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Abstract

In 1955, Waadeland considered the class of m-fold symmetric starlike functions of the form
fm(z) = 2+ 300, Amny12™ T m > 1, |z|] < 1 and obtained the sharp coefficient bounds
|amnt1| < [(2/m+n—1)1]/[(n!)(2/m — 1)!]. Pommerenke in 1962, proved the same coefficient
bounds for m-fold symmetric close-to-convex functions. Nine years later, Keogh and Miller
confirmed the same bounds for the class of m-fold symmetric Bazilevic functions. Here we will
show that these bounds can be improved even further for the m-fold symmetric bi-close-to-
convex functions. Moreover, our results improve those corresponding coefficient bounds given
by Srivastava et al that appeared in 7(2) (2014) issue of this journal. A function is said to be
bi-close-to-convex in a simply connected domain if both the function and its inverse map are
close-to-convex there.
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1 Introduction

Let K be the class of all functions of the form f(z) =2+ .-, a,z" analytic in the open unit disk
D:={z € C: |z| <1} that satisfy f'(z) # 0 and

/ % arg [e“gf'(reze)} do > —m; 01 <0,0<r <1 (1.1)
01

The class K is the class of close-to-convex functions. It was proved by Kaplan [7] that a function
[ of the form (1.1) belongs to K if and only if there exists a function g(z) = 2+, b,2" starlike
in D (that is, Re[z¢'(z)/g(z)] > 0 in D) such that Re (zf'/g) > 0 in D. In 1955, Waadeland [14]
considered the class of m-fold symmetric starlike functions of the form

oo
gm(2) = 2 + Z brng12™m > 1

n=1

and obtained the sharp coefficient bounds

2 -1 1
/m+n > N n2/m=1

[brun 1] < ( n r(2/m)

Thbilisi Mathematical Journal 9(2) (2016), pp. 75-82.
Thilisi Centre for Mathematical Sciences.

Received by the editors: 16 August 2015.
Accepted for publication: 10 September 2016.



76 J. M. Jahangiri, S. G. Hamidi

Pommerenke [10] in 1962, proved the same coefficient bounds for m-fold symmetric close-to-
convex functions fi,(2) = 2+ Yo" 1 Gmnt12™" 1 m > 1. Nine years later, Keogh and Miller [§]
confirmed the same bounds for the class of m-fold symmetric Bazilevic functions. Here we will
show that these bounds can be improved even further for the m-fold symmetric bi-close-to-convex
functions. Moreover, the coefficient bounds presented in this paper for |am+1], |a2m+1] and m > 1 also
improve those corresponding coefficient bounds given by Srivastava et al [12]. A function is said
to be bi-close-to-convex in a simply connected domain if both the function and its inverse map
are close-to-convex there. The class of bi-univalent functions was first introduced and studied by
Lewin [9] and has gained momentum in recent years mainly due to the pioneer work of Srivastava et
al [11]. Because the bi-univalency requirement makes the behavior of the coefficients of bi-univalent
functions unpredictable, no general coefficient bounds for subclasses of bi-univalent functions was
known up until the publication of article [6] by Jahangiri and Hamidi. The unpredictability of m-fold
symmetric bi-starlike functions was first studied by the authors in [4] followed by the publication
of the articles [12] and [13] by Srivastava et al. Here we further improve the bounds given in [4]
to include the larger class of m-fold symmetric bi-close-to-convex functions. We begin with the
statement of the following

Theorem 1.1. Form > 2if f,,,(2) = 2+ o~ | Gmp+12™" 1! is m-fold symmetric bi-close-to-convex
in D, then

(). lamsa] < /==
i). |a ——
= V1
g 1
(@) azmi1| < —,
2 .
(191). |amna1] < P it amrt1=0; (2<k<n).

The following example justifies the existence of functions satisfying the bounds given in Theorem
1.1.

Example 1.2. Let f(z) = z+ —5-2"""':m > 2, n > 2, z € D. Then for the starlike function
g(z) =2— 2-2""im >2 n>2 2D we have
zf'(z) 1+ Mzm” = mn+2 & = i
— ZMP =14+ Apz™",
g(Z) 1— 7zmn Z ;

We note that A is a convex null sequence since klim A, =0,1—A4; >0and Ay — Ag41 > 0.
—00
Therefore, Re(zf'/g) > 0.
On the other hand, for F(w) = f~}(w) = w — LGwm”“; m > 2, n>2 we D consider the

m
starlike function G(w) = w™m > 2 n>2 weD. Then we have

= mn = )k)wm’“ =14 (-1)FAu™.
k=1

wF'(w) 11— 2Amntl) \ymn i mn—|—2
Gw) 1 —
Once again, since Ay, is a convex null sequence, Re(wF'/G) > 0
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2 Proofs

In order to prove our theorem we shall need the following well-known lemma.

Lemma 2.1. (See Duren [3] or Jahangiri [5])
For the positive real part functions Pi(z) = 1+ X2 ,p,2" and Pp(z) = %/Pi(2™) where
Pr(2) =14 32 1pmnz™", z € D, m € N we have

(Z) |pn| <2,

(i1). |p2+ A2 < 24N [pi? i A > —1/2,
1

(iti). pm = —p1,

. 1 m—1 9

(w). Pom = E {pz - 2mp1] 5

1 .
(U)' Pmn = Epn; if pmr = 0; (2 <k< ’Il)

Proof of Theorem 1.1. If F = f~! is the inverse of a function f univalent in I, then F has
a Maclaurin series expansion in some disk about the origin (e.g. see [3] or [9]). According to
Airault [1] or Airault and Ren [2, p. 349], the function F = f~! the inverse map of the univalent
function f(z) =z + > .-, a,2™ has the Faber polynomial expansion

1
F(w) *w+Z—Kn71(a2,a3, yap)w™; w e D
n
n=2
where K", is a homogeneous polynomial in the variables as,as, - , ap.

The first few terms of the coefficients K, ", are K; 2 = —2aq, Ky ° = +3(2a3 — a3), K3 * =
—4(5a3 — 5agaz + ayg) and K ° = +5(14a3 — 21adaz + 6asay + 3a3 — as).
In general, for n > 1 and for real values of k, these coefficients are calculated according to

k(k—1) o k! 3 K! _
K;_ | = —F—=D —— D e "
ne1 = R e e e T T =
where Df_, = D¥_,(az,as, - ,a,) are homogeneous polynomials explicated in

= kl(ag)k .. (@)t

e = —
Dy (az,-- aan)—nz:; PR for k<n-—1,
and the sum is taken over all nonnegative integers p1, ..., t,—1 satisfying

M1+ pg + e g1 = K,
1+ 2u2 4+ -+ (n—Dpp—1 =n—1.

Evidently DI*(ag,as,...,a,) = a¥.
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Therefore, the m-fold symmetric function f,,(z) = %/ f1(z™) has the Faber polynomial expan-
sion

fn(z) = VIEM =24 Y Ki(az,as, - ,aner)2™

n=1

= 24 amp2™ + Aoma1 22 4+ (2.1)

According to Kaplan ( [7], Theorem 2), for the m-fold symmetric close-to-convex function f,,,
the corresponding starlike function is also m-fold symmetric. So there exists an m-fold symmetric
starlike function g, (2) = 2 + by 12™ T + o122+ 4+ ... so that

!
Re<zf77’(Z)> >0; z € D.
gm(2)
By the same token, there exists a positive real part function ¢, (2) = 14> 07 | @mnz™" so that
2fm(2)
Im(2)

= m(2); z € D. (2.2)

On the other hand, the Faber polynomial expansion for zf/ /g, would be

2fm(2) -
zf%g—:]r%E:{«nwr+lﬁmm+1—bme) (2.3)
m n=1
n—1
+ Z K (b1, bamts -+ 5 bemrr) [(n = Om+ D)ag—oym+1 — bn—eymt1] 12"
=1

For the inverse map F,,, = f,.!, the Faber polynomial expansion is

Fm(w)

oo
§ : 1
w + Aanrl wmn—i—

n=1

9]
1
2 —(mn+1) mn+1
= w-+ Z mn 1 Kn (am+1, A2m+1y - - - ,amn+1)w . (24)

The close-to-convexity of the inverse function F,, implies the existence of an m-fold symmetric
function G, (w) = w + Y 0" | Bpr1w™" ! starlike in D so that Re(wF), (w)/Gpm(w)) > 0 in D.
So, there exists a positive real part function U, (w) =1+ > 7 | p,w™" in D representing

wky, (w)

Gmm):1+%wﬁ+¢mwm+mv w e D. (2.5)

The Faber polynomial expansion for wF; (w)/G(w) is given by

wF! (w)

G (w) =1+ Z {((nm + 1) Apms1 — Bams1) (2:6)

n=1
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n—1

+ Z Kg_l(Bm+l7 BZm-l—la ce aBlm-i-l) [((n - f)m + l)A(nfﬂ)m+1 - B(nfé)erl]} w™".
(=1

Comparing the corresponding coefficients of (2.2), (2.3), (2.5) and (2.6), we obtain

Pmn = ((nm + 1)anm+1 - bnm+1) (27)
n—1
+ Z Kgl(berlv b2m+1a T 7b€m+1) [((n - g)m + 1)a(n—£)m+1 - b(n—@)m+1} )
(=1
and
¢mn = ((nm + I)Anm—i-l - Bnm+1) (28)
n—1
+ Z Ké_l(Bm-Fl’ BQm+17 e ,Bfm+1) [((TL - E)m + 1)A(n—€)m+1 - B(n—é)m+1} .
(=1

Letting n = 1 and n = 2, the above two equations (2.7) and (2.8) yield

Amt1,= —Qmy1, A1 = (m+1)al, 1 — aom41,
and consequently
(m + 1)am+1 - bm+1 = Pm; (29)
(2m + Dazmt1 — bam+1 — b1 [(M + D)ams1 — bmy1] = pom (2.10)
—(m + l)am_H — Bm+1 = wm, (211)
and
(2m +1)[(m + 1)ag, 11 — azm+1] = Bamt1 + Bia [(m + Damir + Biga] = $am. (2.12)

Substituting (2.9) in (2.10) and (2.11) in (2.12) and then adding them we obtain

(m + 1)(2m + 1)a‘$n+1 - b2m+1 - B2m+1 - (berl)(sOm) - (Berl)(’(/}m) = P2m + me' (213)

On the other hand, for the starlike function g,,(2) = 2z + byg12™ ! + boy122™ L + ..., we set

Z;i"((:)) = Py(2) = 14 322 1 pmnz™" where ReP,,(z) > 0 in D. Similarly, for the starlike function

Gm(w) = w + Bpw™ + Bapw?™ 4. we set U’CS’TES) = Qmn(w) = 14+ 32, gmaw™

where Re@,(w) > 0in D. Comparing the corresponding coefficients we obtain

1 1 1
bnt1 = —Pm, bomp1=z— [pzm + p12n:|
m 2m m

and

1 1
Byt1 = —dm Bopy1 = o [an + mqfn} .
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An application of Lemma 2.1 yields

1 1 m2—m—2
b1 = Wpla bomt1 = =— {ID - p%]

2m? 2m?

and

1 1 m?—m-2 ,
Bi1 = E(Zl, Bom+1 = o2 {Q2 - W%} .
Now we are ready to prove the bound for |a,, 1. Solving (2.13) for (m 4 1)(2m + 1)a?,,; and
taking the absolute values in conjunction with an application of the inequalities given in the above
Lemma 2.1 we obtain

2
(m + 1)(2m + 1) ‘a’m+1‘ < |b2m+1‘ + |B2m+1| + |bm+1| : ‘(pml + |Bm+1‘ : |’(/}m| + ‘¢2m| + ‘w2m|
< 1 mQ—m—22+ ipi | |+1 m—1 5
S o2 P2 om2 P 3 IP1]1¥1 m P2 om Y1
1 m? —m — 2 4 1 m—1 ,
+W e +73‘C]1||¢1|+% ¢2—W¢1

1 m? —m — 1 1 m—1
< 2 2) ¢ — — (2=
- 2m2( 2m?2 p1>+m3 |p1||<,01|—|-m< 2m |<p1>
2

1 m*—m —2 1 1 m—1
- 277 2 = R () W 2
bz (2= gl ) + sl + - (2= )
22m+1) m*-m-2 5, 1 m—1 5
< —_ il
= m2 AmA |p1| + m3 |p1| ‘Qol |
m2—m-2 1 m—1 9
*TMH +ﬁ\fh||¢1|*ﬁ|¢1|
22m+1) m-—1 1 omiom-—2
= 7 — 57 (el = ———=Inl | — 5 ——Inl
m 2m m(m — 1) 2m3(m — 1)
2 2
_m— 1 m*—-—m-2 .,
om? (lel (m—1)|q1> ~2mim ol

For m > 2 it follws that (m + 1)(2m + 1) |am+1] or [ami1] < sy /g

For the second part of the theorem, we substitute equation (2.9) in (2.10) to obtain

2 o 2(2m2+1)
- m

(2m +1) lazms1] < |bzmg1| + bms1] - [@m] + |@2m]

1 m? —m—2 1 1 m—1
< 2 2) 4~ S (2=,
< g (2 T ) + ozl + o (2= )
If m > 2 then
2m—|—1 m2 m — —1
@m 4D lazm] < ——3 - |p1|2+*|p1||<P1 2

2m+1 m-— ? m2 m—2
= - pil) = sy Il
m2 om? m(m—1) m3(m —
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Therefore |ag,+1] < #
For the last part of the theorem, set a,,x+1 = 0 for 2 < k < n. Therefore, the equation (2.7)
reduces to

rm = (nm + 1)anm+1 — bum+1- (2.14)

Once again, under the assumption a;,mpr1 = 0; (2 < k < n) we note that the early coefficients in
equations (2.2) and (2.3) vanish and we are left with byymi1 = ~—¢@my. Therefore

1
mn + 1
1

= mn+ 1 (nin‘PmM + ‘Pmn|>
1 1 1 1
= mn+1[mn <m'“’n')+m'9""]
S R A
~ mn+1\m2n m m2n’

Remark 2.2. For odd (m = 2) bi-close-to-convex functions, the above Theorem 1.1 yields |as| <
v/1/6 and |as| < 1/4 which are far better bounds than |az| < 1 and |as| < 1 obtained by Pom-
merenke [10] for odd close-to-convex functions. This is also the case for the coefficients of m-fold
symmteric (m > 3) bi-close-to-convex functions given in Theorem 1.1 versus those obtained by Pom-
merenke [10] for the m-fold symmetric close-to-convex functions. Our Theorem 1.1 also advances
the bounds obtained by the authors in ( [4], Theorem 2.2).

lanms1] < (|bmn+1] + |@mnl)

Remark 2.3. Srivastava et al [12, Theorem 3] considered the class of m-fold symmetric bi-univalent
functions %/ f(z™) for which Re{f’(z)} > 8;0 < § < 1. This is a subclass of m-fold symmetric
bi-close-to-convex functions. For m > 2 the bounds presented by our Theorem 1.1 for |a,,+1| and
|a2m+1]| are far better than those given in [12, Theorem 3].
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