A note on closedness of algebraic sum of sets

Hubert Przybycień

Faculty of Mathematics and Computer Science, Adam Mickiewicz University Umultowska 87, 61-614 Poznań, Poland
E-mail: hubert@amu.edu.pl

Abstract

In this note we generalize the fact that in topological vector spaces the algebraic sum of closed set A and compact set B is closed. We also prove some conditions that are equivalent to reflexivity of Banach spaces.

2010 Mathematics Subject Classification. 46A22. 46N10
Keywords. Closed convex sets.

1 Inroduction

Let X be a Hausdorff topological vector space. By $\mathcal{C}(X)$ we denote the family of all closed subsets of X and by $\mathcal{K}(X)$ the family of all compact subset of X. For a nonempty subsets $A, B \subset X$ we define the algebraic sum (Minkowski sum) as follow

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

It is wll known that if A, B are closed sets then $A+B$ need not to be closed, but also it is known that if $A \in \mathcal{C}(X)$ and $B \in \mathcal{K}(X)$ then $A+B \in \mathcal{C}(X)$. In this note we prove the last result with some more abstract point of view.

2 Reflexive spaces

In this section we give some results which show the connections of closedness of algebraic sum of sets with reflexivity of Banach spaces.

Theorem 2.1. Let X be a Banach space and let B be the closed unit ball in X. Then X is a reflexive Banach space if and only if for every closed convex and bounded subset A of X the algebraic sum $A+B$ is closed.

Proof. (Necessity.) Assume that X is a reflexive Banach space, then every closed bounded and convex set is a weakly compact. Since algebraic sum of two weakly compact sets is again weakly compact we conclude that $A+B$ is a weakly compcact set, and therefore closed.
(Sufficiency.) Assume that X is not reflexive Banach space. Then by Theorem of James there exists a continuous linear functional $f: X \rightarrow \mathbb{R}$, such that $\|f\|=1$ and $f(x)<1$ for every $x \in B$.
Let

$$
A=\{x \in X: f(x) \geqslant 1,\|x\| \leqslant 2\}
$$

Then A is a closed bounded and convex set but $A+B$ is not closed.

Now using the theorem 1 we prove the following theorem
Theorem 2.2. Let X be a Banach space and denote by τ_{s} the norm topology. Then X is a reflexive Banach space if and only if there exists a linear Hausdorff topology τ on X such that $\tau \subset \tau_{s}$ and every closed convex and bounded subset of X is compact in the topology τ.

Proof. (Necessity.) If X is a reflexive Banach space then we can take τ to be equal the weak topology on X.
(Sufficiency.) Suppose that every closed convex and bounded subset of X is compact in the topology τ. Then for any closed convex and bounded set A the algebraic sum $A+B$, (where B is a closed unit ball in X) is compact in τ, and hence closed in τ, but since $\tau \subset \tau_{s}$ it is also closed in τ_{s}. Thus by theorem 1 the space X is reflexive. Q.E.D.

Definition 2.3. Let X be a topological vector space and $A, B \subset X$. We say that the sets A and B can be strictly separated by hyperplane if there exists a continuous functional $f: X \rightarrow \mathbb{R}$, and real numbers u, v such that

$$
f(x)<u<v<f(y) \text { for all } x \in A, y \in B .
$$

It is well known that in locally convex topological vector spaces a closed convex sets can be strictly separated from disjoint compact convex sets by a hyperplane.

The next theorem show the connections between a reflexivity and separation.
Theorem 2.4. Let X be a Banach space. Then X is reflexive Banach space if and only if every two disjoint closed bounded and convex sets can be strictly separated by a hyperplane.

Proof. (Necessity.) Let X be a reflexive Banach space and let A, B be a two nonempty disjoint closed convex and bounded sets. Then X with the weak topology τ_{w} is a locally convex space in which the sets A, B are compact and thus by a separation theorem A, B can be strictly separated by a hyperplane in $\left(X, \tau_{w}\right)$. Surely the sets can be also separated by a hyperlane in X since every weak continuous linear functional is also continuous in the norm topology.
(Sufficiency.) Assume that every two disjoint closed bounded and convex sets can be strictly separated by a hyperplane. Let A, B be two disjoint closed bounded and convex sets, we prove that in this case the set $A-B$ is closed. To prove this assume contrary that $A-B$ is not closed. Without loss of generality we may assume that $0 \in \overline{A-B} \backslash(A-B)$. By assumption there exists a continuous linear functional $f: X \rightarrow \mathbb{R}$ such that

$$
f(x)<u<v<f(y) \text { for all } x \in A, y \in B,
$$

for some $u, v \in \mathbb{R}$.
Therefore

$$
f(w)<u-v \text { for all } w \in A-B
$$

hence

$$
f(w) \leqslant u-v<0 \text { for all } w \in \overline{A-B}
$$

thus $0 \notin \overline{A-B}$ and we get a contradiction.
So we have just proved that for any two disjoint closed bounded and convex sets A, B, the set $A-B$ is closed.
Now let A, B be any two closed convex and bounded sets. Then there exists a vector $x \in X$ such that the sets $x+A$ and B are disjoint, and hence (by what we have just proved above) the set $(x+A)-B$ is closed. But then the set $[(x+A)-B]-x=A-B$ is closed too.
Finally from the equality $A+B=A-(-B)$ we obtain that the sum $A+B$ is closed for any two closed convex and bounded set therefore by theorem 1 the space X is a reflexive Banach space.
Q.E.D.

The last theorem in this section gives also a condition which is equivalent to reflexivity for Banach spaces.

Theorem 2.5. A Banach space X is reflexive if and only if every closed and convex set has an element with minimal norm.

Proof. (Necessity.) Assume that X is a reflexive Banach space and let A be a nonempty closed and convex set. Without loss of generality we may assume that $0 \notin A$. Let $a=\inf _{x \in A}\|x\|$ we'll show that there is an element $u \in A$ such that $\|u\|=a$. To prove this let

$$
B_{n}=\left\{x \in X:\|x\| \leqslant a+n^{-1}\right\}
$$

then the sets $C_{n}=B_{n} \cap A$ form a descending sequence of nonempty closed convex and bounded and hence weakly compact and convex sets. Thus

$$
C=\bigcap_{n} C_{n} \neq \varnothing
$$

and it is easy to observe that for $v \in C$ we have $\|v\|=a$.
(Sufficiency.) Assume that every closed and convex set has an element with minimal norm. Let $f: X \rightarrow \mathbb{R}$ be a continuous linear functional with $\|f\|=1$. Then the set $A=\{x \in X$: $f(x) \geqslant 1\}$ is closed and convex therefore by assumption it has an element x_{0} with minimal norm. It is easy to observe that $\left\|x_{0}\right\|=1$ and thus f attains its maximum on unit ball. Hence by theorem of James X is reflexive Banach space.
Q.E.D.

3 Closedness of algebraic sum

In this section we prove a theorem which is a generalization of the fact that in Hausdorff topological vector space the algebraic sum of closed set A and compact set B is closed.

Theorem 3.1. Let X, Y, Z be Hausdorff topological spaces and let $f: X \times Y \rightarrow Z$ be a function such that:
(a) f is continuous, and for every $y \in Y$ the function $f(\cdot, y)$ is an injection.
(b) there exists a continuous function $\varphi: Y \times Z \rightarrow X$ such that $f(\varphi(y, z), y)=z$ for all $(y, z) \in Y \times Z$.

Assume that $A \subset X \times Y$ is a closed set such that:
(c) the projection $\pi_{Y}(A)=\{y \in Y:(x, y) \in A\}$ of the set A is compact.

Then the image $f(A)=\{z \in Z: z=f(x, y)$ for some $(x, y) \in A\}$ of the set A is closed.
Proof. Let $z_{\alpha} \in f(A), \alpha \in \Lambda$ be an MS-sequence tending to z_{0}. Then there exists a MSsequences $x_{\alpha}, y_{\alpha}, \alpha \in \Lambda$ such that $\left(x_{\alpha}, y_{\alpha}\right) \in A$ and $z_{\alpha}=f\left(x_{\alpha}, y_{\alpha}\right)$. Therefore $x_{\alpha} \in$ $\pi_{X}(A), y_{\alpha} \in \pi_{Y}(A)$, but since $\pi_{Y}(A)$ is compact there exists a MS-subseqence $y_{\beta}, \beta \in \Sigma$ of the MS-sequence $y_{\alpha}, \alpha \in \Lambda$ such that $y_{\beta} \rightarrow y_{0} \in \pi_{Y}(A)$. Moreover by the continuity of φ we get $x_{\beta}=\varphi\left(y_{\beta}, z_{\beta}\right) \rightarrow \varphi\left(y_{0}, z_{0}\right)=x_{0} \in X$. But A is closed and $\left(x_{\beta}, y_{\beta}\right) \in A,\left(x_{\beta}, y_{\beta}\right) \rightarrow\left(x_{0}, y_{0}\right)$ thus $\left(x_{0}, y_{0}\right) \in A$. Therefore $f\left(x_{\beta}, y_{\beta}\right) \rightarrow f\left(x_{0}, y_{0}\right) \in f(A)$. But $f\left(x_{\beta}, y_{\beta}\right) \rightarrow z_{0}$ and thus $z_{0}=f\left(x_{0}, y_{0}\right) \in f(A)$ and the proof is complete.
Q.E.D.

Corollary 3.2. Let $(G,+)$ be a Hausdorff topological group and let $B, C \subset G$, be subsets such that B is closed and C is compact. Then the algebraic sum $B+C$ is closed.

Proof. To prove this it is enough to take in theorem 5: $X=Y=Z=G, A=B \times C$, $f(x, y)=x+y, \varphi(y, z)=z-y$.
Q.E.D.

References

[1] A. Alexiewicz, Functional Analysis (1969) (in Polish)
[2] J. Dieudonne, Sur la sparation des ensembles convexes, Math. Ann. 163 (1966)
[3] Robert C. James, Reflexivity and the sup of linear functionals, Israel J. Math 13 (1972), 3-4
[4] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973

