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Abstract

In 1955, Waadeland considered the class of m-fold symmetric starlike functions of the form
fm(z) = z +

∑∞
n=1 amn+1z

mn+1; m ≥ 1; |z| < 1 and obtained the sharp coefficient bounds
|amn+1| ≤ [(2/m + n− 1)!] / [(n!)(2/m− 1)!]. Pommerenke in 1962, proved the same coefficient
bounds for m-fold symmetric close-to-convex functions. Nine years later, Keogh and Miller
confirmed the same bounds for the class of m-fold symmetric Bazilevic functions. Here we will
show that these bounds can be improved even further for the m-fold symmetric bi-close-to-
convex functions. Moreover, our results improve those corresponding coefficient bounds given
by Srivastava et al that appeared in 7(2) (2014) issue of this journal. A function is said to be
bi-close-to-convex in a simply connected domain if both the function and its inverse map are
close-to-convex there.
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1 Introduction

Let K be the class of all functions of the form f(z) = z+
∑∞
n=2 anz

n analytic in the open unit disk
D := {z ∈ C : |z | < 1} that satisfy f ′(z) 6= 0 and∫ θ2

θ1

∂

∂θ
arg
[
eiθf ′(reiθ)

]
dθ > −π; θ1 < θ2, 0 ≤ r < 1. (1.1)

The class K is the class of close-to-convex functions. It was proved by Kaplan [7] that a function
f of the form (1.1) belongs to K if and only if there exists a function g(z) = z+

∑∞
n=2 bnz

n starlike
in D (that is, Re [zg′(z)/g(z)] > 0 in D) such that Re (zf ′/g) > 0 in D. In 1955, Waadeland [14]
considered the class of m-fold symmetric starlike functions of the form

gm(z) = z +

∞∑
n=1

bmn+1z
mn+1; m ≥ 1

and obtained the sharp coefficient bounds

|bmn+1| ≤
(

2/m+ n− 1

n

)
∼ 1

Γ(2/m)
n2/m−1.

Tbilisi Mathematical Journal 9(2) (2016), pp. 75–82.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 16 August 2015.
Accepted for publication: 10 September 2016.



76 J. M. Jahangiri, S. G. Hamidi

Pommerenke [10] in 1962, proved the same coefficient bounds for m-fold symmetric close-to-
convex functions fm(z) = z +

∑∞
n=1 amn+1z

mn+1; m ≥ 1. Nine years later, Keogh and Miller [8]
confirmed the same bounds for the class of m-fold symmetric Bazilevic functions. Here we will
show that these bounds can be improved even further for the m-fold symmetric bi-close-to-convex
functions. Moreover, the coefficient bounds presented in this paper for |am+1|, |a2m+1| and m > 1 also
improve those corresponding coefficient bounds given by Srivastava et al [12]. A function is said
to be bi-close-to-convex in a simply connected domain if both the function and its inverse map
are close-to-convex there. The class of bi-univalent functions was first introduced and studied by
Lewin [9] and has gained momentum in recent years mainly due to the pioneer work of Srivastava et
al [11]. Because the bi-univalency requirement makes the behavior of the coefficients of bi-univalent
functions unpredictable, no general coefficient bounds for subclasses of bi-univalent functions was
known up until the publication of article [6] by Jahangiri and Hamidi. The unpredictability of m-fold
symmetric bi-starlike functions was first studied by the authors in [4] followed by the publication
of the articles [12] and [13] by Srivastava et al. Here we further improve the bounds given in [4]
to include the larger class of m-fold symmetric bi-close-to-convex functions. We begin with the
statement of the following

Theorem 1.1. For m ≥ 2 if fm(z) = z+
∑∞
n=1 amn+1z

mn+1 is m-fold symmetric bi-close-to-convex
in D, then

(i). |am+1| ≤
1

m

√
2

m+ 1
,

(ii). |a2m+1| ≤
1

m2
,

(iii). |amn+1| ≤
2

m2n
, if amk+1 = 0; (2 ≤ k < n).

The following example justifies the existence of functions satisfying the bounds given in Theorem
1.1.

Example 1.2. Let f(z) = z + 2
m2nz

mn+1; m ≥ 2, n ≥ 2, z ∈ D. Then for the starlike function
g(z) = z − 2

m2nz
mn+1; m ≥ 2, n ≥ 2, z ∈ D we have

zf ′(z)

g(z)
=

1 + 2(mn+1)
m2n zmn

1− 2
m2nz

mn
= 1 +

∞∑
k=1

2(mn+ 2)

(m2n)k
zmk = 1 +

∞∑
k=1

Akz
mk.

We note that Ak is a convex null sequence since lim
k→∞

Ak = 0, 1 − A1 ≥ 0 and Ak − Ak+1 ≥ 0.

Therefore, Re(zf ′/g) > 0.
On the other hand, for F (w) = f−1(w) = w − 2

m2nw
mn+1; m ≥ 2, n ≥ 2, w ∈ D consider the

starlike function G(w) = w + 2
m2nw

mn+1; m ≥ 2, n ≥ 2, w ∈ D. Then we have

wF ′(w)

G(w)
=

1− 2(mn+1)
m2n wmn

1 + 2
m2nw

mn
= 1 +

∞∑
k=1

(−1)k
2(mn+ 2)

(m2n)k
wmk = 1 +

∞∑
k=1

(−1)kAkw
mk.

Once again, since Ak is a convex null sequence, Re(wF ′/G) > 0.
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2 Proofs

In order to prove our theorem we shall need the following well-known lemma.

Lemma 2.1. (See Duren [3] or Jahangiri [5])
For the positive real part functions P1(z) = 1 + Σ∞n=1pnz

n and Pm(z) = m
√
P1(zm) where

Pm(z) = 1 + Σ∞n=1pmnz
mn, z ∈ D, m ∈ N we have

(i). |pn| ≤ 2,

(ii).
∣∣p2 + λp21

∣∣ ≤ 2+λ |p1|2 if λ ≥ −1/2,

(iii). pm =
1

m
p1,

(iv). p2m =
1

m

[
p2 −

m− 1

2m
p21

]
,

(v). pmn =
1

m
pn; if pmk = 0; (2 ≤ k < n).

Proof of Theorem 1.1. If F = f−1 is the inverse of a function f univalent in D, then F has
a Maclaurin series expansion in some disk about the origin (e.g. see [3] or [9]). According to
Airault [1] or Airault and Ren [2, p. 349], the function F = f−1, the inverse map of the univalent
function f(z) = z +

∑∞
n=2 anz

n has the Faber polynomial expansion

F (w) = w +

∞∑
n=2

1

n
K−nn−1(a2, a3, · · · , an)wn; w ∈ D

where K−nn−1 is a homogeneous polynomial in the variables a2, a3, · · · , an.

The first few terms of the coefficients K−nn−1 are K−21 = −2a2, K−32 = +3(2a22 − a3), K−43 =

−4(5a32 − 5a2a3 + a4) and K−54 = +5(14a22 − 21a22a3 + 6a2a4 + 3a23 − a5).
In general, for n ≥ 1 and for real values of κ, these coefficients are calculated according to

Kκ
n−1 = κan +

κ(κ− 1)

2
D2
n−1 +

κ!

(κ− 3)!3!
D3
n−1 + · · ·+ κ!

(κ− n+ 1)!(n− 1)!
Dn−1
n−1,

where Dκ
n−1 = Dκ

n−1(a2, a3, · · · , an) are homogeneous polynomials explicated in

Dκ
n−1 (a2, · · · , an) =

∞∑
n=2

κ!(a2)µ1 . . . (an)µn−1

µ1! . . . µn−1!
for κ ≤ n− 1,

and the sum is taken over all nonnegative integers µ1, . . . , µn−1 satisfying{
µ1 + µ2 + · · ·+ µn−1 = κ,
µ1 + 2µ2 + · · ·+ (n− 1)µn−1 = n− 1.

Evidently Dn
n(a2, a3, . . . , an) = an2 .
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Therefore, the m-fold symmetric function fm(z) = m
√
f1(zm) has the Faber polynomial expan-

sion

fm(z) = m
√
f(zm) = z +

∞∑
n=1

K
1
m
n (a2, a3, · · · , an+1)zmn+1

= z + am+1z
m+1 + a2m+1z

2m+1 + . . . . (2.1)

According to Kaplan ( [7], Theorem 2), for the m-fold symmetric close-to-convex function fm,
the corresponding starlike function is also m-fold symmetric. So there exists an m-fold symmetric
starlike function gm(z) = z + bm+1z

m+1 + b2m+1z
2m+1 + . . . so that

Re

(
zf ′m(z)

gm(z)

)
> 0; z ∈ D.

By the same token, there exists a positive real part function ϕm(z) = 1+
∑∞
n=1 ϕmnz

mn so that

zf ′m(z)

gm(z)
= ϕm(z); z ∈ D. (2.2)

On the other hand, the Faber polynomial expansion for zf ′m/gm would be

zf ′m(z)

gm(z)
= 1 +

∞∑
n=1

{((nm+ 1)anm+1 − bnm+1) (2.3)

+

n−1∑
`=1

K−1` (bm+1, b2m+1, · · · , b`m+1)
[
((n− `)m+ 1)a(n−`)m+1 − b(n−`)m+1

]
}zmn.

For the inverse map Fm = f−1m , the Faber polynomial expansion is

Fm(w) = w +

∞∑
n=1

Amn+1w
mn+1

= w +

∞∑
n=1

1

mn+ 1
K−(mn+1)
n (am+1, a2m+1, . . . , amn+1)wmn+1. (2.4)

The close-to-convexity of the inverse function Fm implies the existence of an m-fold symmetric
function Gm(w) = w +

∑∞
n=1Bmn+1w

mn+1 starlike in D so that Re(wF ′m(w)/Gm(w)) > 0 in D.
So, there exists a positive real part function Ψm(w) = 1 +

∑∞
n=1 ψmnw

mn in D representing

wF ′m(w)

Gm(w)
= 1 + ψmw

m + ψ2mw
2m + · · · ; w ∈ D. (2.5)

The Faber polynomial expansion for wF ′m(w)/G(w) is given by

wF ′m(w)

Gm(w)
= 1 +

∞∑
n=1

{((nm+ 1)Anm+1 −Bnm+1) (2.6)
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+

n−1∑
`=1

K−1` (Bm+1, B2m+1, · · · , B`m+1)
[
((n− `)m+ 1)A(n−`)m+1 −B(n−`)m+1

]
} wmn.

Comparing the corresponding coefficients of (2.2), (2.3), (2.5) and (2.6), we obtain

ϕmn = ((nm+ 1)anm+1 − bnm+1) (2.7)

+

n−1∑
`=1

K−1` (bm+1, b2m+1, · · · , b`m+1)
[
((n− `)m+ 1)a(n−`)m+1 − b(n−`)m+1

]
,

and

ψmn = ((nm+ 1)Anm+1 −Bnm+1) (2.8)

+

n−1∑
`=1

K−1` (Bm+1, B2m+1, · · · , B`m+1)
[
((n− `)m+ 1)A(n−`)m+1 −B(n−`)m+1

]
.

Letting n = 1 and n = 2, the above two equations (2.7) and (2.8) yield

Am+1,= −am+1, A2m+1 = (m+ 1)a2m+1 − a2m+1,

and consequently
(m+ 1)am+1 − bm+1 = ϕm, (2.9)

(2m+ 1)a2m+1 − b2m+1 − bm+1[(m+ 1)am+1 − bm+1] = ϕ2m (2.10)

−(m+ 1)am+1 −Bm+1 = ψm, (2.11)

and

(2m+ 1)[(m+ 1)a2m+1 − a2m+1]−B2m+1 +Bm+1[(m+ 1)am+1 +Bm+1] = ψ2m. (2.12)

Substituting (2.9) in (2.10) and (2.11) in (2.12) and then adding them we obtain

(m+ 1)(2m+ 1)a2m+1 − b2m+1 −B2m+1 − (bm+1)(ϕm)− (Bm+1)(ψm) = ϕ2m + ψ2m. (2.13)

On the other hand, for the starlike function gm(z) = z + bm+1z
m+1 + b2m+1z

2m+1 + . . . , we set
zg′m(z)
gm(z) = Pm(z) = 1 + Σ∞n=1pmnz

mn where RePm(z) > 0 in D. Similarly, for the starlike function

Gm(w) = w + Bm+1w
m+1 + B2m+1w

2m+1 + . . . , we set
wG′m(w)
Gm(w) = Qm(w) = 1 + Σ∞n=1qmnw

mn

where ReQm(w) > 0 in D. Comparing the corresponding coefficients we obtain

bm+1 =
1

m
pm, b2m+1 =

1

2m

[
p2m +

1

m
p2m

]
and

Bm+1 =
1

m
qm, B2m+1 =

1

2m

[
q2m +

1

m
q2m

]
.
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An application of Lemma 2.1 yields

bm+1 =
1

m2
p1, b2m+1 =

1

2m2

[
p2 −

m2 −m− 2

2m2
p21

]
and

Bm+1 =
1

m2
q1, B2m+1 =

1

2m2

[
q2 −

m2 −m− 2

2m2
q21

]
.

Now we are ready to prove the bound for |am+1|. Solving (2.13) for (m + 1)(2m + 1)a2m+1 and
taking the absolute values in conjunction with an application of the inequalities given in the above
Lemma 2.1 we obtain

(m+ 1)(2m+ 1) |am+1|2 ≤ |b2m+1|+ |B2m+1|+ |bm+1| · |ϕm|+ |Bm+1| · |ψm|+ |ϕ2m|+ |ψ2m|

≤ 1

2m2

∣∣∣∣p2 − m2 −m− 2

2m2
p21

∣∣∣∣+
1

m3
|p1| |ϕ1|+

1

m

∣∣∣∣ϕ2 −
m− 1

2m
ϕ2
1

∣∣∣∣
+

1

2m2

∣∣∣∣q2 − m2 −m− 2

2m2
q21

∣∣∣∣+
1

m3
|q1| |ψ1|+

1

m

∣∣∣∣ψ2 −
m− 1

2m
ψ2
1

∣∣∣∣
≤ 1

2m2

(
2− m2 −m− 2

2m2
|p1|2

)
+

1

m3
|p1| |ϕ1|+

1

m

(
2− m− 1

2m
|ϕ1|2

)
+

1

2m2

(
2− m2 −m− 2

2m2
|q1|2

)
+

1

m3
|q1| |ψ1|+

1

m

(
2− m− 1

2m
|ψ1|2

)
≤ 2(2m+ 1)

m2
− m2 −m− 2

4m4
|p1|2 +

1

m3
|p1| |ϕ1| −

m− 1

2m2
|ϕ1|2

−m
2 −m− 2

4m4
|q1|2 +

1

m3
|q1| |ψ1| −

m− 1

2m2
|ψ1|2

=
2(2m+ 1)

m2
− m− 1

2m2

(
|ϕ1| −

1

m(m− 1)
|p1|
)2

− m2 −m− 2

2m3(m− 1)
|p1|2

−m− 1

2m2

(
|ψ1| −

1

m(m− 1)
|q1|
)2

− m2 −m− 2

2m3(m− 1)
|q1|2.

For m ≥ 2 it follws that (m+ 1)(2m+ 1) |am+1|2 ≤ 2(2m+1)
m2 or |am+1| ≤ 1

m

√
2

m+1 .

For the second part of the theorem, we substitute equation (2.9) in (2.10) to obtain

(2m+ 1) |a2m+1| ≤ |b2m+1|+ |bm+1| · |ϕm|+ |ϕ2m|

≤ 1

2m2

(
2− m2 −m− 2

2m2
|p1|2

)
+

1

m3
|p1| |ϕ1|+

1

m

(
2− m− 1

2m
|ϕ1|2

)
.

If m ≥ 2 then

(2m+ 1) |a2m+1| ≤
2m+ 1

m2
− m2 −m− 2

2m2
|p1|2 +

1

m3
|p1| |ϕ1| −

m− 1

2m2
|ϕ1|2

=
2m+ 1

m2
− m− 1

2m2

(
|ϕ1| −

1

m(m− 1)
|p1|
)2

− m2 −m− 2

2m3(m− 1)
|p1|2.
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Therefore |a2m+1| ≤ 1
m2 .

For the last part of the theorem, set amk+1 = 0 for 2 ≤ k < n. Therefore, the equation (2.7)
reduces to

ϕnm = (nm+ 1)anm+1 − bnm+1. (2.14)

Once again, under the assumption amk+1 = 0; (2 ≤ k < n) we note that the early coefficients in
equations (2.2) and (2.3) vanish and we are left with bnm+1 = 1

mnϕmn. Therefore

|anm+1| ≤
1

mn+ 1
(|bmn+1|+ |ϕmn|)

=
1

mn+ 1

(
1

mn
|ϕmn|+ |ϕmn|

)
=

1

mn+ 1

[
1

mn

(
1

m
|ϕn|

)
+

1

m
|ϕn|

]
≤ 1

mn+ 1

(
2

m2n
+

2

m

)
=

2

m2n
.

Remark 2.2. For odd (m = 2) bi-close-to-convex functions, the above Theorem 1.1 yields |a3| ≤√
1/6 and |a5| ≤ 1/4 which are far better bounds than |a3| ≤ 1 and |a5| ≤ 1 obtained by Pom-

merenke [10] for odd close-to-convex functions. This is also the case for the coefficients of m-fold
symmteric (m ≥ 3) bi-close-to-convex functions given in Theorem 1.1 versus those obtained by Pom-
merenke [10] for the m-fold symmetric close-to-convex functions. Our Theorem 1.1 also advances
the bounds obtained by the authors in ( [4], Theorem 2.2).

Remark 2.3. Srivastava et al [12, Theorem 3] considered the class of m-fold symmetric bi-univalent
functions m

√
f(zm) for which Re{f ′(z)} > β; 0 ≤ β < 1. This is a subclass of m-fold symmetric

bi-close-to-convex functions. For m ≥ 2 the bounds presented by our Theorem 1.1 for |am+1| and
|a2m+1| are far better than those given in [12, Theorem 3].
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