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Abstract

The relationship between algebraic soliton metrics and self-similar solutions of geometric
evolution equations on Lie groups is investigated. After discussing the general relation-
ship between algebraic soliton metrics and self-similar solutions to geometric evolution
equations, we investigate the cross curvature flow and the second order renormalization
group flow on simply-connected, three-dimensional, unimodular Lie groups, providing
a complete classification of left invariant algebraic solitons that give rise to self-similar
solutions of the corresponding flows on such spaces.
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1 Introduction

A major theme in modern differential geometry and topology is the use of geometric evolution
equations to improve a certain geometric structure or quantity on a smooth manifold M.
Perhaps the most celebrated example of this is the Ricci flow as introduced by Richard
Hamilton in [18], where one views the Ricci flow equation

∂g

∂t
= −2Rc [g] ; g0 = g(0) (1.1)

as something akin to a heat equation for the evolution of the metric tensor g0 on the under-
lying manifold structure. Of particular interest in this situation is the evolution of geometric
quantities associated with solutions to (1.1) and the singularities that form (in either finite
or infinite time) for the flow. Using a rescaling of the flow, such singularities are typically
modeled with self-similar solutions and are referred to as Ricci soliton metrics. Ricci soliton
metrics are thusly solutions to (1.1) of the form g(t) = c(t)ϕ∗tg0, where ϕt is one-parameter
family of diffeomorphsims ofM and c is a positive scalar function, and they have been stud-
ied extensively since Hamilton’s introduction of the Ricci flow. We refer the reader to [5],
[7], [8], [19], and references therein for a further discussion of the role of Ricci solitons in the
study of the Ricci flow.

In addition to playing a role in the study of the Ricci flow on closed manifolds, Ricci
solitons have also played an important role in the study of preferred and/or distinguished
metrics on Lie groups. Namely, in [25], Lauret introduced Ricci solitons as a natural gen-
eralization of Einstein metrics for nilpotent Lie groups. More to the point, in [28] Milnor
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establishes that a nilpotent Lie group cannot carry a left invariant (Riemannian) Einstein
metric (i.e., a metric g satisfying Rc [g] = λg for some scalar λ). Whereas an Einstein metric
g is a solution of the Ricci flow (1.1) that evolves only by scaling, a Ricci soliton is suitably
interpreted as a geometric fixed point for the flow as a Ricci soliton is a metric that evolves
by scaling and diffeomorphism. Furthermore, a Ricci soliton g must satisfy the Ricci soliton
equation

βg + LgX = −2Rc [g] , (1.2)

where β is a scalar, X is a vector field on M, and LgX is the Lie derivative of the metric g
in the direction of the vector field X. When g is an Einstein metric, one can take the vector
field X to be a Killing field of g, while when g is a non-trivial Ricci soliton (i.e., a Ricci
soliton that is not an Einstein metric), the vector field X appearing in (1.2) will be unique
up to a Killing field of g. See [5] for full details.

With this generalization in mind, Lauret [25] establishes that Ricci soliton metrics on
nilpotent Lie groups can be found via algebraic methods alone. Namely, denoting the (1,1)-

Ricci operator by R̂c [g], Lauret notes that any left invariant metric g (with a corresponding

scalar β) such that R̂c [g]− βId is a derivation of the Lie algebra gives rise to a Ricci soliton
metric. Lauret refers to such metrics as algebraic Ricci solitons. Further, Lauret shows that
on simply-connected nilpotent Lie groups a Ricci soliton metric is also necessarily algebraic
and that Ricci soliton metrics on simply-connected nilpotent Lie groups are unique up to a
constant scalar multiple and an automorphism of the corresponding Lie algebra. As such,
one can argue that algebraic Ricci solitons are candidates for a “best metric” on a class of
Lie groups. See [25] for details.

After Lauret introduced algebraic Ricci solitons, they have been studied extensively on
Lie groups and homogeneous spaces by numerous authors. It is interesting to note that to
date, the only known examples of non-trivial algebraic Ricci solitons on non-compact Lie
groups occur on solvable Lie groups. This situation is identical to that of the case of Einstein
metrics. See [21], [22], [23], and [24] for further discussion.

In the current paper, our aim is twofold. We begin by showing that Lauret’s ideas
pertaining to algebraic solitons apply equally well to arbitrary (but subject to the appropriate
conditions) geometric evolution equations for left invariant Riemannian metrics on simply-
connected Lie groups. This builds off of the work of Glickenstein in [15] and Lauret in [25]. We
then apply these ideas to the cross curvature flow and the second order renormalized group
flow on simply-connected, three-dimensional, unimodular Lie groups, where we classify those
algebraic solitons that give rise to self-similar solutions of the respective flow. These results
can be compared to the results in [15], where Glickenstein investigates the Ricci flow and
cross curvature flow and corresponding soliton metrics on three-dimensional homogeneous
geometries using Riemannian groupoids, and [17], where Glickenstein and Wu investigate the
second order renormalized group flow on three-dimensional unimodular Lie groups using the
bracket flow and the evolution of the structure constants of three-dimensional Lie algebras.
For more on the use of the bracket flow and the evolution of structure constants of the Lie
algebra, see [16] and [24]. In particular, in [16] the authors investigate the Ricci flow on the
non-Abelian, three-dimensional, unimodular metric Lie algebras by studying the evolution
of the structure constants.
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The outline of the paper is as follows. In Section 2 we present a brief review of the cross
curvature flow on locally homogeneous three-dimensional manifolds (Section 2.1.1) and the
second order renormalization group flow (Section 2.1.2) on smooth Riemannian manifolds. In
Section 2.1.3, we introduce the appropriate conditions that must be satisfied by a geometric
evolution equation in order to tie algebraic solitons together with self-similar solutions of the
corresponding flow. We then follow this up with a brief discussion of some of the necessary
algebraic conditions that a simply-connected Lie group and its corresponding Lie algebra
must satisfy in order to be able to support an algebraic soliton for a given geometric evolution
equation.

We begin Section 3 by reviewing Milnor’s construction of the so-called Milnor frames on
simply-connected, three-dimensional, unimodular Lie groups equipped with a left invariant
Riemannian metric. This is followed by a review of the geometric expressions and tensors
associated with the cross curvature flow and the second order renormalized group flow as
they appear in a Milnor frame. We conclude with the classification of algebraic solitons that
give rise to self-similar solutions of the cross curvature flow and second order renormalized
group flow on simply-connected, three-dimensional, unimodular Lie groups in Section 3.2 -
Section 3.7.

2 Geometric preliminaries and notation

2.1 Geometric evolution equations on 3-manifolds

In this section we recall the definitions of the cross curvature flow (XCF) and the second order
renormalization group (RG-2) flow on a three-dimensional Riemannian manifold (M,g). For
general Riemannian manifolds, neither flow is well-posed and one is not able to guarantee
short-time existence of solutions. However, if one restricts their attention to left invariant
metrics on Lie groups (or more generally to homogenous spaces), then short-time existence
and uniqueness follows from the standard existence and uniqueness results of ordinary dif-
ferential equations. On a Lie group, for example, the selection of a frame at the identity is
tantamount to selecting global coordinate functions on the fiber of the bundle of positive-
definite symmetric (0,2)-tensors and the study of the geometric evolution equation in question
reduces to the evolution of the coefficient functions of the metric tensor with respect to the
selected frame. On a three-dimensional Lie group this results in a system of six coupled
ordinary differential equations, but we will see that like the situation for the Ricci flow on
three-dimensional homogeneous geometries, this can be reduced to a system of three ordinary
differential equations for both the XCF and RG-2 flow.

For a more detailed discussion of the cross curvature flow, we refer the readers to [6],
where the flow was introduced by Chow and Hamilton on three-dimensional manifolds with
strictly positive or strictly negative sectional curvature, and to [3] and [4], where the authors
study the XCF on three-dimensional homogeneous geometries. Additionally, in [1], Buckland
establishes the existence of solutions to the cross curvature flow on 3-manifolds equipped with
an initial Riemannian metric that has everywhere positive or everywhere negative sectional
curvature. For examples of the XCF on a square torus bundle over S1 and on S2-bundles
over S1, see [27], and for a program trying to utilize the XCF for the purpose of trying to to
show that the moduli space of negatively curved metrics on a closed hyperbolic 3-manifold
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is path-connected, see [9].
For a more detailed discussion of the RG-2 flow we refer the reader to [12], where the

authors focus on a geometric introduction to the RG-2 flow, and [13], where the authors study
the RG-2 flow on three-dimensional homogeneous spaces in a spirit similar to the analysis of
the Ricci flow on three-dimensional homogeneous spaces carried out by Isenberg and Jackson
in [20].

2.1.1 XCF

Before we introduce the positive and negative cross curvature flow (±XCF) on a locally
homogeneous three-dimensional manifold as defined in [3], a few remarks are in order. In [6],
Chow and Hamilton considered the XCF on three-dimensional Riemannian manifolds (M,g)
where the sectional curvatures of the initial metric g are strictly positive or strictly negative,
and the sign of the XCF was chosen depending on the sign of the sectional curvatures (±
XCF when the sign of the sectional curvatures of g are ∓). One does not expect to obtain
general existence results for the XCF, but as noted above, by restricting one’s attention to Lie
groups or (locally) homogeneous spaces, short-time existence of solutions is easily obtained
from standard ODE results (regardless of the signs of the sectional curvatures). Following
[3] and [6] we will now define the cross curvature tensor and the positive and negative XCF
on locally homogeneous manifolds.

The following construction/definition of the cross curvature tensor is taken from [6]. Let
(M,g) be a three-dimensional Riemannian manifold and let ei denote a local frame field on
M with corresponding dual co-frame field ωi, 1 ≤ i ≤ 3. Let the Ricci tensor of the metric
g = gijω

i ⊗ ωj be denoted by Rc [g] = Rc = Rijω
i ⊗ ωj , with the corresponding scalar

curvature denoted by S [g] = S. We let the Einstein tensor of the metric g be denoted by
E [g] = E = Rc − S

2g and define a (2, 0)-tensor P [g] = P by raising the indices on the
Einstein tensor E. The component functions of P with respect to a local frame are thusly

P ij = gikgjlRkl−
S

2
gij ,

where gij denote the component functions of g−1. Provided that
(
P ij
)

is invertible, we

denote
(
P ij
)−1

by (Vij) and then define the cross curvature tensor H [g] = H = Hijω
i ⊗ ωj

by the component functions

Hij =

(
detP ij

det gij

)
Vij . (2.1)

As observed in [3] and [27], the cross curvature tensor H takes a particularly simple
form in a local orthonormal frame e1, e2, e3 where the Ricci tensor Rc is diagonalized. For
any permutation (l,m, n) of (1, 2, 3), let Kl = K (em ∧ en) denote the principal sectional
curvature of the plane that is orthogonal to el. We thus have Rll = Km +Kn, and it follows
that the cross curvature tensor H is diagonalized with respect to the indicated frame and
the non-zero component functions of H are

Hll = KmKn, (l,m, n) a permutation of (1, 2, 3). (2.2)
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Note that (2.2) defines the cross curvature tensor when P [g] fails to be invertible. Addition-
ally, note that H obeys the following important homogeneity property for a scaling of the
metric tensor g:

H [cg] =
1

c
H [g] , c ∈ R>0. (2.3)

Following [3], we now define the XCF on locally homogeneous three-dimensional mani-
folds.

Definition 2.1 (Cross Curvature Flow). Let (M,g0) be a locally homogeneous three-
dimensional manifold. The positive cross curvature flow (+XCF) is defined by

∂g

∂t
= 2H [g] ; g(0) = g0,

and the negative cross curvature flow (-XCF) is defined by

∂g

∂t
= −2H [g] ; g(0) = g0.

Due to the original use of the cross curvature flow by Chow and Hamilton, there is not
a clear choice as to what should be the forward direction for the XCF when the signs of the
sectional curvature vary, and both directions of the flow on three-dimensional homogeneous
spaces are investigated in [2], [3], and [4] in a spirit similar to the analysis carried out by
Isenberg and Jackson for the Ricci flow on homogeneous three-dimensional geometries in
their seminal paper [20].

2.1.2 The RG-2 flow

The RG-2 flow is a second order approximation of the renormalization group flow that cor-
responds to a perturbative analyses of nonlinear sigma model quantum field theories from
a world sheet into (M,g), and unlike the XCF, which has currently only been defined and
investigated on three-dimensional Riemannian manifolds, the RG-2 flow has been studied in
arbitrary dimensions. For an introduction to the physics of the renormalization group flow,
we refer the reader to [10] and [11]. We will mostly follow the geometrical introduction to
the renormalization group flow as found in the work of Gimre, Guenther, and Isenberg in
[12] and [13].

The evolution of the metric tensor g = gijω
i ⊗ ωj under the nonlinear sigma quantum

field theories takes the form

∂g

∂t
= −αRc [g]− α2

2
Rm2 [g] +O

(
α3
)
, (2.4)

where α denotes a positive coupling constant and the tensor Rm2 [g] = Řijω
i ⊗ ωj involves

quadratic terms stemming from the full Riemannian curvature tensor of the metric tensor g.
The component functions of Rm2 [g] = Řijω

i ⊗ ωj are

Řij = RmiklmRmjpqrg
kpglqgmr,
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where Rm [g] = Rmijklω
i⊗ωj⊗ωk⊗ωl denotes the Riemannian curvature tensor of g. After

an appropriate rescaling of the parameter t, one finds that the second order approximation
of the renormalization group flow takes the form

∂g

∂t
= −2Rc [g]− α

2
Rm2 [g] . (2.5)

We will denote the tensor −2Rc [g] − α
2 Rm2 [g] by RG [g] and define the second order

renormalization group flow (the RG-2 flow) for a Riemannian metric on a smooth manifold
M as follows.

Definition 2.2 (RG-2 Flow). Let (M,g0) be a smooth Riemannian manifold. The sec-
ond order renormalization group (RG-2) flow is the geometric evolution equation for the
Riemannian metric g0 defined by

∂g

∂t
= RG [g] = −2Rc [g]− α

2
Rm2 [g] ; g(0) = g0. (2.6)

The two terms comprising the tensor RG [g] behave in the following manner under a
positive scaling of the metric tensor g:

Rc [cg] = Rc [g] and Rm2 [cg] =
1

c
Rm2 [g] , c ∈ R>0. (2.7)

Note that the first order approximation of the renormalization group flow is the Ricci flow.
In fact, in [12] and [13], the authors take this viewpoint and investigate the RG-2 flow
mathematically as a nonlinear deformation of the Ricci flow. In [13], the authors study
the RG-2 flow on three-dimensional homogenous geometries with an emphasis on how the
asymptotic behavior of the RG-2 flow depends on the parameter α and how this compares
with the asymptotic behavior of the Ricci flow, where they use the results of [20] as their
benchmark and guide.

The short-time existence and uniqueness problem for the RG-2 flow is unsettled for a
general Riemannian manifold. However, in [14], the authors establish the short-time existence
and uniqueness for the second order renormalization group flow initial value problem on
closed Riemannian manifolds (M,g0) in general dimensions in the case where the sectional
curvatures of the initial metric g0 satisfy 1 + αKP > 0 at all points p ∈ M and two-planes
P ⊂ TpM. As noted above, we remind the reader that the existence and uniqueness of
solutions to the RG-2 flow on Lie groups (or more generally homogeneous geometries) is
guaranteed as the flow reduces to a system of ordinary differential equations for the inner
product at a chosen basepoint.

2.1.3 Solitons

We now make several general observations concerning the XCF and the RG-2 flow and
the relationship between self-similar solutions of the flows and so-called solitons. For sim-
plicity, we will assume that (M,g) is a three-dimensional Riemannian manifold. We let
T : Sym2 (T ∗M)→ Sym2 (T ∗M) be a bundle map of the bundle of symmetric (0,2)-tensors
on M and consider a geometric evolution equation on M of the form

∂g

∂t
= T [g] ; g(0) = g0. (2.8)
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Observe that the Ricci flow, the RG-2 flow and the XCF are all of the indicated form.
Following [15], we take note of the following important properties that can be satisfied by
the bundle map T.

Definition 2.3 (Natural and Homogeneous). We say that T : Sym2 (T ∗M)→ Sym2 (T ∗M)
is

1. natural if for all diffeomorphisms ϕ :M→M and all Riemannian metrics g onM, T
satisfies T [ϕ∗g] = ϕ∗T [g], and

2. homogeneous of degree q if for any positive scaling cg of a Riemannian metric g, T
satisfies T [cg] = cqT [g].

Remark 2.4. Note that Rc, H and RG are all natural, while Rc is homogeneous of degree
zero and H is homogeneous of degree q = −1. RG fails to be homogeneous as it is comprised
of two homogeneous terms of different degrees (2.7). Further, note that the definition of
natural amounts to saying that the symmetry group of the evolution equation (2.8) contains
the full diffeomorphism group of M. In the case where (M,g) is a homogeneous space it
follows that T [g] is invariant under the group acting on M. In particular, if T is natural
and g is a left invariant metric on a Lie group, then T [g] will be left invariant as well.

Given a geometric evolution equation onM of the form (2.8), a solution g(t) that evolves
by scaling and diffeomorphism is said to be a self-similar solution. Thus a self-similar solution
is of the form g(t) = c(t)ϕ∗tg0, where ϕt is a one-parameter family of diffeomorphisms of M
with ϕ0 = Id and c(t) is a real-valued function satisfying c(0) = 1. Such a solution should
be regarded as a geometric fixed point for the flow (2.8).

Related to self-similar solutions of the flow will be the so-called T-soliton structures. The
quadruple (M,g,X, β), where X is a vector field on M and β ∈ R, is said to be a T-soliton
structure for the geometric evolution equation (2.8) if

βg + LXg = T [g] , (2.9)

where LXg denotes the Lie derivative of the metric g in the direction of the vector field X.
(M,g,X, β) is said to be expanding if β is positive, steady if β is zero, and shrinking if β is
negative. The reason for the terminology expanding, steady, and shrinking will be evident
from Proposition 2.5. We will refer to the metric g from the quadruple (M,g,X, β) as a
T-soliton, emphasizing X and β only when needed. As per usual, the vector field X in the
soliton structure (M,g,X, β) is unique up to the addition of a Killing field of the metric
tensor g.

It is tempting to use the T-soliton equation to define self-similar solutions to (2.8), but
as the following proposition shows, this requires that T be natural and homogeneous. The
key link between self-similar solutions of the evolution equation (2.8) and soliton metrics was
established in [15] and is a straight forward generalization of the relationship between Ricci
solitons and self-similar solutions of the Ricci flow.

Proposition 2.5. Let T : Sym2 (T ∗M)→ Sym2 (T ∗M) be a bundle map and assume that
T is natural.
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1. If g(t) = c(t)ϕ∗tg0 is a self-similar solution to the geometric evolution equation (2.8),
then g0 is a T-soliton.

2. If g0 is a steady T-soliton, then there is a self-similar solution to (2.8) of the form
g(t) = ϕ∗tg0 (i.e., g0 evolves by diffeomorphisms).

3. If g0 is a T-soliton for (2.8) and T is homogeneous of degree q, then there is a self-similar
solution to (2.8) of the form g(t) = c(t)ϕ∗tg0.

Proof. 1 . Assume that g(t) = c(t)ϕ∗tg0 is a self-similar solution to (2.8) and let X be the
vector field onM defined by X(p) = d

dt (ϕt(p)), p ∈M. Differentiating g(t) = c(t)ϕ∗tg0

with respect to t and using properties of pullbacks we obtain

∂g(t)

∂t
= c′(t)ϕ∗tg0 + c(t)ϕ∗t (LXg0) = ϕ∗t (c′(t)g0 + c(t)LXg0) . (2.10)

Using the assumptions that T is natural and that g(t) = c(t)ϕ∗tg0 is a self-similar
solution to (2.8) we have also that

∂g(t)

∂t
= T [c(t)ϕ∗tg0] = ϕ∗tT [c(t)g0] (2.11)

Evaluating (2.10) and (2.11) at time t = 0, we find c′(0)g0 + LXg0 = T [g0] and we
conclude that g0 is a T-soliton for the geometric flow (2.8).

2 . Let X be a vector field such that LXg0 = T [g0] and let ϕt be the one-parameter family
of diffeomorphisms generated by X. It follows that

∂ϕ∗tg0

∂t
= ϕ∗t (LXg0) = ϕ∗tT [g0] = T [ϕ∗tg0] ,

and we conclude that g(t) = ϕ∗tg0 is a solution of (2.8).

3 . Now, we assume that (M,g0,X, β) is a T-soliton structure for (2.8) and additionally that
T is homogeneous of degree q. Define c(t) to be the solution of the differential equation
dc
dt = βcq; c(0) = 1 and define the time-dependent vector field Yt by Yt = c(t)q−1X.
Denote the corresponding flow of Yt by ϕt and observe that if g(t) = c(t)ϕ∗tg0, then it
follows from properties of Lie derivatives that

∂g(t)

∂t
= c′(t)ϕ∗tg0 + c(t)ϕ∗t (LYg0)

= c′(t)ϕ∗tg0 + c(t)ϕ∗t
(
Lc(t)q−1Xg0

)
(Defn. of Y)

= βc(t)qϕ∗tg0 + c(t)qϕ∗t (LXg0) (Assumptions on c(t))

= c(t)qϕ∗t (βg0 + LXg0) ( Properties of pull-backs )

= c(t)qϕ∗t (T [g0]) ((M,g0,X, β) is a T-soliton)

= T [c(t)ϕ∗tg0] , T is natural and homogeneous.
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We conclude that T-solitons give rise to self-similar solutions of the flow (2.8) whenever
T is natural and homogeneous.

q.e.d.

Following the work of Lauret on the Ricci flow on nilpotent Lie groups in [25], we will
now define algebraic T-solitons for the geometric evolution equation (2.8) and establish the
relationship between algebraic T-solitons and T-solitons. Similar considerations apply in all
dimensions, but for ease of exposition we restrict ourselves to dimension three and assume
that (M,g) = (H,g) is a simply-connected, three-dimensional Lie group with Lie algebra h
and left invariant Riemannian metric g.

Remark 2.6. For a symmetric (0, 2)-tensor A on (M,g), we refer to the (1, 1)-tensor Â

obtained by using g to raise an index as the A-operator. Note that Â is defined implicitly

by requiring that g
(
Â (X) ,Y

)
= A (X,Y) for all vector fields X,Y on M, and that with

respect to a given frame, the components Âij of Â are related to the components Aij of A

by Âij = gikAkj . While Â depends on both A and the g, the metric g being used to define

Â will always be clear from the context.

Definition 2.7 (Algebraic T-soliton). Let H be a simply-connected Lie group with Lie
algebra h and left invariant metric g. The triple (H,g, β), where β ∈ R, is said to be an
algebraic T-soliton for the geometric evolution equation (2.8) if the operator D : h → h
defined by

D = T̂ [g]− βId (2.12)

is a derivation of h. When there is no potential for confusion, we we will simply refer to the
left invariant metric g as an algebraic T-soliton.

The following proposition is a straightforward adaptation from [25] and establishes the
relationship between algebraic T-solitons and T-solitons. The proof provided is essentially
identical to the proof provided by Onda in [29], where the author investigates algebraic Ricci
solitons in the case of pseudo-Riemannian metrics.

Proposition 2.8. If H is a simply-connected Lie group and the left invariant metric g is an
algebraic T-soliton for the geometric evolution equation (2.8), then g is a T-soliton.

Proof. Assume that g is an algebraic T-soliton with soliton constant of β and that e1, e2, e3

is an orthonormal basis for g. Set D = T̂ [g] − βId and define ϕt : H → H by declaring its
differential at the identity element of H to be dϕt = exp

(
tD
2

)
. Now define a vector field X

on H by setting X(p) = dϕt(p)
dt

∣∣∣
t=0

, p ∈ H. By properties of Lie derivatives, it follows that

LXg (ei, ej) =
d

dt
ϕ∗tg (ei, ej) =

1

2
(g (D (ei) , ej) + g (ei,D (ej))) ,

and from the defining characteristics of D, we find that

1

2
(g (D (ei) , ej) + g (ei,D (ej))) =

1

2

(
g
(
T̂ [g] (ei) , ej

)
+ g

(
T̂ [g] (ej) , ei

))
− βg (ei, ej) .
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By definition of T̂ [g] and the symmetry of the metric tensor g, we have also that

T [g] (ei, ej)− βg (ei, ej) =
1

2
(T [g] (ei, ej) + T [g] (ej , ei))− βg (ei, ej)

=
1

2

(
g
(
T̂ [g] (ei) , ej

)
+ g

(
T̂ [g] (ej) , ei

))
− βg (ei, ej) .

Thus LXg (ei, ej) = T [g] (ei, ej) − βg (ei, ej) holds for all basis vectors ei, ej , and we con-
clude that LXg = T [g]− βg and that g is a T-soliton for (2.8). q.e.d.

Remark 2.9. It follows from Proposition 2.5 that if T is natural and homogeneous, then
every algebraic T-soliton gives rise to a self-similar solution of the geometric evolution equa-
tion ∂g

∂t = T [g]. In light of this observation, we say that the algebraic T-soliton (H,g, β)
is expanding, steady, or shrinking, depending on whether or not β is positive, zero, or neg-
ative, respectively. Note that if T is natural but not homogeneous, then a steady algebraic
T-soliton gives rise to self-similar solution of (2.8) that evolves by diffeomorphism only.

Remark 2.10. Note that g is a shrinking (res. expanding) soliton for the +XCF if and only if
g is an expanding (res. shrinking) soliton for the −XCF. Specifically, (M,g,X, β) is a +XCF
soliton structure onM if and only if (M,g,−X,−β) is a −XCF soliton structure onM. This
follows directly from the fact that βg +LXg = 2H [g] if and only if −βg +L−Xg = −2H [g].
Further note that when looking for soliton structures for the evolution equation ∂g

∂t = T [g],
one can replace T with any positive scalar multiple of T without changing the qualitative
nature of the soliton structure. In our classification of algebraic soliton structures for the XCF
on three-dimensional unimodular Lie groups, we will use T = ±H as opposed to T = ±2H
which is found in Definition 2.1 and is used in [3], [4], and [15].

Whereas the search for T-solitons often involves a complicated system of partial differen-
tial equations, algebraic T-solitons can be found via algebraic methods alone. Furthermore,
there are algebraic conditions that must be satisfied in order for a Lie group H to be able to
support an algebraic T-soliton. The following proposition shows that for a simply-connected
Lie group to admit an algebraic T-soliton the corresponding Lie algebra must have a deriva-
tion that can be diagonalized.

Proposition 2.11. Let H be a simply-connected Lie group with Lie algebra h. If H admits
an algebraic T-soliton structure for the geometric evolution equation (2.8) and T is natural,
then h admits a derivation that is diagonalizable.

Proof. Suppose that (H,g, β) is an algebraic T-soliton structure on H and note that the
assumption of T being natural implies that T [g] is left invariant. Identifying both g and
T [g] with their values on h ' TeH, then since g is positive definite, there exists a basis

B = {ei} for h that diagonalizes both g and T [g]. It follows that T̂ [g] is also diagonalized
with respect to the indicated basis. The assumption that g is an algebraic T-soliton implies
that D = T̂ [g]−βId is a diagonal derivation of the Lie algebra h and that the basis B = {ei}
serves as a basis of eigenvectors for D. q.e.d.
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Remark 2.12. Note that if g is an algebraic T-soliton and D = T̂ [g]− βId = 0, then T [g]
is a scalar multiple of the metric and we have T [g] = βg. Such an algebraic T-soliton should
be regarded as a trivial algebraic T-soliton. With this in mind, the above proposition can be
restated so as to avoid the zero derivation by noting that if H admits a non-trivial algebraic
T-soliton, then h must admit a non-zero derivation that is diagonalizable.

The following simple lemma concerning diagonal derivations will be used extensively in
the classification of XCF and RG-2 algebraic solitons that give rise to self-similar solutions of
their respective flows on three-dimensional unimodular Lie groups. We will state the lemma
in arbitrary dimensions.

Lemma 2.13. Let h be a Lie algebra and suppose that the linear operator D : h → h is
diagonalizable with an ordered basis of eigenvectors B = {ei} and corresponding eigenvalues
di, 1 ≤ i ≤ n. Then D is a derivation of h if and only if for all basis vectors ei and ej , we
have that [ei, ej ] = 0 or [ei, ej ] is an eigenvector with eigenvalue di + dj .

As it pertains to algebraic T-solitons, there are two extreme cases concerning the eigen-
values of a diagonal derivation on a non-Abelian Lie algebra h that merit mention. The

first is the case where D = T̂ [g] − βId has only one eigenvalue (i.e., a repeated eigenvalue
of multiplicity n = dim h). In light of Lemma 2.13, then in this case we must have that

D = T̂ [g] − βId = 0 and T [g] is a scalar multiple of the metric g. Note that a self-similar
solution of the indicated form evolves by scaling only and there is no diffeomorphism action.
Such a metric would play the role for T that an Einstein metric does for Rc.

The second case is when all eigenvalues of the diagonal derivation D = T̂ [g]− βId have
multiplicity one. In this case, the Lie algebra h must admit a nice basis. Following [26], we
say that a basis B = {ei} for a Lie algebra h is nice if the structure constants defined by
[ei, ej ] = ckijek satisfy

• for all i, j, there exists at most one k such that ckij 6= 0, and

• for all i, k, there exists at most one j such that ckij 6= 0.

The condition on a basis of h being nice can thusly be interpreted as requiring the Lie bracket
of any two basis basis vectors ei and ej be zero or belong to the span of a third basis vector
ek, and two non-zero brackets [ei, ej ] and [ep, eq] are non-zero scalar multiples of each other
if and only if {i, j} = {p, q} or {i, j} and {p, q} are disjoint. It follows from Lemma 2.13 that

if D = T̂ [g]− βId is a diagonal derivation with distinct eigenvalues, then the Lie algebra h
must admit a nice basis. Note that all three-dimensional unimodular Lie groups admit a nice
basis for their Lie algebras (see Section 3.1). See [26] for further discussion of Lie algebras
admitting a nice basis and the relationship between a nice basis and stably Ricci diagonal
flows as introduced in [30] by Payne.

3 Algebraic solitons on three-dimensional unimodular Lie groups

3.1 Milnor frames

Let H be a three-dimensional unimodular Lie group with Lie algebra h and left invariant
metric g. Throughout what follows, e1, e2, e3 will be a left invariant frame with dual co-
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frame denoted by ω1, ω2, and ω3.
In [28], Milnor establishes the existence of a left invariant g-orthonormal frame e1, e2, e3

for h such that the algebraic structure of h is determined by the non-zero bracket relations

[e2, e3] = λ1e1 [e3, e1] = λ2e2 [e1, e2] = λ3e3. (3.1)

The Levi-Civita connection of g is completely determined by the Koszul formula, and with
respect to the indicated frame the defining covariant derivatives are

∇e1e2 = µ1e3 ∇e1e3 = −µ1e2 ∇e2e3 = µ2e1

∇e3
e2 = −µ3e1 ∇e3

e1 = µ3e2 ∇e2
e1 = −µ2e3,

where µi = 1
2

(
λ1 + λ2 + λ3

)
− λi. The principal sectional curvatures are thusly given by

Kl = K (em ∧ en) = λlµl − µmµn, (l,m, n) is a permutation of (1, 2, 3). (3.2)

The Ricci tensor Rc [g] = Rijω
i ⊗ ωj is diagonalized with respect to the indicated frame,

and the non-zero components are

Rll = 2µmµn = Km +Kn, (l,m, n) is a permutation of (1, 2, 3). (3.3)

Following [28], we observe that if the metric g is altered by declaring the basis

ẽ1 = BCe1, ẽ2 = ACe2, ẽ3 = ABe3, A,B,C ∈ R>0

to be orthonormal, then we find that the resulting structure constants are all scaled by
positive constants:

[ẽ2, ẽ3] = A2λ1ẽ1, [ẽ3, ẽ1] = B2λ2ẽ2, [ẽ1, ẽ2] = C2λ3ẽ3.

As such, we can assume that the left invariant metric g is expressed relative to a left invariant
frame e1, e2, e3 and its dual co-frame ω1, ω2, ω3 as g = Aω1 ⊗ ω1 +B ω2 ⊗ ω2 + C ω3 ⊗ ω3,
with the structure constants (3.1) defining the Lie algebra satisfying λi ∈ {1, 0,−1}. Further,
by assuming an orientation for the Lie algebra h, we can assume that there are at least as
many positive structure constants as negative structure constants, and that by appropriately
ordering our basis we have λ1 ≥ λ2 ≥ λ3.

Given a left invariant metric g on H, we will refer to a left invariant frame e1, e2, and e3

that

1. diagonalizes the metric g (i.e., g = Aω1 ⊗ ω1 +B ω2 ⊗ ω2 + C ω3 ⊗ ω3), and

2. diagonalizes the structure constants of h as in (3.1) with λi ∈ {1, 0,−1} and λ1 ≥ λ2 ≥
λ3,

as a Milnor frame for g. In what follows, we will work exclusively with Milnor frames for g.
The six possibilities for the structure constants of an oriented Lie algebra h corresponding

to a simply-connected, three-dimensional, unimodular Lie group are recorded in the following
table:
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(
λ1, λ2, λ3

)
Lie group

(1, 1, 1) SU(2)

(1, 1,−1) ˜SL(2,R)
(1, 1, 0) E(2)

(1, 0,−1) E(1, 1)
(1, 0, 0) 3-dim Heisenberg group
(0, 0, 0) R3

Note that if g is a left invariant metric on a three-dimensional unimodular Lie group H and
g expressed in a Milnor frame as g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3, then the principal
sectional curvatures are given by

Kl = K (em ∧ en) = λ̃lµ̃l − µ̃mµ̃n, (l,m, n) is a permutation of (1, 2, 3), (3.4)

where λ̃1 =
√

A
BCλ

1, λ̃2 =
√

B
CAλ

2, λ̃3 =
√

A
BCλ

3, and µ̃i = 1
2

(
λ̃1 + λ̃2 + λ̃3

)
−λ̃i, 1 ≤ i ≤ 3.

The non-zero components of the Ricci tensor Rc [g] = Rijω
i ⊗ ωj are thusly

R11 = A (K2 +K3) , R22 = B (K1 +K3) , R33 = C (K1 +K2) , (3.5)

and the tensor Rm2 [g] = Řijω
i ⊗ ωj is diagonalized with non-zero components given by
Ř11 = 2A

(
(K2)

2
+ (K3)

2
)

Ř22 = 2B
(

(K3)
2

+ (K1)
2
)

Ř33 = 2C
(

(K3)
2

+ (K1)
2
)
.

(3.6)

It also follows that both the cross curvature tensor H [g] = Hijω
i ⊗ ωj and the RG-2 tensor

RG [g] = RGijω
i ⊗ ωj are diagonalized with respect to a Milnor frame. The non-zero

components are, respectively,

H11 = AK2K3, H22 = BK1K3, and H33 = CK1K2, (3.7)

and 
RG11 = −A

(
2 (K2 +K3) + α

(
(K2)

2
+ (K3)

2
))

RG22 = −B
(

2 (K3 +K1) + α
(

(K3)
2

+ (K1)
2
))

RG33 = −C
(

2 (K1 +K2) + α
(

(K1)
2

+ (K2)
2
))

.

(3.8)

Finally, we note that the corresponding operators Ĥ [g] and R̂G [g] are diagonalized with
respect to the indicated frame and take the form

Ĥ [g] = diag (K2K3 , K3K1 , K1K2) , (3.9)

R̂G [g] = diag

(
RG11

A
,
RG22

B
,
RG33

C

)
.
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We will now classify the algebraic solitons on simply-connected, three-dimensional, uni-
modular Lie groups that give rise to self-similar solutions of the XCF and RG-2 flow. Before
proceeding, recall from Proposition 2.5 and Proposition 2.8 that all algebraic XCF-solitons
give rise to self-similar solutions of the XCF, whereas only steady algebraic RG-2-solitons
give rise to self-similar solutions of the RG-2 flow.

3.2 R3

We begin with the trivial case of H = R3. Since all left invariant metrics on the Abelian
group R3 are flat, then it follows immediately that all left invariant metrics g are fixed points
for the XCF and RG-2 flow. Such metrics can be regarded as trivial solitons.

3.3 Heisenberg group

Let g be a left invariant metric on the three-dimensional Heisenberg group and let e1, e2, e3

be a Milnor frame where g = Aω1 ⊗ ω1 + Bω2 ⊗ ω2 + Cω3 ⊗ ω3 and the Lie algebra
structure is determined by the non-zero bracket [e2, e3] = e1. By using an automorphism
of the Lie algebra, one can further assume that B = C = 1 and the metric takes the form
g = Aω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3.

From (3.4) we find that the principal sectional curvatures are

K1 = K (e2 ∧ e3) = −3

4
A, K2 = K (e1 ∧ e3) =

1

4
A, K3 = K (e1 ∧ e2) =

1

4
A.

(3.10)
We will now make use of the algebraic structure of the Lie algebra to give a simple criterion

for when a left invariant metric g on the Heisenberg group is an algebraic T-soliton for the
evolution equation ∂g

∂t = T [g]. Recall from Remark 2.6 that for a symmetric (0, 2)-tensor A

we denote the (1, 1)-tensor obtained by using g to raise an index on A by Â.

Lemma 3.1. Let g be a left invariant metric on the three-dimensional Heisenberg group,
with g expressed relative to a Milnor frame as g = Aω1⊗ω1 +ω2⊗ω2 +ω3⊗ω3. If T̂ [g] is
diagonalized relative to the Milnor frame, then g is an algebraic T-soliton for the evolution
equation ∂g

∂t = T [g] with soliton constant β = T̂ 2
2 + T̂ 3

3 − T̂ 1
1 .

Proof. Let D = T̂ [g] − βId and assume that T̂ [g] : h → h is diagonalized relative to the
Milnor frame. Owing to the Lie bracket structure of the Lie algebra h, it follows from

Lemma 2.13 that the operator D =
(
dij
)

=
(
T̂ ij − βδij

)
is a derivation of h if and only if

[e2, e3] = e1 is an eigenvector for D with eigenvalue d11 = d22 + d33. Accordingly, we must

have T̂ 1
1 −β =

(
T̂ 2
2 − β

)
+
(
T̂ 3
3 − β

)
, or equivalently, β = T̂ 2

2 + T̂ 3
3 − T̂ 1

1 . This completes the

proof. q.e.d.

The classification of algebraic XCF and RG-2 solitons on the Heisenberg group that give
rise to self-similar solutions of their respective flows now follows easily.

3.3.1 Algebraic XCF-solitons

From (3.7) and (3.10), we find that the cross curvature tensor of the metric g is given by

H [g] = A3

16 ω
1⊗ω1− 3A2

16 ω
2⊗ω2− 3A2

16 ω
3⊗ω3, with corresponding cross curvature operator
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Ĥ [g] represented in the given frame by

Ĥ [g] = diag

(
A2

16
,−3A2

16
,−3A2

16

)
. (3.11)

Theorem 3.2. For all choices of A, the left invariant metric g = Aω1⊗ω1+ω2⊗ω2+ω3⊗ω3

is a shrinking algebraic XCF soliton for the +XCF on the Heisenberg group. (And likewise,
an expanding algebraic −XCF soliton.)

Remark 3.3. Recall from Remark 2.10 that g is a shrinking (res. expanding) soliton struc-
ture for the +XCF if and only if g is an expanding (res. shrinking) soliton structure for the
−XCF.

Proof. The cross curvature operator Ĥ [g] is diagonalized in a Milnor frame and is given as
in (3.11). Applying Lemma 3.1 we find that g is an algebraic +XCF soliton with soliton

constant β = Ĥ2
2 + Ĥ3

3 − Ĥ1
1 = − 7

16A
2, which completes the proof. q.e.d.

3.3.2 Algebraic RG-2 Solitons

Combining (3.8) and (3.10), the RG-2 tensor of the metric g is

RG [g] = −
(

1

8
αA3 +A2

)
ω1⊗ω1 +

(
A− 5

8
αA2

)
ω2⊗ω2 +

(
A− 5

8
αA2

)
ω3⊗ω3, (3.12)

and the corresponding RG-2 operator is

R̂G [g] = diag

(
−α

8
A2 −A,A− 5

8
αA2, A− 5

8
αA2

)
. (3.13)

Since we are focused on finding self-similar solutions to the RG-2 flow on the Heisenberg
group, we will only be looking for steady algebraic RG-2 solitons of the flow. We immediately
establish the following.

Theorem 3.4. The left invariant metric g = Aω1⊗ω1+ω2⊗ω2+ω3⊗ω3 is a steady algebraic
soliton that gives rise to a self-similar solution of the RG-2 flow ∂g

∂t = −2Rc [g]− 4
3ARG [g]

(i.e., when α = 8
3A ).

Proof. The RG-2 operator R̂G [g] (3.13) is diagonalized with respect to the Milnor frame.
Setting β = 0 and applying Lemma 3.1, we find that g is a steady algebraic RG-2 soliton

that gives rise to a self-similar solution of the RG-2 flow when R̂G
1

1 = R̂G
2

2 + R̂G
3

3. From

(3.13) we see that for the equation R̂G
1

1 = R̂G
2

2 + R̂G
3

3 to be satisfied we must have −α8A
2−

A = 2
(
A− 5

8αA
2
)
, or equivalently, 3A

(
3
8αA− 1

)
= 0. Since A = g (e1, e1), the result

follows. q.e.d.
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3.4 E(2)

Let g be a left invariant metric on E(2), the three-dimensional group of (orientation preserv-
ing) isometries of the Euclidean plane, and let e1, e2, e3 be a Milnor frame for g such that
g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3, with the structure of the Lie algebra determined by
the non-zero brackets

[e2, e3] = e1 and [e3, e1] = e2.

Using an automorphism of the Lie algebra, we can further assume that A = 1 and write
g = ω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3.

According to (3.4), the principal sectional curvatures of g are

K1 =
(B + 3) (B − 1)

4BC
, K2 =

(3B + 1) (1−B)

4BC
, K3 =

(B − 1)
2

4BC
. (3.14)

Note that when B = 1, we obtain a family of flat metrics on E(2).
As before, we can make use of the algebraic structure of the Lie algebra to provide a

simple criterion for when a left invariant metric is an algebraic T-soliton for a geometric
evolution equation of the form ∂g

∂t = T [g].

Lemma 3.5. Let g be a left invariant metric on E(2), with g expressed relative to a Milnor

frame as g = ω1 ⊗ ω1 +Bω2 ⊗ ω2 +Cω3 ⊗ ω3. If T̂ [g] is diagonalized relative to the Milnor
frame, then g is an algebraic T-soliton for the evolution equation ∂g

∂t = T [g] if and only if

T̂ 1
1 = T̂ 2

2 . Moreover, the soliton constant is β = T̂ 3
3 .

Proof. The proof proceeds in an identical manner to that of the proof of Lemma 3.1. Let
D = T̂ [g] − βId and assume that T̂ [g] : h → h is diagonalized relative to the Milnor
frame. Owing to the Lie bracket structure of the Lie algebra h, it follows from Lemma 2.13

that the operator D =
(
dij
)

=
(
T̂ ij − βδij

)
is a derivation of h if and only if [e2, e3] = e1

and [e3, e1] = e2 are eigenvectors for D with eigenvalues d11 = d22 + d33 and d22 = d33 + d11,

respectively. Accordingly, we must have d33 = T̂ 3
3 − β = 0 and T̂ 1

1 = T̂ 2
2 , which completes the

proof. q.e.d.

3.4.1 XCF-solitons

It follows from (3.7) and (3.14) that the cross curvature tensor of g is

H [g] = − (3B + 1) (B − 1)3

16B2C2
ω1⊗ω1 +

(B + 3) (B − 1)3

16BC2
ω2⊗ω2− (B + 3) (B − 1)2 (3B + 1)

16B2C
ω3⊗ω3.

(3.15)

The non-zero components of Ĥ [g] with respect to the indicated frame are Ĥ1
1 = H11,

Ĥ2
2 = H22

B , and Ĥ3
3 = H33

C , and the cross curvature operator is

Ĥ [g] = diag

(
− (3B + 1) (B − 1)

3

16B2C2
,

(B + 3) (B − 1)
3

16B2C2
,

(B + 3) (B − 1)
2

(3B + 1)

16B2C2

)
.

Theorem 3.6. All flat metrics on E(2) are fixed points for the XCF on E(2) and are thus
(trivial) steady algebraic solitons. These are the only algebraic solitons for the XCF on E(2).
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Proof. That the flat metrics on E(2) are fixed points for the XCF is clear from the definition
of the cross curvature tensor. To see that these are the only algebraic solitons for the XCF
on E(2), we will employ Lemma 3.5. By Lemma 3.5, for g to be an algebraic XCF soliton

we must have Ĥ1
1 = Ĥ2

2 and β = Ĥ3
3 . Owing to (3.9), we see that Ĥ1

1 = Ĥ2
2 if and only if

K2K3 = K1K3. Thus we must have K3 = 0 or K1 = K2. From (3.14), we see that K3 = 0 if
and only if B = 1 and that K1 = K2 if and only if B = 1 or B = −1. Since B = g (e2, e2),
we conclude that g = ω1 ⊗ ω1 + Bω2 ⊗ ω2 + Cω3 ⊗ ω3 is an algebraic soliton for the XCF
if and only if B = 1. It follows that such a metric is flat and is thus a fixed point of the
flow. q.e.d.

3.4.2 RG-2 solitons

The RG-2 tensor of g is RG [g] = RG11ω
1 ⊗ ω1 +RG22ω

2 ⊗ ω2 +RG33ω
3 ⊗ ω3, where

RG11 = −
(B − 1)

(
5αB3 − 3αB2 − 8B2C −Bα− 8BC − α

)
8B2C2

RG22 = −
(B − 1)

(
αB3 + αB2 + 8B2C + 3Bα+ 8BC − 5α

)
8BC2

RG33 = −
(B − 1)

2 (
5αB2 + 6αB − 8BC + 5α

)
8B2C

, (3.16)

and the corresponding RG-2 operator is R̂G [g] = diag
(
R̂G

1

1, R̂G
2

2, R̂G
3

3

)
, where

R̂G
1

1 = RG11, R̂G
2

2 =
RG22

B
, and R̂G

3

3 =
RG33

C
. (3.17)

Theorem 3.7. All flat metrics on E(2) are fixed points for the RG-2 flow and are thus trivial
steady algebraic solitons. Furthermore, the flat metrics on E(2) are the only left invariant
steady algebraic solitons for the RG-2 flow on E(2).

Proof. Owing to the definition of the RG-2 tensor, it is clear that the flat metrics are fixed
points (and thus trivial algebraic solitons for the RG-2 flow). To see that the flat metrics are
the only left invariant steady algebraic solitons for the RG-2 flow on E(2), note by Lemma 3.5
that in order for g = ω1 ⊗ ω1 +Bω2 ⊗ ω2 +Cω3 ⊗ ω3 to be a steady algebraic RG-2 soliton

we must have R̂G
3

3 = 0 and R̂G
1

1 = R̂G
2

2.

Combining (3.8) and (3.9), we see that R̂G
1

1 = R̂G
2

2 if and only if

K2 (2 + αK2) = K1 (2 + αK1) .

Substituting (3.14) into the above and making using of the fact that we can assume that
B 6= 1, this is equivalent to the equation

− (3B + 1)

(
2 + α

(3B + 1) (1−B)

4BC

)
= (B + 3)

(
2 + α

(B + 3) (B − 1)

4BC

)
.
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The above equation admits solutions when B = −1 and when C = α(B−1)2
4B . Since B must

be greater than zero, we only concern ourselves with the later. Substituting C = α(B−1)2
4B

into R̂G
3

3 as in in (3.17), we find that for R̂G
3

3 to be zero, we must have − 1
2
(3B+1)(B+3)

B = 0.
Since B must be greater than zero, we conclude that the only left invariant steady algebraic
RG-2 solitons on E(2) are the flat metrics. q.e.d.

3.5 E(1, 1)

Let g be a left invariant metric for E(1, 1), the solvable three-dimensional group of isometries
of the standard Lorentz-Minkowski plane, expressed relative to a Milnor frame e1, e2, e3 as
g = Aω1 ⊗ ω1 + Bω2 ⊗ ω2 + Cω3 ⊗ ω3. The corresponding Lie algebra structure is then
generated by the non-zero brackets

[e2, e3] = e1 and [e1, e2] = −e3.

Using an automorphism of the Lie algebra, we can further require that C = 1 and that the
metric takes the form g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + ω3 ⊗ ω3.

Making the appropriate substitutions into (3.4), we find the principal sectional curvatures
of g are

K1 = K (e2 ∧ e3) = − (A+ 1) (3A− 1)

4AB

K2 = K (e1 ∧ e3) =
(A+ 1)

2

4AB
(3.18)

K3 = K (e1 ∧ e2) =
(A+ 1) (A− 3)

4AB
.

We now state a lemma for E(1, 1) that is equivalent to Lemma 3.5 for E(2).

Lemma 3.8. Let g be a left invariant metric on E(1, 1) that is expressed relative to a Milnor

frame as g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + ω3 ⊗ ω3. If T̂ [g] is diagonalized relative to the Milnor
frame, then g is an algebraic T-soliton for the evolution equation ∂g

∂t = T [g] if and only if

T̂ 1
1 = T̂ 3

3 . Moreover, the soliton constant is β = T̂ 2
2 .

Proof. The proof proceeds in an identical fashion to the proof of Lemma 3.5 and the details
are left to the reader. q.e.d.

3.5.1 XCF solitons

Making the appropriate substitutions into (3.7), the non-zero components of the cross cur-
vature tensor H [g] = H11ω

1 ⊗ ω1 +H22ω
2 ⊗ ω2 +H33ω

3 ⊗ ω3 are found to be

H11 =
(A+ 1)

3
(A− 3)

16AB2
, H22 =

(A+ 1)
2

(1− 3A) (A− 3)

16A2B
, H33 =

(A+ 1)
3

(1− 3A)

16A2B2
,

(3.19)

and the cross curvature operator Ĥ [g] is diagonalized with respect to the given frame and

represented by Ĥ [g] = diag
(
Ĥ1

1 , Ĥ
2
2 , Ĥ

3
3

)
, where Ĥ1

1 = H11

A , Ĥ2
2 = H22

B , and Ĥ3
3 = H33.
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Theorem 3.9. The left invariant metric g = Aω1⊗ω1 +Bω2⊗ω2 +ω3⊗ω3 is an expanding
(res. shrinking) algebraic soliton for the +XCF (res. −XCF) on E(1, 1) if and only if A = 1
and the soliton constant is β = 1

B2 (res. β = − 1
B2 ).

Proof. Since Ĥ [g] is diagonalized relative to the Milnor frame, it follows from Lemma 3.8

that g is an algebraic soliton for the +XCF with D = Ĥ [g] − βId a derivation of h if and

only if Ĥ1
1 = Ĥ3

3 and β = Ĥ2
2 . Owing to (3.9) and (3.19), it follows that we must have

β = Ĥ2
2 =

(A+ 1)
2

(1− 3A) (A− 3)

16A2B2
,

and
Ĥ1

1 = Ĥ3
3 ⇐⇒ K2K3 = K1K2.

Thus, we must have K2 = 0 (which only happens if A = −1) or K1 = K3. Since A > 0, then
according to (3.18), we see that K1 = K3 if and only if 1−3A = A−3. We thus find that we
have an algebraic soliton which gives rise to a self-similar solution when A = 1. Substituting
A = 1 into β = Ĥ2

2 we find β = 1
B2 . q.e.d.

3.5.2 RG-2 solitons

From (3.8) and (3.9), respectively, we find that the non-zero components of the RG-2 tensor
RG [g] = RGijω

i ⊗ ωj are

RG11 = −
(A+ 1)

(
αA3 + 8A2B − αA2 + 3αA− 8AB + 5α

)
8AB2

RG22 = −
(A+ 1)

2 (
5αA2 − 6αA− 8AB + 5α

)
8A2B

RG33 = −
(A+ 1)

(
5αA3 + 3αA2 − 8A2B − αA+ 8AB + α

)
8A2B2

, (3.20)

and the corresponding RG-2 operator is R̂G [g] = diag
(
R̂G

1

1, R̂G
2

2, R̂G
3

3

)
, where

R̂G
1

1 =
RG11

A
, R̂G

2

2 =
RG22

B
, R̂G

3

3 = RG33. (3.21)

Theorem 3.10. The left invariant metric g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + ω3 ⊗ ω3 is a steady
algebraic soliton that gives rise to a self-similar solution of the RG-2 flow on E(1, 1) if and
only if

1. A = 1 and α = 2B, or

2. A = 1
3 or A = 3 and α = 3

4B.

Proof. Noting that R̂G [g] is diagonalized relative to the Milnor frame, then in accordance

with Lemma 3.8, we see that for g to be steady algebraic soliton we must have R̂G
2

2 = 0 and

R̂G
1

1 = R̂G
3

3.
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From (3.20) and (3.21), we see that R̂G
1

1 = R̂G
3

3 if and only if

1

2

(A+ 1) (A− 1)
(
αA2 + 2αA− 4AB + α

)
A2B2

= 0.

If A = 1, then from (3.20) and (3.21) we see that for R̂G
2

2 to be equal to zero we must
have− 1

2
4α−8B
B2 = 0,which establishes 1. If αA2 + 2αA − 4AB + α = 0, then solving for

α = 4AB
(A+1)2

and substituting into (3.20) and (3.21) for R̂G
2

2, we find that R̂G
2

2 = 0 if and

only if

−1

2

(3A− 1) (A− 3)

AB
= 0,

which establishes 2. q.e.d.

Remark 3.11. The left invariant metrics g = 3ω1 ⊗ ω1 + Bω2 ⊗ ω2 + ω3 ⊗ ω3 and g =
1
3ω

1 ⊗ ω1 + Bω2 ⊗ ω2 + ω3 ⊗ ω3 are isometric under an automorphism of the Lie algebra
of E(1, 1). With respect to the Milnor Frame e1, e2, e3, it is readily established that any
invertible linear operator that is represented in matrix form relative to the chosen frame as

F =

f11 f12 f13
0 ±1 0
f13 f32 f11

 is an automorphism of the Lie algebra. Taking F =

 0 0
√

3
0 −1 0√
3 0 0


establishes the isometry between the two metrics in question. Similarly, one is able to show
that every left invariant metric on E(1, 1) is equivalent to one of the form g = Aω1 ⊗ ω1 +
Bω2 ⊗ ω2 + ω3 ⊗ ω3 with A ≥ 1.

3.6 S̃L(2)

Let H = S̃L(2), the universal cover of SL (2,R), and let g be a left invariant metric on H with
Milnor frame e1, e2, e3. The metric then takes the form g = Aω1⊗ω1 +Bω2⊗ω2 +Cω3⊗ω3

and the Lie algebra structure is determined by the non-zero brackets

[e2, e3] = e1, [e3, e1] = e2, and [e1, e2] = −e3.

We will now show that S̃L(2) does not support either a left invariant algebraic XCF
soliton or a left invariant algebraic RG-2 soliton that gives rise to a self-similar solution of the
corresponding flow. The proof relies on a lemma appropriately adapted from Lemma 2.13 and

on the possible signatures for the Ricci tensor of a left invariant metric on S̃L(2). Specifically,
in [28] (Corollary 4.7), Milnor establishes that the signature of the Ricci tensor of any left

invariant metric on S̃L(2) must be either (+,−,−) or (0, 0,−).

Lemma 3.12. Let g be a left invariant metric on S̃L(2) expressed relative to a Milnor frame

as g = Aω1⊗ω1+Bω2⊗ω2+Cω3⊗ω3. If T̂ [g] is diagonalized relative the Milnor frame, then

g is an algebraic T-soliton for the evolution equation ∂g
∂t = T [g] if and only if T̂ 1

1 = T̂ 2
2 = T̂ 3

3 ,
and in this instance T [g] must be a scalar multiple of g.
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Proof. Assume that T̂ [g] is diagonalized with respect to the selected frame. Since [el, em] 6= 0
for all pairs (l,m) where l and m are distinct, then according to Lemma 2.13 the operator D =

T̂ [g]− βId : h→ h is a derivation of the Lie algebra if and only if [e2, e3] = e1, [e3, e1] = e2,

and [e1, e2] = −e3 are eigenvectors for D =
(
dij
)

=
(
T̂ ij − βδij

)
with eigenvalues d11 = d22+d33,

d22 = d33 + d11, and d33 = d11 + d22, respectively. The corresponding system of equations admits

a solution if and only if d11 = d22 = d33 = 0, or equivalently, T̂ 1
1 = T̂ 2

2 = T̂ 3
3 = β. q.e.d.

This allows us to establish the following.

Theorem 3.13. The Lie group H = S̃L(2) does not support either a left invariant XCF
algebraic soliton or a left invariant RG-2 algebraic soliton that gives rise to a self-similar
solution to the RG-2 flow.

Proof. We will first establish that S̃L(2) does not support a left invariant algebraic XCF

soliton. By Lemma 3.12, g is an algebraic soliton for the XCF if and only if β = Ĥ1
1 = Ĥ2

2 =

Ĥ3
3 . According to (3.7), the cross curvature operator is Ĥ [g] = diag (K2K3,K1K3,K1K2)

and it follows that we must have β = 0 (and the algebraic soliton is actually a fixed point)
or the sectional curvature of the metric g must be constant. The restrictions on the possible

signatures of the Ricci tensor ([28], Corollary 4.7) show that S̃L(2) does not support a metric
of constant sectional curvature. Furthermore, β = 0 requires that at least two of three
principal sectional curvatures must be zero. From (3.5), we find that in this case the signature
of the Ricci tensor would be (+,+, 0), (0,−,−), or (0, 0, 0), none of which are possible for

a left invariant metric on S̃L(2). We conclude that S̃L(2) does not support an algebraic
XCF-soliton.

The proof that S̃L(2) does not support an algebraic soliton that gives rise to self sim-
ilar solution for the RG-2 flow follows similarly. According to Proposition 2.5 and Propo-
sition 2.8 we only need to concern ourselves with steady algebraic solitons (i.e., β = 0).

From Lemma 3.12, we find that D = R̂G [g] is a derivation of the Lie algebra if and only

R̂G
1

1 = R̂G
2

2 = R̂G
3

3 = 0. From (3.8) it follows that for D = R̂G [g] to be a derivation of the
Lie algebra the system of equations

α
(

(K2)
2

+ (K3)
2
)

= −2 (K2 +K3) = −2Rc11

α
(

(K3)
2

+ (K1)
2
)

= −2 (K3 +K1) = −2Rc22

α
(

(K1)
2

+ (K2)
2
)

= −2 (K1 +K2) = −2Rc33 (3.22)

must admit a solution. Again, relying on the permissible signatures of the Ricci tensor of a

left invariant Riemannian metric on S̃L(2) ((+,−,−) or (0, 0,−)), we conclude that (3.22)

does not admit any solutions. Thus, S̃L (2) does not support a steady algebraic RG-2 soliton
structure that gives rise to a self-similar solution of the RG-2 flow. q.e.d.
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3.7 SU(2)

Let H = SU(2) and let g be a left invariant metric on H. Let e1, e2, e3 be a Milnor frame
for g, with the corresponding Lie algebra structure determined by the non-zero brackets

[e2, e3] = e1, [e3, e1] = e2, [e1, e2] = e3,

and g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3.
Making the appropriate substitutions into (3.4) and (3.5), respectively, we find that the

principal sectional curvatures of g are

K1 = K (e2 ∧ e3) =
−3A2 +B2 + C2 + 2AB + 2AC − 2BC

4ABC

K2 = K (e1 ∧ e3) =
−3B2 + C2 +A2 + 2BC + 2BA− 2CA

4ABC

K3 = K (e1 ∧ e2) =
−3C2 +A2 +B2 + 2CA+ 2CB − 2BA

4ABC
. (3.23)

In finding the left invariant metrics on SU(2) that are algebraic solitons giving rise to self
similar solutions of the XCF or the RG-2 flow, we will again rely on the permissible signatures
of the corresponding Ricci tensor, which are stated in [28]. Namely, in [28] (Corollary 4.5),
Milnor establishes that the signature of the Ricci curvature tensor of a left invariant metric
on SU(2) must be (+,+,+), (+, 0, 0), or (+,−,−).

3.7.1 XCF

The cross curvature tensor of g is H [g] = H11ω
1 ⊗ ω1 +H22ω

2 ⊗ ω2 +H33ω
3 ⊗ ω3, where

H11 = AK2K3, H22 = BK1K3, H33 = CK1K2,

and the corresponding cross curvature operator Ĥ [g] =
(
Ĥi
j

)
is represented in the given

basis by
Ĥ [g] = diag (K2K3,K1K3,K1K2) , (3.24)

with K1,K2, and K3 as in (3.23).

Proposition 3.14. A left invariant metric g = Aω1⊗ω1 +Bω2⊗ω2 +Cω3⊗ω3 is a steady
algebraic soliton for the XCF on SU (2) if and only if g has constant sectional curvature
(i.e., A = B = C). Moreover, if g has constant sectional curvature, then g is an expanding
algebraic soliton for the +XCF and a shrinking algebraic soliton for the −XCF.

Remark 3.15. Note that Lemma 3.12 applies equally well to SU(2) and that the proof
carries through without any modifications.

Proof. From Lemma 3.12, it follows that for g to be an algebraic +XCF-soliton with deriva-
tion D = Ĥ [g] − βId we must have β = Ĥ1

1 = Ĥ2
2 = Ĥ3

3 . Since Ĥ1
1 = K2K3, Ĥ2

2 = K1K3

and Ĥ3
3 = K1K2, g being an algebraic soliton requires that β = 0 or that g have constant

sectional curvature (which only occurs when A = B = C). That g is an algebraic soliton
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when A = B = C is clear. To verify that there are no steady algebraic solitons for the XCF,
observe that β = 0 forces at least two of the three principal sectional curvatures to be equal
to zero. Since Rc [g] = A (K2 +K3)ω1 ⊗ ω1 +B (K1 +K3)ω2 ⊗ ω2 +C (K1 +K2)ω3 ⊗ ω3,
then having two of the three principal sectional curvatures equal to zero would force the
signature of the Ricci tensor to be (+,+, 0), (−,−, 0), or (0, 0, 0), none of which are possible.
Thus, we find that there are no left invariant metrics on SU(2) where at least two of the
three principal sectional curvatures are zero and we conclude that the only algebraic solitons
are the metrics of constant sectional curvature. q.e.d.

3.7.2 Algebraic RG-2 solitons

Proposition 3.16. A left invariant metric g = Aω1 ⊗ ω1 + Bω2 ⊗ ω2 + Cω3 ⊗ ω3 is an
algebraic soliton that gives rise to a self-similar solution for the RG-2 flow on SU (2) if and
only if

1. g has constant sectional curvature (A = B = C) and α = −8A,

2. A = 4
3B = 4

3C and α = − 9
2A,

3. A = B = 3
4C and α = −6A, or

4. A = C = 3
4B and α = −6A.

Remark 3.17. As previously noted, the RG-2 flow is not of physical interest when α is
negative and all of the algebraic solitons occur when α is negative.

Proof. Applying Lemma 3.12 we find that for a left invariant metric on SU(2) of the form

g = Aω1 ⊗ ω1 + Bω2 ⊗ ω2 + Cω3 ⊗ ω3, D = R̂G [g] is a derivation of the Lie algebra h if

and only if D = R̂G [g] = 0. Combined with (3.8), it follows that for D = R̂G [g] to be a
derivation of the Lie algebra then the system of equations

α
(

(K2)
2

+ (K3)
2
)

+ 2 (K2 +K3) = 0

α
(

(K3)
2

+ (K1)
2
)

+ 2 (K3 +K1) = 0

α
(

(K1)
2

+ (K2)
2
)

+ 2 (K1 +K2) = 0

(3.25)

must admit a solution. The system of equations above is equivalent to
K1 (αK1 + 2) = 0

K2 (αK2 + 2) = 0

K3 (αK3 + 2) = 0.

(3.26)

As noted in the proof of Proposition 3.14, SU(2) does not support a left invariant metric
where two or more of the principal sectional curvatures are equal to zero. Thus, the system
of equations (3.26) is satisfied when the principal sectional curvatures are all equal to − 2

α , or
when one of the principal sectional curvatures Kl = 0 and the remaining principal sectional
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curvatures Km and Kn are equal to − 2
α . In this case, the conditions on the permissible Ricci

tensors show that all algebraic solitons will have a Ricci tensor with signature (+,+,+) and
α will necessarily be negative. The exact solutions can then be obtained by using (3.23) to
find the appropriate values of A,B and C. q.e.d.

Remark 3.18. Note that steady algebraic RG-2 solitons are actually fixed points for the
RG-2 flow on SU(2).
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