sinx)(m) = x sin(
mπ

2
+ x)−m cos(

mπ

2
+ x).

We leave it to interested readers.

3 An approximation of
dλ

dxλ
(θ(x)ϕ(x))

Let us consider the distribution

−δ(x)− δ(x+ h)

h
where h > 0 ,

which converges to δ′(x) in D′(a, x], since we have for ϕ ∈ D[a, x]

− lim
h→0

(
δ(x)− δ(x+ h)

h
, ϕ(x)

)
= − lim

h→0

ϕ(0)− ϕ(−h)

h
= −ϕ′(0)

where a ≤ 0 and x > 0.

Applying this twice gives the second-order derivative:

δ′′(x) = (−1)1 lim
h→0

δ′(x)− δ′(x+ h)

h

= (−1)2 lim
h→0

1

h

{
δ(x)− δ(x+ h)

h
− δ(x+ h)− δ(x+ 2h)

h

}
= (−1)2 lim

h→0

δ(x)− 2δ(x+ h) + δ(x+ 2h)

h2
.

By induction,

δ(n)(x) = (−1)n lim
h→0

1

hn

n∑
r=0

(−1)r
(
n

r

)
δ(x+ rh), (6)

where (
n

r

)
=
n(n− 1)(n− 2) · · · (n− r + 1)

r!

is the usual notation for the binomial coefficients.

Let λ > 0 and ϕ ∈ D[a, x]. It follows from Podlubny [16] that

ϕ
(λ)
h (x) = h−λ

n∑
r=0

(−1)r
(
λ

r

)
ϕ(x− rh) where nh = x− a
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converges in the usual sense and

lim
h→0

ϕ
(λ)
h (x) =

m∑
k=0

ϕ(k)(a)(x− a)−λ+k

Γ(−λ+ k + 1)

+
1

Γ(−λ+m+ 1)

∫ x

a

(x− τ)m−λϕ(m+1)(τ)dτ

=
1

Γ(−λ+m+ 1)

∫ x

a

(x− τ)m−λϕ(m+1)(τ)dτ

where m is an integer satisfying m ≤ λ < m+ 1. In particular,

lim
h→0

(−1)λϕ
(λ)
h (0) = lim

h→0
(−1)λh−λ

n∑
r=0

(−1)r
(
λ

r

)
ϕ(−rh)

=
(−1)m

Γ(−λ+m+ 1)

∫ 0

a

τm−λϕ(m+1)(τ)dτ,

where (−1)λ = cosλπ + i sinλπ.

Let us consider the expression

δ
(λ)
h (x) = (−1)λh−λ

n∑
r=0

(−1)r
(
λ

r

)
δ(x+ rh),

and clearly we have for ϕ ∈ D(a, x],

lim
h→0

(δ
(λ)
h (x), ϕ(x)) = lim

h→0
(−1)λϕ

(λ)
h (0) =

(−1)m

Γ(−λ+m+ 1)

∫ 0

a

τm−λϕ(m+1)(τ)dτ. (7)

In particular, we have for λ = m that

lim
h→0

(δ
(m)
h (x), ϕ(x)) = (−1)mϕ(m)(0) = (δ(m)(x), ϕ(x))

using ϕ(m)(a) = 0.

On the other hand, we have

δ(λ)(x) =
dλ

dxλ
δ(x) =

x−λ−1
+

Γ(−λ)
=

dm+1

dxm+1

x−λ+m
+

Γ(−λ+m+ 1)

where m ≤ λ < m+ 1. This implies that

(δ(λ)(x), ϕ(x)) =
(−1)m+1

Γ(−λ+m+ 1)

∫ ∞
0

x−λ+m
+ ϕ(m+1)(x)dx

=
(−1)m

Γ(−λ+m+ 1)

∫ 0

−∞
τm−λϕ(m+1)(τ)dτ

=
(−1)m

Γ(−λ+m+ 1)

∫ 0

a

τm−λϕ(m+1)(τ)dτ
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by using the fact that
(g(x), ϕ(x)) = (g(−x), ϕ(−x))

if g(x) is a locally integrable function.

In summary, we come to the following result.

Theorem 3.1 The expression

δ
(λ)
h (x) = (−1)λh−λ

n∑
r=0

(−1)r
(
λ

r

)
δ(x+ rh) where nh = x− a

is the first-order approximation to the distribution δ(λ)(x) (λ > 0) in the distributional sense.

Proof We assume that a = 0 for simplicity, therefore x = nh, where x is the point at which the
fractional derivative is evaluated. Clearly,

ϕ
(λ)
h (x) = h−λ

n∑
r=0

(−1)r
(
λ

r

)
ϕ(x− rh)

= h−λ
n∑
r=0

(
r − λ− 1

r

)
ϕ(x− rh).

We start with the simplest function ϕ(x) = θ(x), which is not a testing function. Evidently,

dλ

dxλ
ϕ =

dλ

dxλ
θ(x) =

x−λ+

Γ(1− λ)
.

On the other hand,

θ
(λ)
h (x) = h−λ

n∑
r=0

(
r − λ− 1

r

)
.

Applying the following summation formula [16]

n∑
r=0

(
r − λ− 1

r

)
=

(
n− λ
n

)
and the asymptotic formula [17]

zb−a
Γ(z + a)

Γ(z + b)
= 1 +O(z−1), (8)

we come to

θ
(λ)
h (x) = h−λ

(
n− λ
n

)
=

x−λ+

Γ(1− λ)

nλΓ(n− λ+ 1)

Γ(n+ 1)

=
x−λ+

Γ(1− λ)
(1 +O(h)),
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which gives the first-order approximation. Note that

x−λ+

Γ(1− λ)
(1 +O(h)) =

x−λ+

Γ(1− λ)
+O(h)

in the distributional sense since ϕ(x) = 1 is an infinitely differentiable function.

Let us consider ϕ(x) = xm+ for m = 1, 2, · · · . Then the exact λ-th distributional derivative is

dλ

dxλ
xm+ = Γ(m+ 1)

dλ

dxλ
xm+

Γ(m+ 1)
=

Γ(m+ 1)

Γ(m+ 1− λ)
xm−λ+

and the approximation of the exact derivative is

(xm+ )
(λ)
h = xm−λ+ nλ

n∑
r=0

(
r − λ− 1

r

)(
1− r

n

)m
= xm−λ+

m∑
j=0

(−1)j
(
m

j

)
nλ−j

n∑
r=0

(
r − λ− 1

r

)
rj .

It follows from [16] that

S =

n∑
r=0

(
r − λ− 1

r

)
rj

=

j∑
i=1

σ
(i)
j

Γ(n− λ+ 1)

(i− λ)Γ(−λ)Γ(n− i+ 1)

where σ
(i)
j are Stirling numbers of second kind and σ

(j)
j = 1.

Substituting the above back we get

(xm+ )
(λ)
h =

xm−λ+

Γ(−λ)

m∑
j=0

(−1)j
(
m

j

) j∑
i=1

σ
(i)
j

nλ−jΓ(n− λ+ 1)

(i− λ)Γ(−λ)Γ(n− i+ 1)
.

Applying equation (8), we have

nλ−jΓ(n− λ+ 1)

Γ(n− i+ 1)
= ni−j

(
nλ−i

Γ(n− λ+ 1)

Γ(n− i+ 1)

)
= ni−j(1 +O(n−1)).

It follows that

(xm+ )
(λ)
h =

xm−λ+

Γ(−λ)

m∑
j=0

(−1)j
(
m

j

) j∑
i=1

σ
(i)
j

1

i− λ
ni−j(1 +O(n−1))

=
xm−λ+

Γ(−λ)

m∑
j=0

(−1)j
(
m

j

)
1

j − λ
(1 +O(n−1)).
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Using the formula [16]
m∑
j=0

(−1)j
(
m

j

)
1

j − λ
= β(−λ,m+ 1),

we finally get

(xm+ )
(λ)
h =

Γ(m+ 1)

Γ(m+ 1− λ)
xm−λ+ +O(h).

This claims that if ϕ(x) can be written in the form of a positive x+-term polynomial

ϕ(x) =

m∑
i=0

aix
i
+,

then the fractional difference gives the first-order approximation for the fractional derivative in the
distributional sense. Clearly, any testing function ϕ(x) can be approximated by a positive x+-term
polynomial in an arbitrary order. This completes the proof of Theorem 3.1. �

An approximate product of ϕ(x) ∈ C∞(R) and δ
(λ)
h (x) follows from Theorem 3.1 that

ϕ(x)δ
(λ)
h (x) ≈ (−1)λh−λ

n∑
r=0

(−1)r
(
λ

r

)
ϕ(x)δ(x+ rh)

= (−1)λh−λ
n∑
r=0

(−1)r
(
λ

r

)
ϕ(−rh)δ(x+ rh) (9)

where nh = x− a and h is small and we note that

ϕ(x)δ(x+ rh) = ϕ(−rh)δ(x+ rh).

Indeed,
(ϕ(x)δ(x+ rh), ψ(x)) = ϕ(−rh)ψ(−rh) = ϕ(−rh)(δ(x+ rh), ψ(x)).

Let ϕ(x) ∈ Cm[0,∞) and m− 1 < λ < m ∈ Z+. Then we have from Theorem 1.1 that

dλ

dxλ
(θ(x)ϕ(x)) =

m−1∑
k=0

ϕ(k)(0)
xk−λ+

Γ(1 + k − λ)
+

1

Γ(m− λ)

∫ x

0

ϕ(m)(t)(x− t)m−λ−1dt.

Clearly,
xk−λ+

Γ(1 + k − λ)
= δ(λ−k−1)(x)

from Section 1 and

δ(λ−k−1)(x) ≈ (−1)λ−k−1h−λ+k+1
n∑
r=0

(−1)r
(
λ− k − 1

r

)
δ(x+ rh)

where nh = x− a and h is small.
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Thus, we arrive at the following asymptotic theorems in the first-order approximation.

Theorem 3.2 Let ϕ(x) ∈ Cm[0,∞) and m− 1 < λ < m ∈ Z+. Then

dλ

dxλ
(θ(x)ϕ(x)) ≈

m−1∑
k=0

n∑
r=0

(−1)λ−k−1+rh−λ+k+1

(
λ− k − 1

r

)
ϕ(k)(0)δ(x+ rh)

+
1

Γ(m− λ)

∫ x

0

ϕ(m)(t)(x− t)m−λ−1dt = I1 + I2,

where I1 is the distribution given by

I1 =

m−1∑
k=0

n∑
r=0

(−1)λ−k−1+rh−λ+k+1

(
λ− k − 1

r

)
ϕ(k)(0)δ(x+ rh),

and I2 is the continuous function defined as

I2 =
1

Γ(m− λ)

∫ x

0

ϕ(m)(t)(x− t)m−λ−1dt.

Theorem 3.3 Let F (x) and h(x) be functions in Cm[0,∞) and m− 1 < λ < m ∈ Z+. Then

dλ

dxλ
(θ(x)F (h(x))) ≈

m−1∑
k=0

n∑
r=0

(−1)λ−k−1+rh−λ+k+1

(
λ− k − 1

r

)
F (k)(h(0))δ(x+ rh)

+
1

Γ(m− λ)

∫ x

0

F (m)(h(t))(x− t)m−λ−1dt = I1 + I2,

where I1 is the distribution given by

I1 =

m−1∑
k=0

n∑
r=0

(−1)λ−k−1+rh−λ+k+1

(
λ− k − 1

r

)
F (k)(h(0))δ(x+ rh),

and I2 is the continuous function defined as

I2 =
1

Γ(m− λ)

∫ x

0

F (m)(h(t))(x− t)m−λ−1dt.
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[17] A. Erdélyi, Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, 1955.


