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Abstract

In this paper we have examined various spectrum of the operator D (p, g, r, s) on the sequence
space x> defined by Musielak Orlicz function.

2010 Mathematics Subject Classification. 40H05. 0C99,46A35, 47A10
Keywords. Analytic sequence, Museialk-Orlicz function, double sequences, chi sequence, fine spectrum, approximate point
spectrum, defect spectrum and compression spectrum.

1 Introduction

Throughout w, x and A denote the classes of all, gai and analytic scalar valued single sequences,
respectively. We write w? for the set of all complex double sequences (), where m,n € N, the
set of positive integers. Then, w? is a linear space under the coordinate wise addition and scalar
multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on it was inves-
tigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Avinoy Paul
and B.C. Tripathy [6] , Turkmenoglu [7], Raj [8-9] and many others.

Let (2mn) be a double sequence of real or complex numbers. Then the series Z:no,n:1 Tmn 1S
called a double series. The double series Z;’f)nzl Tmn give one space is said to be convergent if and
only if the double sequence (S,,,)is convergent, where

Smn = 27321 zij(m,n=1,2,3,...) .

A double sequence x = (2, )is said to be double analytic if
1
SUPm,n ‘xmn|m+n < o0.

The vector space of all double analytic sequences are usually denoted by A%2. A sequence
& = (Tmn) is called double entire sequence if

1
mtn — () as m,n — oo.

|Zmn

The vector space of all double entire sequences are usually denoted by I'?. Let the set of sequences
with this property be denoted by A? and I'? is a metric space with the metric

d(z,y) = supm.n {|xmn — ymn|m%rw :m,n: 1,23, } , (1.1)
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forallz = {2, } andy = {ymn }inT2. Let ¢ = { finite sequences} .

th

Consider a double sequence 2 = (). The (m,n)!" section x[™" of the sequence is defined

by zlmmn = > i itorijdiy for all m,n €N,

0 0 .0 O

0 0 .0 O
5mn =

0 0 1 0

0 0 0 0

with 1 in the (m,n)"" position and zero otherwise.

A double sequence = () is called double gai sequence if ((m + n)! |;vmn|)ﬁ — 0 as
m,n — co. The double gai sequences will be denoted by 2.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [12]
as follows

Z(A)={z=(xx) Ew: (Azxy) € Z}

for Z = ¢, ¢y and £, where Az = x), — 241 for all k € N.
Here ¢, ¢y and £, denote the classes of convergent,null and bounded scalar valued single sequences
respectively. The difference sequence space bv, of the classical space ¢, is introduced and studied
in the case 1 < p < oo by Basar and Altay and in the case 0 < p < 1 by Altay and Basar. The
spaces ¢ (A), ¢y (A), s (A) and bv, are Banach spaces normed by

1
]| = |2a| + suprs1 |Azg| and ], = (S5, lzl")”, (1 < p < 00).

Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z(A) ={z = (Tmn) € w?: (Azmn) € Z}

where Z = A27X2 and Az, = (Zmn 71‘mn+1) - (xm—i-ln 7517m+1n+1) = Tmn — Tmn+l —
Tmtin + Tmiyint1 for all m,n € N. The generalized difference double notion has the following
representation: A"z, = A" lx, — A e — A e+ A™ e 0, and also
this generalized difference double notion has the following binomial representation: A"™x,, =

20 570 (0 (1) (7) s
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2 Definitions and preliminaries

Let X and Y be Banach metric spaces and T : X — Y be a bounded linear operator. The set of all
bounded linear operators on X into itself is denoted by B(X). The adjoint T%* : X* — X* of T is
defined by (T*¢) (x) = ¢ (Tx) for all ¢ € X* and = € X. Clearly, T™* is a bounded linear operator
on the dual space X*.

Let T : D (T) — X a linear operator, defined on D (T') C X, where D (T') denote the domain of
T and X is a complex normed linear space. For T' € B (X) we associate a complex number a with
the operator (T'— al) denoted by T, defined on the same domain D(T'), where I is the identity
operator. The inverse (T — af)~!, denoted by T,; ! is known as the resolvent operator of 7. Many
properties of T, and T,; ' depend on 4 and spectral theory is concerned with those properties. We
are interested in the set of all « in the complex plane such that T, ! exists. Boundedness of T}, ! is
another essential property. We also detemine o’s, for which the domain of T);! is dense in X.

A regular value is a complex number « of T" such that
(Ny) T ! exists
(No) T;!is bounded and
(N3) T ! is defined on a set which is dense in X.

The resolvent set of T' is the set of all such regular values « of T, denoted by p (T') . Its comple-
ment is given by C\p (T') in the complex plane C' is called the spectrum of T, denoted by o (T).
Thus the spectrum o (T) consists of those values of o € C, for which T, is not invertible.

We discuss about the point spectrum, continuous spectrum, residual spectrum, approximate
point spectrum, defect spectrum and compression spectrum. There are many different ways to
subdivide the spectrum of a bounded linear operator.Some of them are motivated by applications
to physics, in particular in quantum mechanics.

Definition 2.1. The point (discrete) spectrum o, (T, X) is the set of complex number « such that
T does not exist. Further a € o, (T, X) is called the eigen value of T.

Definition 2.2. The continuous spectrum o, (T, X) is the set of complex number « such that T, !
exists and satisfies (N3) but not (Nz) that is 7, ! is unbounded.

Definition 2.3. The residual spectrum o, (T, X) is the set of complex number « such that T, !
exists (and may be bounded or not) but not satisfy (IN3), that is the domain of T, ! is not dense
in X.

This is to note that in finite dimensional case, continuous spectrum coincides with the residual
spectrum and equal to the empty set and the spectrum consists of only the point spectrum.

Given a bounded linear operator T in a Banach metric space X, we call a sequence () € X
as a sequence for T if

d(@,0) = 1= [2mn — 0]l = 1 = [un (1.2)

and

d(Tz,0) =1 = ||T@mn — 0] = [|TZmn| — 0 as m,n — oo’ (1.3)

Definition 2.4. The approximate point spectrum
Oap (T, X) ={a € C: there exists (2.1),(2.2) sequence for T —al}.

Definition 2.5. The defect spectrum oy (T, X) = {a € C : T — ol is not surjective} .

Definition 2.6. The compression spectrum oq (T, X) = {a €EC:R(T—al)# X} .
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Theorem 2.7. (Goldberg’s classification of spectrum, see [13])

If X is Banach metric space and T' € B (X), then there are three possibilities for R (T) :
) R(T) = X.

) R(T) £ R(T) = X,

IIT) R ( ) # X. and

)T 1 exists and is continuous.
2)T~! exists but is discontinuous.
YT 1 does not exist.

Definition 2.8 (see [10). | An Orlicz function is a function M : [0, 0c0) — [0, 00) which is continuous,
non-decreasing and convex with M (0) = 0, M (z) > 0, for x > 0 and M (z) — oo as x — oo. If
convexity of Orlicz function M is replaced by M (z+vy) < M (x) + M (y), then this function is
called modulus function.

Lemma 2.9. Let M be an Orlicz function which satisfies Ay— condition and let 0 < § < 1. Then
for each t > 6, we have M (t) < K6~ 'M (2) for some constant K > 0.

Definition 2.10 (see [11). ]| Let n € N and X be a real vector space of dimension m, where n < m.
A real valued function dp(x1,...,2z,) = |[(d1(21,0),...,dn(2x,0))||, on X satistying the following
four conditions:

(1) I(d1(1,0),...,dn(zn,0))|l, = 0if and and only if d1(x1,0), ..., dn(xx, 0) are linearly dependent,
(i) ||(d1(21,0),...,dn(zn,0))||, is invariant under permutation,

(i) |(adq(z1,0), ..., ady(zn,0))]p, = |a| [[(di(x1,0), ... ,dn(xn, 0)]lp, @ € R

(iv) dp (21,91), (22,92) -+~ (Tn, ) = (dx (21,22, 20)P +dy (Y1, Y2, yu)?) /P forl < p < oo;
(o)

(v) d((@1,91), (22,92), (T, Yn)) = sup {dx (1, T2, @), dy (Y1, 92, Yn) } 5

for x1,x9, - xn € X, y1,Y2, - yn € Y is called the p product metric of the Cartesian product of n
metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is X = R equipped
with the following Euclidean metric in the product space is the p norm:

[(d1(21,0), . dn (2, 0)) =sup(|d6t( mn (€mn, 0))]) =

E
dn (9511, 0) di2(712,0) ... din(714,0)
do1 (221,0)  das (222,0) ... don (21n,0)
sup ’
dnl (xnla 0) dn2 (an, 0) dnn (xn'ru 0)

where x; = (241, x4,) € R" for each i =1,2,---n
If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect
to the p— metric. Any complete p— metric space is said to be p— Banach metric space.

Definition 2.11. Let A = (a?ﬁ?) denote a four dimensional summability method that maps the

complex double sequences x into the double sequence Ax where the k, /— th term of Ax is as follows:



The spectrum operator of x2... 29

(Az)e = 2oy Yony O T
such transformation is said to be non-negative if a};" is non-negative.
Let £ and F be two sequence spaces and A = (aﬂ?) be an four dimensional infinite matrix
of real or complex numbers a}'y', where m,n € N. Thén A : E — F, if for every sequence x =
(Zmn) e € E the sequence Az = {(Axz),,} is in F where (Az),, = > v | > > | ali"Tpn, provided

the right hand side converges for every k,f € N and z € F.
Consider the operator D (p,q,r,s), where

p

D(p,q,r,s) =

DO DO uL IR

o wmw IS8 o
S IRT OO
nw IR OO0 o
SR8 oo oo
_QV oo o oo
"W oo oo oo

Remark: In particular if we consider p=1,q=1,r=1,s=1 then D (p,q,r,s) = As.

Definition 2.12. Let f be an sequence of Musielak Orlicz functions and a sequence of spectrum
operator is defined as following :

3 (0 (D (p.a..8)) . (d (@1,0)d (22,0) -+ ,d (201, 0)) | = limtynnosoc
{17 (¢ (@@ a.r.9) ((m+n)tama) ™ (d (21,0)d (22,0), - d (wa-1,0)]],) | = 0}

(220 (D (pq.7.9)) (d (21,0) . d (22,0) -+ . d (o, 0)], | =
supmn {1 (7 (D (.0 7.)) [2n] /™ (d (21,0) 1 (22,0) -+ d (w1, 0))], )] < o]

3 Main results

Theorem 3.1. If a, 8,y = p,q,7, then a, 3,7 €

I8 [ (0 (D (90,7, 9))) . 1 e1,0) d (22,0) -+ d (1,00}, )

Proof. If a = p, 8 = ¢, = r then the operator D (p,q,r,s) —al — I —~vI = D (0,0,0,s). Since
R(D(0,0,0,s)) #

[Xfc (¢ (D(p,q,1,59))),||(d(x1,0),d(x2,0),- - 7d(:cn,l,()))Hp}. It is not invertible and hence

[Xfc (0 (D (p,q,r9))), lI(d(x1,0),d (22,0, - 7d(xn,170))||p} € III,. Therefore we have

H [Xfc (0 (D (p,q,1,9))),||(d(x1,0),d(z2,0),- - 7d(;zcn,l,O))Hp} H = 5 d(x,0). It is bounded below
and it has a bounded inverse. Hence «, 8, €
7L [X? (o (D(p,q,7,5))), I(d(21,0),d(22,0), - ,d(2n-1,0))[l, This completes the proof. i
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Lemma 3.2. [} (¢ (D (.4,7,5))). [(d (21,0),d (22,0) .-+ .d (-1, 0)),) =
{a.p,v€Cila—pl, 18—l [y —r[ <sl}.

Theorem 3.3. x4 (0ap (D (p,4.7.5))) (@ (21,0) d (22,0) -+ d (@-1,0), ) =
{a.8,7€C:la—pl,|B=ql, [y —rl<[s[}\{p}. {a} . {r}

Proof. We have |\3 (00p (D (p.4,7:5)))  [(d (21,0 ,d (¢2,0) -+ d (w-1,0)]], ) =
[ (0 (D (,4,7,9))).,11(d (21,0) ,d (22,0), ---,d<xn_1,o>>||,,)\

1113 [\ (0 (D (p,0,7,9))) 1d (21,0) ,d (2,0) -+ d (w0-1,0))]],)

3 (@0 (D (p.,7,5))  (d (21,0) . d (22,0) -+ ,d (w01, 0))],) =
{a,8,7€C:la—p|,I8—4q],|v—7r] <|s|}\ {p},{q},{r} is obtained by Lemma (3.2) and Theo-
rem (3.1). This completes the proof. I

Lemma 3.4. |:X?f (Up (D (p,q,T’, S))) ”( ('rl 0) ($27O) s 7d(zn—170))”p> = ¢

Theorem 3.5. [X? (0a (D (p,q,7,5))),||(d(x1,0),d(x2,0),- - ’d(xn_l’o))”p) =
{a, B,veC:la—pl|,|18—ql, |y =7 < s} \{p},{q} {r}

Proof. We have [\ (04 (D (p,q:7.))). (d (w1,0)  d (22,0) -+ ,d (w1, 0)),) =
3 (0 (D (p.7,9) 1 (21,0) . d (22,0) -+ 1 (w01, 0)) ) \

Is [\ (o (D (p.q,7,9))) |1 (1,0) 1 (w2, 0) - d(xn,1,0>>||p)

Now, I [\ (0 (D (p.4,7:9)))  (d (#1,0) ,d (¢2,0) .-+ d (wa1,0))]], ) =

115 [\ (0. (D (9,07, 5)))  (d (1,0) ,d (23,0) -+, d (1, 0))]], ) =

1113 [ (0 (D (p.4.7:9))) .| (@ (21,0)  d (22,0) .+ ,d (2,1, 0)) ) =

3 (0 (D (,0,7,9))) , (d (@1,0) ,d (22,0 -+ ,d (w0 -1,0))l,,) = ¢ by Lemma (3.4). Hence
[ (04 (D (p,0,7,9))) 1(d (21,0) ,d (w2, d Nl,)

3 (0 (D (p.7.))  (d (21,0) d (22,0) -+ ,d (w1, 0)], ) - W

( 0),--,d(
(d (21, 0),---,d( =

«In—lyo

Lemma 3.6. [X?c (or (D (p,q,7,9))),|I(d(21,0),d (22,0),- - 7d($n7170))”p) =
{a,B,veC:la—pl,[B—ql, [y =7 <[s]}.

Theorem 3.7. {X? (0co (D (p,q,1,9))), |l(d(x1,0),d(x2,0), - ,d(xn_l,O))Hp) =
{a.8,7€C:la—pl.|B=q|, [y =rl<[s[}\{p}. {a} . {r}

Proof. [\ (00 (D (p.4,7,9))), |(d (21,0) ,d(22,0) -+ ,d (2,1, 0))I|) =
Iin {X?‘ (0 (D (p,gq,7:5))),I(d(x1,0),d(22,0),- - ’d(xn7170>)||p) U
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111 [ (0 (D (0.7 5)) (0 21,0) . d @2,0) - d 21, )], ) U

115 [ (0 (D (po.7. ). (A 21.0) . d (@2,0) - d 1. 0))],) - Now,

1113 [\ (0 (D (9, 7,))) (@ (21,0) ,d (5, 0) -+, d (20-1,0)), ) U

1113 |33 (0 (D (9, 0,7,9)) 1(d (21,0)  d (22,0) -+, (- 1,o>>||,,)

43 (0, (D (9.7, 5)) . (@ (22,0),d (2,0 - d (a1, 0)], ) =
{a,8,7€C:la—p|,|8—ql,|y—7r| <|s|} is obtalned by Lemma (3.6). Again,

1115 [\ (0 (D (p,q:7.)))  [(d (1,0) ,d (22,0) -+ . d (@1, 0))], ) =

:Xfc (op (D (p,q,7,9))), I(d(x1,0),d(x2,0), - ,d(xn-1,0))]l ) = ¢ is obtained by Lemma (3.4).
Hence,

32 (000 (D (. .729))) . (d (20,0) 4 22.0) - . (1, 0)) ) =

{a,8.7€C:la—pl.18—ql.lv =7 <Is}\{p},{a},{r}. This completes the proof.

Lemma 3.8. The adjoint operator T of T is onto if and only if 7" has a bounded inverse.

Theorem 3.9. If a, 8,7 = p, q,7, then a, 3,7 €

10 36 (0 (D (9,7, 9) | (d (21,0 ,d (2,0) - . (21, 0))],)
Proof. By Lemma (3.6), o, 3,7 €
18 [ (0 (D (b 0.7, 9))) (@ (1.0) . d (22,0) - . (@ 1,0)) ) whenever o = p. § = g.7 = r
By Lemma (3.8), « = p, f = ¢,y = r is not in
X2 (0 (D (p.q.7.5))) .| (@ (21,0 ,d (2,0) .-+ ,d (¢-1,0)],,) and hence

-1
([x2 @ (D@9, I(d(21,0),d(@2,0), - d(@1,0))l,) —al = BI =4I ) exists. We have
to prove that

-1
([x?(a(D(p,q,r,s)) I(d(z1,0),d (22,0),- - ,d(xn-1,0 ||p>—ozl—ﬁl—'yl) must be con-
tinuous, hence it is show that
[\2 (0 (D 0.0.0,8))).[(d (@10 d 22.0) - d 21, O),) =l = AT 51 =

, d(x5p-1,0))]] ) is onto by Lemma (3.8). Given y =

d(23,0).- 0)
X3 (0(D(0,0,0,5)))., | (d (21,0) . (w2,0) .- 0)
d ),d(azg, 0),---,d
d(23,0).- 0)

)
(yun) € [A3(0(D(0,0,0,))). I (2n-1,0)l,) we can find = (2mn) €
|42 (0 (D (0,0,0,5))) . [I(d (21,0), )l,)

such that [\ (7 (D (0,0,0,8)), (@ (1,0),d (22,0) .-+ . d (w1, 0))],) " =

(43 (0(D(0,0,0,5))).,11(d (21,0) ,d (22,0) -+ ,d (w1, 0))| ) - Therefore we have 2 = Ly 1.0

(22,0
(22,0
(1,0
(22,0

X2, 3 (xn 1

which shows that [Xf (¢ (D(0,0,0,8))),]|(d(x1,0),d(z2,0),-- ,d(2xn_1,0))] ) is onto. This
completes the proof. I
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