A note on closedness of algebraic sum of sets

Hubert Przybycień

Faculty of Mathematics and Computer Science, Adam Mickiewicz University Umultowska 87, 61-614 Poznań, Poland

E-mail: hubert@amu.edu.pl

Abstract

In this note we generalize the fact that in topological vector spaces the algebraic sum of closed set A and compact set B is closed. We also prove some conditions that are equivalent to reflexivity of Banach spaces.

2010 Mathematics Subject Classification. **46A22**. 46N10 Keywords. Closed convex sets.

1 Inroduction

Let X be a Hausdorff topological vector space. By C(X) we denote the family of all closed subsets of X and by K(X) the family of all compact subset of X. For a nonempty subsets $A, B \subset X$ we define the algebraic sum (Minkowski sum) as follow

$$A + B = \{a + b : a \in A, b \in B\}.$$

It is wll known that if A, B are closed sets then A + B need not to be closed, but also it is known that if $A \in \mathcal{C}(X)$ and $B \in \mathcal{K}(X)$ then $A + B \in \mathcal{C}(X)$. In this note we prove the last result with some more abstract point of view.

2 Reflexive spaces

In this section we give some results which show the connections of closedness of algebraic sum of sets with reflexivity of Banach spaces.

Theorem 2.1. Let X be a Banach space and let B be the closed unit ball in X. Then X is a reflexive Banach space if and only if for every closed convex and bounded subset A of X the algebraic sum A + B is closed.

Proof. (Necessity.) Assume that X is a reflexive Banach space, then every closed bounded and convex set is a weakly compact. Since algebraic sum of two weakly compact sets is again weakly compact we conclude that A + B is a weakly compact set, and therefore closed. (Sufficiency.) Assume that X is not reflexive Banach space. Then by Theorem of James there exists a continuous linear functional

 $f: X \to \mathbb{R}$, such that ||f|| = 1 and f(x) < 1 for every $x \in B$. Let

$$A = \{ x \in X : f(x) \geqslant 1, ||x|| \leqslant 2 \}$$

Then A is a closed bounded and convex set but A + B is not closed.

Q.E.D.

Tbilisi Mathematical Journal 9(2) (2016), pp. 71–74. Tbilisi Centre for Mathematical Sciences.

Received by the editors: 14 February 2016. Accepted for publication: 16 September 2016. Now using the theorem 1 we prove the following theorem

Theorem 2.2. Let X be a Banach space and denote by τ_s the norm topology. Then X is a reflexive Banach space if and only if there exists a linear Hausdorff topology τ on X such that $\tau \subset \tau_s$ and every closed convex and bounded subset of X is compact in the topology τ .

Proof. (Necessity.) If X is a reflexive Banach space then we can take τ to be equal the weak topology on X.

(Sufficiency.) Suppose that every closed convex and bounded subset of X is compact in the topology τ . Then for any closed convex and bounded set A the algebraic sum A+B, (where B is a closed unit ball in X) is compact in τ , and hence closed in τ , but since $\tau \subset \tau_s$ it is also closed in τ_s . Thus by theorem 1 the space X is reflexive.

Definition 2.3. Let X be a topological vector space and $A, B \subset X$. We say that the sets A and B can be strictly separated by hyperplane if there exists a continuous functional $f: X \to \mathbb{R}$, and real numbers u, v such that

$$f(x) < u < v < f(y)$$
 for all $x \in A, y \in B$.

It is well known that in locally convex topological vector spaces a closed convex sets can be strictly separated from disjoint compact convex sets by a hyperplane.

The next theorem show the connections between a reflexivity and separation.

Theorem 2.4. Let X be a Banach space. Then X is reflexive Banach space if and only if every two disjoint closed bounded and convex sets can be strictly separated by a hyperplane.

Proof. (Necessity.) Let X be a reflexive Banach space and let A, B be a two nonempty disjoint closed convex and bounded sets. Then X with the weak topology τ_w is a locally convex space in which the sets A, B are compact and thus by a separation theorem A, B can be strictly separated by a hyperplane in (X, τ_w) . Surely the sets can be also separated by a hyperlane in X since every weak continuous linear functional is also continuous in the norm topology.

(Sufficiency.) Assume that every two disjoint closed bounded and convex sets can be strictly separated by a hyperplane. Let A, B be two disjoint closed bounded and convex sets, we prove that in this case the set A-B is closed. To prove this assume contrary that A-B is not closed. Without loss of generality we may assume that $0 \in \overline{A-B} \setminus (A-B)$. By assumption there exists a continuous linear functional $f: X \to \mathbb{R}$ such that

$$f(x) < u < v < f(y)$$
 for all $x \in A, y \in B$,

for some $u, v \in \mathbb{R}$. Therefore

$$f(w) < u - v \text{ for all } w \in A - B,$$

hence

$$f(w) \leqslant u - v < 0 \text{ for all } w \in \overline{A - B},$$

thus $0 \notin \overline{A - B}$ and we get a contradiction.

space.

So we have just proved that for any two disjoint closed bounded and convex sets A, B, the set A - B is closed.

Now let A, B be any two closed convex and bounded sets. Then there exists a vector $x \in X$ such that the sets x + A and B are disjoint, and hence (by what we have just proved above) the set (x + A) - B is closed. But then the set [(x + A) - B] - x = A - B is closed too. Finally from the equality A + B = A - (-B) we obtain that the sum A + B is closed for any two closed convex and bounded set therefore by theorem 1 the space X is a reflexive Banach

The last theorem in this section gives also a condition which is equivalent to reflexivity for Banach spaces.

Theorem 2.5. A Banach space X is reflexive if and only if every closed and convex set has an element with minimal norm.

Proof. (Necessity.) Assume that X is a reflexive Banach space and let A be a nonempty closed and convex set. Without loss of generality we may assume that $0 \notin A$. Let $a = \inf_{x \in A} ||x||$ we'll show that there is an element $u \in A$ such that ||u|| = a. To prove this let

$$B_n = \{x \in X : ||x|| \le a + n^{-1}\}$$

then the sets $C_n = B_n \cap A$ form a descending sequence of nonempty closed convex and bounded and hence weakly compact and convex sets. Thus

$$C = \bigcap_{n} C_n \neq \emptyset$$

and it is easy to observe that for $v \in C$ we have ||v|| = a.

(Sufficiency.) Assume that every closed and convex set has an element with minimal norm. Let $f: X \to \mathbb{R}$ be a continuous linear functional with ||f|| = 1. Then the set $A = \{x \in X : f(x) \ge 1\}$ is closed and convex therefore by assumption it has an element x_0 with minimal norm. It is easy to observe that $||x_0|| = 1$ and thus f attains its maximum on unit ball. Hence by theorem of James X is reflexive Banach space.

3 Closedness of algebraic sum

In this section we prove a theorem which is a generalization of the fact that in Hausdorff topological vector space the algebraic sum of closed set A and compact set B is closed.

Theorem 3.1. Let X, Y, Z be Hausdorff topological spaces and let $f: X \times Y \to Z$ be a function such that:

- (a) f is continuous, and for every $y \in Y$ the function $f(\cdot, y)$ is an injection.
- (b) there exists a continuous function $\varphi: Y \times Z \to X$ such that $f(\varphi(y,z),y) = z$ for all $(y,z) \in Y \times Z$.

Assume that $A \subset X \times Y$ is a closed set such that:

(c) the projection $\pi_Y(A) = \{y \in Y : (x,y) \in A\}$ of the set A is compact.

Then the image $f(A) = \{z \in Z : z = f(x, y) \text{ for some } (x, y) \in A\}$ of the set A is closed.

Proof. Let $z_{\alpha} \in f(A), \alpha \in \Lambda$ be an MS-sequence tending to z_0 . Then there exists a MS-sequences $x_{\alpha}, y_{\alpha}, \alpha \in \Lambda$ such that $(x_{\alpha}, y_{\alpha}) \in A$ and $z_{\alpha} = f(x_{\alpha}, y_{\alpha})$. Therefore $x_{\alpha} \in \pi_X(A), y_{\alpha} \in \pi_Y(A)$, but since $\pi_Y(A)$ is compact there exists a MS-subsequence $y_{\beta}, \beta \in \Sigma$ of the MS-sequence $y_{\alpha}, \alpha \in \Lambda$ such that $y_{\beta} \to y_0 \in \pi_Y(A)$. Moreover by the continuity of φ we get $x_{\beta} = \varphi(y_{\beta}, z_{\beta}) \to \varphi(y_0, z_0) = x_0 \in X$. But A is closed and $(x_{\beta}, y_{\beta}) \in A$, $(x_{\beta}, y_{\beta}) \to (x_0, y_0)$ thus $(x_0, y_0) \in A$. Therefore $f(x_{\beta}, y_{\beta}) \to f(x_0, y_0) \in f(A)$. But $f(x_{\beta}, y_{\beta}) \to z_0$ and thus $z_0 = f(x_0, y_0) \in f(A)$ and the proof is complete.

Corollary 3.2. Let (G, +) be a Hausdorff topological group and let $B, C \subset G$, be subsets such that B is closed and C is compact. Then the algebraic sum B + C is closed.

Proof. To prove this it is enough to take in theorem $5: X = Y = Z = G, A = B \times C,$ $f(x,y) = x + y, \varphi(y,z) = z - y.$ Q.E.D.

References

- [1] A. Alexiewicz, Functional Analysis (1969) (in Polish)
- [2] J. Dieudonne, Sur la sparation des ensembles convexes, Math. Ann. 163 (1966)
- [3] Robert C. James, Reflexivity and the sup of linear functionals, Israel J. Math 13 (1972), 3-4
- [4] W. Rudin, Functional Analysis, McGraw-Hill Book Company, New York, 1973