Advances on the coefficient bounds for m-fold symmetric bi-close-to-convex functions ${ }^{\dagger}$

Jay M. Jahangiri ${ }^{1}$ and Samaneh G. Hamidi ${ }^{2, *}$
${ }^{1}$ Department of Mathematical Sciences, Kent State University, Burton, Ohio 44021-9500, U.S.A.
${ }^{2}$ Department of Mathematics, Brigham Young University, Provo, Utah 84604, U.S.A.
* Corresponding Author
E-mail: jjahangi@kent.edu ${ }^{1}$, s.hamidi@mathematics.byu.edu ${ }^{2}$

This paper in parts was presented at the AMS/MAA 2015 Joint Mathematics Meeting in San Antonio, Texas.

Abstract

In 1955, Waadeland considered the class of m-fold symmetric starlike functions of the form $f_{m}(z)=z+\sum_{n=1}^{\infty} a_{m n+1} z^{m n+1} ; m \geq 1 ;|z|<1$ and obtained the sharp coefficient bounds $\left|a_{m n+1}\right| \leq[(2 / m+n-1)!] /[(n!)(2 / m-1)!]$. Pommerenke in 1962, proved the same coefficient bounds for m -fold symmetric close-to-convex functions. Nine years later, Keogh and Miller confirmed the same bounds for the class of m-fold symmetric Bazilevic functions. Here we will show that these bounds can be improved even further for the m-fold symmetric bi-close-toconvex functions. Moreover, our results improve those corresponding coefficient bounds given by Srivastava et al that appeared in $7(2)(2014)$ issue of this journal. A function is said to be bi-close-to-convex in a simply connected domain if both the function and its inverse map are close-to-convex there.

2010 Mathematics Subject Classification. 30C45. 30C50
Keywords. Faber polynomial expansion, m-fold-symmetric, bi-close-to-convex functions.

1 Introduction

Let \mathcal{K} be the class of all functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ analytic in the open unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ that satisfy $f^{\prime}(z) \neq 0$ and

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \frac{\partial}{\partial \theta} \arg \left[e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right] d \theta>-\pi ; \theta_{1}<\theta_{2}, 0 \leq r<1 . \tag{1.1}
\end{equation*}
$$

The class \mathcal{K} is the class of close-to-convex functions. It was proved by Kaplan [7] that a function f of the form (1.1) belongs to \mathcal{K} if and only if there exists a function $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ starlike in $\mathbb{D}\left(\right.$ that is, $\operatorname{Re}\left[z g^{\prime}(z) / g(z)\right]>0$ in $\left.\mathbb{D}\right)$ such that $\operatorname{Re}\left(z f^{\prime} / g\right)>0$ in \mathbb{D}. In 1955, Waadeland [14] considered the class of m -fold symmetric starlike functions of the form

$$
g_{m}(z)=z+\sum_{n=1}^{\infty} b_{m n+1} z^{m n+1} ; m \geq 1
$$

and obtained the sharp coefficient bounds

$$
\left|b_{m n+1}\right| \leq\binom{ 2 / m+n-1}{n} \sim \frac{1}{\Gamma(2 / m)} n^{2 / m-1}
$$

Pommerenke [10] in 1962, proved the same coefficient bounds for m-fold symmetric close-toconvex functions $f_{m}(z)=z+\sum_{n=1}^{\infty} a_{m n+1} z^{m n+1} ; m \geq 1$. Nine years later, Keogh and Miller [8] confirmed the same bounds for the class of m -fold symmetric Bazilevic functions. Here we will show that these bounds can be improved even further for the m -fold symmetric bi-close-to-convex functions. Moreover, the coefficient bounds presented in this paper for $\left|a_{m+1}\right|,\left|a_{2 m+1}\right|$ and $m>1$ also improve those corresponding coefficient bounds given by Srivastava et al [12]. A function is said to be bi-close-to-convex in a simply connected domain if both the function and its inverse map are close-to-convex there. The class of bi-univalent functions was first introduced and studied by Lewin [9] and has gained momentum in recent years mainly due to the pioneer work of Srivastava et al [11]. Because the bi-univalency requirement makes the behavior of the coefficients of bi-univalent functions unpredictable, no general coefficient bounds for subclasses of bi-univalent functions was known up until the publication of article [6] by Jahangiri and Hamidi. The unpredictability of m-fold symmetric bi-starlike functions was first studied by the authors in [4] followed by the publication of the articles [12] and [13] by Srivastava et al. Here we further improve the bounds given in [4] to include the larger class of m -fold symmetric bi-close-to-convex functions. We begin with the statement of the following

Theorem 1.1. For $m \geq 2$ if $f_{m}(z)=z+\sum_{n=1}^{\infty} a_{m n+1} z^{m n+1}$ is m-fold symmetric bi-close-to-convex in \mathbb{D}, then
(i). $\left|a_{m+1}\right| \leq \frac{1}{m} \sqrt{\frac{2}{m+1}}$,
(ii). $\left|a_{2 m+1}\right| \leq \frac{1}{m^{2}}$,
(iii). $\left|a_{m n+1}\right| \leq \frac{2}{m^{2} n}, \quad$ if $\quad a_{m k+1}=0 ;(2 \leq k<n)$.

The following example justifies the existence of functions satisfying the bounds given in Theorem 1.1.

Example 1.2. Let $f(z)=z+\frac{2}{m^{2} n} z^{m n+1} ; m \geq 2, n \geq 2, z \in \mathbb{D}$. Then for the starlike function $g(z)=z-\frac{2}{m^{2} n} z^{m n+1} ; m \geq 2, n \xrightarrow[2]{m^{2} n}, z \in \mathbb{D}$ we have

$$
\frac{z f^{\prime}(z)}{g(z)}=\frac{1+\frac{2(m n+1)}{m^{2} n} z^{m n}}{1-\frac{2}{m^{2} n} z^{m n}}=1+\sum_{k=1}^{\infty} \frac{2(m n+2)}{\left(m^{2} n\right)^{k}} z^{m k}=1+\sum_{k=1}^{\infty} A_{k} z^{m k}
$$

We note that A_{k} is a convex null sequence since $\lim _{k \rightarrow \infty} A_{k}=0,1-A_{1} \geq 0$ and $A_{k}-A_{k+1} \geq 0$. Therefore, $\operatorname{Re}\left(z f^{\prime} / g\right)>0$.

On the other hand, for $F(w)=f^{-1}(w)=w-\frac{2}{m^{2} n} w^{m n+1} ; m \geq 2, n \geq 2, w \in \mathbb{D}$ consider the starlike function $G(w)=w+\frac{2}{m^{2} n} w^{m n+1} ; m \geq 2, n \geq 2, w \in \mathbb{D}$. Then we have

$$
\frac{w F^{\prime}(w)}{G(w)}=\frac{1-\frac{2(m n+1)}{m^{2} n} w^{m n}}{1+\frac{2}{m^{2} n} w^{m n}}=1+\sum_{k=1}^{\infty}(-1)^{k} \frac{2(m n+2)}{\left(m^{2} n\right)^{k}} w^{m k}=1+\sum_{k=1}^{\infty}(-1)^{k} A_{k} w^{m k}
$$

Once again, since A_{k} is a convex null sequence, $\operatorname{Re}\left(w F^{\prime} / G\right)>0$.

2 Proofs

In order to prove our theorem we shall need the following well-known lemma.
Lemma 2.1. (See Duren [3] or Jahangiri [5])
For the positive real part functions $P_{1}(z)=1+\Sigma_{n=1}^{\infty} p_{n} z^{n}$ and $P_{m}(z)=\sqrt[m]{P_{1}\left(z^{m}\right)}$ where $P_{m}(z)=1+\Sigma_{n=1}^{\infty} p_{m n} z^{m n}, z \in \mathbb{D}, m \in \mathbb{N}$ we have
(i). $\left|p_{n}\right| \leq 2$,
(ii). $\left|p_{2}+\lambda p_{1}^{2}\right| \leq 2+\lambda\left|p_{1}\right|^{2} \quad$ if $\quad \lambda \geq-1 / 2$,
(iii). $p_{m}=\frac{1}{m} p_{1}$,
(iv). $p_{2 m}=\frac{1}{m}\left[p_{2}-\frac{m-1}{2 m} p_{1}^{2}\right]$,
(v). $p_{m n}=\frac{1}{m} p_{n}$; if $\quad p_{m k}=0 ;(2 \leq k<n)$.

Proof of Theorem 1.1. If $F=f^{-1}$ is the inverse of a function f univalent in \mathbb{D}, then F has a Maclaurin series expansion in some disk about the origin (e.g. see [3] or [9]). According to Airault [1] or Airault and Ren [2, p. 349], the function $F=f^{-1}$, the inverse map of the univalent function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ has the Faber polynomial expansion

$$
F(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \cdots, a_{n}\right) w^{n} ; w \in \mathbb{D}
$$

where K_{n-1}^{-n} is a homogeneous polynomial in the variables $a_{2}, a_{3}, \cdots, a_{n}$.
The first few terms of the coefficients K_{n-1}^{-n} are $K_{1}^{-2}=-2 a_{2}, K_{2}^{-3}=+3\left(2 a_{2}^{2}-a_{3}\right), K_{3}^{-4}=$ $-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)$ and $K_{4}^{-5}=+5\left(14 a_{2}^{2}-21 a_{2}^{2} a_{3}+6 a_{2} a_{4}+3 a_{3}^{2}-a_{5}\right)$.

In general, for $n \geq 1$ and for real values of κ, these coefficients are calculated according to

$$
K_{n-1}^{\kappa}=\kappa a_{n}+\frac{\kappa(\kappa-1)}{2} D_{n-1}^{2}+\frac{\kappa!}{(\kappa-3)!3!} D_{n-1}^{3}+\cdots+\frac{\kappa!}{(\kappa-n+1)!(n-1)!} D_{n-1}^{n-1},
$$

where $D_{n-1}^{\kappa}=D_{n-1}^{\kappa}\left(a_{2}, a_{3}, \cdots, a_{n}\right)$ are homogeneous polynomials explicated in

$$
D_{n-1}^{\kappa}\left(a_{2}, \cdots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{\kappa!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n-1}}}{\mu_{1}!\ldots \mu_{n-1}!} \quad \text { for } \quad \kappa \leq n-1
$$

and the sum is taken over all nonnegative integers $\mu_{1}, \ldots, \mu_{n-1}$ satisfying

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}=\kappa \\
\mu_{1}+2 \mu_{2}+\cdots+(n-1) \mu_{n-1}=n-1
\end{array}\right.
$$

Evidently $D_{n}^{n}\left(a_{2}, a_{3}, \ldots, a_{n}\right)=a_{2}^{n}$.

Therefore, the m-fold symmetric function $f_{m}(z)=\sqrt[m]{f_{1}\left(z^{m}\right)}$ has the Faber polynomial expansion

$$
\begin{align*}
f_{m}(z) & =\sqrt[m]{f\left(z^{m}\right)}=z+\sum_{n=1}^{\infty} K_{n}^{\frac{1}{m}}\left(a_{2}, a_{3}, \cdots, a_{n+1}\right) z^{m n+1} \\
& =z+a_{m+1} z^{m+1}+a_{2 m+1} z^{2 m+1}+\ldots \tag{2.1}
\end{align*}
$$

According to Kaplan ([7], Theorem 2), for the m-fold symmetric close-to-convex function f_{m}, the corresponding starlike function is also m -fold symmetric. So there exists an m -fold symmetric starlike function $g_{m}(z)=z+b_{m+1} z^{m+1}+b_{2 m+1} z^{2 m+1}+\ldots$ so that

$$
\operatorname{Re}\left(\frac{z f_{m}^{\prime}(z)}{g_{m}(z)}\right)>0 ; z \in \mathbb{D}
$$

By the same token, there exists a positive real part function $\varphi_{m}(z)=1+\sum_{n=1}^{\infty} \varphi_{m n} z^{m n}$ so that

$$
\begin{equation*}
\frac{z f_{m}^{\prime}(z)}{g_{m}(z)}=\varphi_{m}(z) ; z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

On the other hand, the Faber polynomial expansion for $z f_{m}^{\prime} / g_{m}$ would be

$$
\begin{align*}
\frac{z f_{m}^{\prime}(z)}{g_{m}(z)}= & 1+\sum_{n=1}^{\infty}\left\{\left((n m+1) a_{n m+1}-b_{n m+1}\right)\right. \tag{2.3}\\
& \left.+\sum_{\ell=1}^{n-1} K_{\ell}^{-1}\left(b_{m+1}, b_{2 m+1}, \cdots, b_{\ell m+1}\right)\left[((n-\ell) m+1) a_{(n-\ell) m+1}-b_{(n-\ell) m+1}\right]\right\} z^{m n}
\end{align*}
$$

For the inverse map $F_{m}=f_{m}^{-1}$, the Faber polynomial expansion is

$$
\begin{align*}
F_{m}(w) & =w+\sum_{n=1}^{\infty} A_{m n+1} w^{m n+1} \\
& =w+\sum_{n=1}^{\infty} \frac{1}{m n+1} K_{n}^{-(m n+1)}\left(a_{m+1}, a_{2 m+1}, \ldots, a_{m n+1}\right) w^{m n+1} \tag{2.4}
\end{align*}
$$

The close-to-convexity of the inverse function F_{m} implies the existence of an m-fold symmetric function $G_{m}(w)=w+\sum_{n=1}^{\infty} B_{m n+1} w^{m n+1}$ starlike in \mathbb{D} so that $\operatorname{Re}\left(w F_{m}^{\prime}(w) / G_{m}(w)\right)>0$ in \mathbb{D}. So, there exists a positive real part function $\Psi_{m}(w)=1+\sum_{n=1}^{\infty} \psi_{m n} w^{m n}$ in \mathbb{D} representing

$$
\begin{equation*}
\frac{w F_{m}^{\prime}(w)}{G_{m}(w)}=1+\psi_{m} w^{m}+\psi_{2 m} w^{2 m}+\cdots ; \quad w \in \mathbb{D} \tag{2.5}
\end{equation*}
$$

The Faber polynomial expansion for $w F_{m}^{\prime}(w) / G(w)$ is given by

$$
\begin{equation*}
\frac{w F_{m}^{\prime}(w)}{G_{m}(w)}=1+\sum_{n=1}^{\infty}\left\{\left((n m+1) A_{n m+1}-B_{n m+1}\right)\right. \tag{2.6}
\end{equation*}
$$

$$
\left.+\sum_{\ell=1}^{n-1} K_{\ell}^{-1}\left(B_{m+1}, B_{2 m+1}, \cdots, B_{\ell m+1}\right)\left[((n-\ell) m+1) A_{(n-\ell) m+1}-B_{(n-\ell) m+1}\right]\right\} w^{m n}
$$

Comparing the corresponding coefficients of (2.2), (2.3), (2.5) and (2.6), we obtain

$$
\begin{align*}
\varphi_{m n}=((n m & \left.+1) a_{n m+1}-b_{n m+1}\right) \tag{2.7}\\
& +\sum_{\ell=1}^{n-1} K_{\ell}^{-1}\left(b_{m+1}, b_{2 m+1}, \cdots, b_{\ell m+1}\right)\left[((n-\ell) m+1) a_{(n-\ell) m+1}-b_{(n-\ell) m+1}\right]
\end{align*}
$$

and

$$
\begin{align*}
\psi_{m n}=((n m & \left.+1) A_{n m+1}-B_{n m+1}\right) \tag{2.8}\\
& +\sum_{\ell=1}^{n-1} K_{\ell}^{-1}\left(B_{m+1}, B_{2 m+1}, \cdots, B_{\ell m+1}\right)\left[((n-\ell) m+1) A_{(n-\ell) m+1}-B_{(n-\ell) m+1}\right] .
\end{align*}
$$

Letting $n=1$ and $n=2$, the above two equations (2.7) and (2.8) yield

$$
A_{m+1}=-a_{m+1}, \quad A_{2 m+1}=(m+1) a_{m+1}^{2}-a_{2 m+1}
$$

and consequently

$$
\begin{gather*}
(m+1) a_{m+1}-b_{m+1}=\varphi_{m} \tag{2.9}\\
(2 m+1) a_{2 m+1}-b_{2 m+1}-b_{m+1}\left[(m+1) a_{m+1}-b_{m+1}\right]=\varphi_{2 m} \tag{2.10}\\
-(m+1) a_{m+1}-B_{m+1}=\psi_{m} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
(2 m+1)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]-B_{2 m+1}+B_{m+1}\left[(m+1) a_{m+1}+B_{m+1}\right]=\psi_{2 m} \tag{2.12}
\end{equation*}
$$

Substituting (2.9) in (2.10) and (2.11) in (2.12) and then adding them we obtain

$$
\begin{equation*}
(m+1)(2 m+1) a_{m+1}^{2}-b_{2 m+1}-B_{2 m+1}-\left(b_{m+1}\right)\left(\varphi_{m}\right)-\left(B_{m+1}\right)\left(\psi_{m}\right)=\varphi_{2 m}+\psi_{2 m} \tag{2.13}
\end{equation*}
$$

On the other hand, for the starlike function $g_{m}(z)=z+b_{m+1} z^{m+1}+b_{2 m+1} z^{2 m+1}+\ldots$, we set $\frac{z g_{m}^{\prime}(z)}{g_{m}(z)}=P_{m}(z)=1+\Sigma_{n=1}^{\infty} p_{m n} z^{m n}$ where $\operatorname{Re} P_{m}(z)>0$ in \mathbb{D}. Similarly, for the starlike function $G_{m}(w)=w+B_{m+1} w^{m+1}+B_{2 m+1} w^{2 m+1}+\ldots$, we set $\frac{w G_{m}^{\prime}(w)}{G_{m}(w)}=Q_{m}(w)=1+\sum_{n=1}^{\infty} q_{m n} w^{m n}$ where $\operatorname{Re} Q_{m}(w)>0$ in \mathbb{D}. Comparing the corresponding coefficients we obtain

$$
b_{m+1}=\frac{1}{m} p_{m}, \quad b_{2 m+1}=\frac{1}{2 m}\left[p_{2 m}+\frac{1}{m} p_{m}^{2}\right]
$$

and

$$
B_{m+1}=\frac{1}{m} q_{m}, \quad B_{2 m+1}=\frac{1}{2 m}\left[q_{2 m}+\frac{1}{m} q_{m}^{2}\right] .
$$

An application of Lemma 2.1 yields

$$
b_{m+1}=\frac{1}{m^{2}} p_{1}, \quad b_{2 m+1}=\frac{1}{2 m^{2}}\left[p_{2}-\frac{m^{2}-m-2}{2 m^{2}} p_{1}^{2}\right]
$$

and

$$
B_{m+1}=\frac{1}{m^{2}} q_{1}, \quad B_{2 m+1}=\frac{1}{2 m^{2}}\left[q_{2}-\frac{m^{2}-m-2}{2 m^{2}} q_{1}^{2}\right] .
$$

Now we are ready to prove the bound for $\mid a_{m+1 \mid}$. Solving (2.13) for $(m+1)(2 m+1) a_{m+1}^{2}$ and taking the absolute values in conjunction with an application of the inequalities given in the above Lemma 2.1 we obtain

$$
\begin{aligned}
(m+1)(2 m+1)\left|a_{m+1}\right|^{2} \leq & \left|b_{2 m+1}\right|+\left|B_{2 m+1}\right|+\left|b_{m+1}\right| \cdot\left|\varphi_{m}\right|+\left|B_{m+1}\right| \cdot\left|\psi_{m}\right|+\left|\varphi_{2 m}\right|+\left|\psi_{2 m}\right| \\
\leq & \frac{1}{2 m^{2}}\left|p_{2}-\frac{m^{2}-m-2}{2 m^{2}} p_{1}^{2}\right|+\frac{1}{m^{3}}\left|p_{1}\right|\left|\varphi_{1}\right|+\frac{1}{m}\left|\varphi_{2}-\frac{m-1}{2 m} \varphi_{1}^{2}\right| \\
& +\frac{1}{2 m^{2}}\left|q_{2}-\frac{m^{2}-m-2}{2 m^{2}} q_{1}^{2}\right|+\frac{1}{m^{3}}\left|q_{1}\right|\left|\psi_{1}\right|+\frac{1}{m}\left|\psi_{2}-\frac{m-1}{2 m} \psi_{1}^{2}\right| \\
\leq & \frac{1}{2 m^{2}}\left(2-\frac{m^{2}-m-2}{2 m^{2}}\left|p_{1}\right|^{2}\right)+\frac{1}{m^{3}}\left|p_{1}\right|\left|\varphi_{1}\right|+\frac{1}{m}\left(2-\frac{m-1}{2 m}\left|\varphi_{1}\right|^{2}\right) \\
& +\frac{1}{2 m^{2}}\left(2-\frac{m^{2}-m-2}{2 m^{2}}\left|q_{1}\right|^{2}\right)+\frac{1}{m^{3}}\left|q_{1}\right|\left|\psi_{1}\right|+\frac{1}{m}\left(2-\frac{m-1}{2 m}\left|\psi_{1}\right|^{2}\right) \\
\leq & \frac{2(2 m+1)}{m^{2}}-\frac{m^{2}-m-2}{4 m^{4}}\left|p_{1}\right|^{2}+\frac{1}{m^{3}}\left|p_{1}\right|\left|\varphi_{1}\right|-\frac{m-1}{2 m^{2}}\left|\varphi_{1}\right|^{2} \\
& -\frac{m^{2}-m-2}{4 m^{4}}\left|q_{1}\right|^{2}+\frac{1}{m^{3}}\left|q_{1}\right|\left|\psi_{1}\right|-\frac{m-1}{2 m^{2}}\left|\psi_{1}\right|^{2} \\
= & \frac{2(2 m+1)}{m^{2}}-\frac{m-1}{2 m^{2}}\left(\left|\varphi_{1}\right|-\frac{1}{m(m-1)}\left|p_{1}\right|\right)^{2}-\frac{m^{2}-m-2}{2 m^{3}(m-1)}\left|p_{1}\right|^{2} \\
& -\frac{m-1}{2 m^{2}}\left(\left|\psi_{1}\right|-\frac{1}{m(m-1)}\left|q_{1}\right|\right)^{2}-\frac{m^{2}-m-2}{2 m^{3}(m-1)}\left|q_{1}\right|^{2} .
\end{aligned}
$$

For $m \geq 2$ it follws that $(m+1)(2 m+1)\left|a_{m+1}\right|^{2} \leq \frac{2(2 m+1)}{m^{2}}$ or $\left|a_{m+1}\right| \leq \frac{1}{m} \sqrt{\frac{2}{m+1}}$.
For the second part of the theorem, we substitute equation (2.9) in (2.10) to obtain

$$
\begin{aligned}
(2 m+1)\left|a_{2 m+1}\right| & \leq\left|b_{2 m+1}\right|+\left|b_{m+1}\right| \cdot\left|\varphi_{m}\right|+\left|\varphi_{2 m}\right| \\
& \leq \frac{1}{2 m^{2}}\left(2-\frac{m^{2}-m-2}{2 m^{2}}\left|p_{1}\right|^{2}\right)+\frac{1}{m^{3}}\left|p_{1}\right|\left|\varphi_{1}\right|+\frac{1}{m}\left(2-\frac{m-1}{2 m}\left|\varphi_{1}\right|^{2}\right) .
\end{aligned}
$$

If $m \geq 2$ then

$$
\begin{aligned}
(2 m+1)\left|a_{2 m+1}\right| & \leq \frac{2 m+1}{m^{2}}-\frac{m^{2}-m-2}{2 m^{2}}\left|p_{1}\right|^{2}+\frac{1}{m^{3}}\left|p_{1}\right|\left|\varphi_{1}\right|-\frac{m-1}{2 m^{2}}\left|\varphi_{1}\right|^{2} \\
& =\frac{2 m+1}{m^{2}}-\frac{m-1}{2 m^{2}}\left(\left|\varphi_{1}\right|-\frac{1}{m(m-1)}\left|p_{1}\right|\right)^{2}-\frac{m^{2}-m-2}{2 m^{3}(m-1)}\left|p_{1}\right|^{2} .
\end{aligned}
$$

Therefore $\left|a_{2 m+1}\right| \leq \frac{1}{m^{2}}$.
For the last part of the theorem, set $a_{m k+1}=0$ for $2 \leq k<n$. Therefore, the equation (2.7) reduces to

$$
\begin{equation*}
\varphi_{n m}=(n m+1) a_{n m+1}-b_{n m+1} . \tag{2.14}
\end{equation*}
$$

Once again, under the assumption $a_{m k+1}=0 ; \quad(2 \leq k<n)$ we note that the early coefficients in equations (2.2) and (2.3) vanish and we are left with $b_{n m+1}=\frac{1}{m n} \varphi_{m n}$. Therefore

$$
\begin{aligned}
\left|a_{n m+1}\right| & \leq \frac{1}{m n+1}\left(\left|b_{m n+1}\right|+\left|\varphi_{m n}\right|\right) \\
& =\frac{1}{m n+1}\left(\frac{1}{m n}\left|\varphi_{m n}\right|+\left|\varphi_{m n}\right|\right) \\
& =\frac{1}{m n+1}\left[\frac{1}{m n}\left(\frac{1}{m}\left|\varphi_{n}\right|\right)+\frac{1}{m}\left|\varphi_{n}\right|\right] \\
& \leq \frac{1}{m n+1}\left(\frac{2}{m^{2} n}+\frac{2}{m}\right)=\frac{2}{m^{2} n}
\end{aligned}
$$

Remark 2.2. For odd ($m=2$) bi-close-to-convex functions, the above Theorem 1.1 yields $\left|a_{3}\right| \leq$ $\sqrt{1 / 6}$ and $\left|a_{5}\right| \leq 1 / 4$ which are far better bounds than $\left|a_{3}\right| \leq 1$ and $\left|a_{5}\right| \leq 1$ obtained by Pommerenke [10] for odd close-to-convex functions. This is also the case for the coefficients of m -fold symmteric $(m \geq 3)$ bi-close-to-convex functions given in Theorem 1.1 versus those obtained by Pommerenke [10] for the m-fold symmetric close-to-convex functions. Our Theorem 1.1 also advances the bounds obtained by the authors in ([4], Theorem 2.2).

Remark 2.3. Srivastava et al [12, Theorem 3] considered the class of m-fold symmetric bi-univalent functions $\sqrt[m]{f\left(z^{m}\right)}$ for which $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\beta ; 0 \leq \beta<1$. This is a subclass of m -fold symmetric bi-close-to-convex functions. For $m \geq 2$ the bounds presented by our Theorem 1.1 for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ are far better than those given in [12, Theorem 3].

References

[1] H. Airault, Remarks on Faber polynomials, Int. Math. Forum 3 (2008), no. 9-12, 449-456. MR2386197
[2] H. Airault, and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), no. 5, 343-367. MR1914725
[3] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983. MR0708494
[4] S. G. Hamidi and J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25 (2014), no. 7, 1450064, 8 pp. MR3238087
[5] J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math. 17 (1986), no. 9, 1140-1144. MR0864155
[6] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Internat. J. Math. Math. Sci. 2013 (2013), Article ID 190560, 1-4. MR3100751
[7] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185 (1953). MR0054711
[8] F. R. Keogh and S. S. Miller, On the coefficients of Bazilevic functions, Proc. Amer. Math. Soc. 30 (1971), 492-496. MR0283191
[9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. MR0206255
[10] Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269. MR0147638
[11] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. MR2665593
[12] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7(2) (2014), 1-10. MR3313050
[13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of mfold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 (2015), 153-164. MR3333773
[14] H. Waadeland, Über k-fach symmetrische sternförmige schlichte Abbildungen des Einheitskreises, Math. Scand. 3 (1955), 150-154. MR0070719

