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Abstract

In this paper we have examined various spectrum of the operator D (p, q, r, s) on the sequence
space χ2 defined by Musielak Orlicz function.
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1 Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single sequences,
respectively. We write w2 for the set of all complex double sequences (xmn), where m,n ∈ N, the
set of positive integers. Then, w2 is a linear space under the coordinate wise addition and scalar
multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on it was inves-
tigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Avinoy Paul
and B.C. Tripathy [6] , Turkmenoglu [7], Raj [8-9] and many others.

Let (xmn) be a double sequence of real or complex numbers. Then the series
∑∞
m,n=1 xmn is

called a double series. The double series
∑∞
m,n=1 xmn give one space is said to be convergent if and

only if the double sequence (Smn)is convergent, where

Smn =
∑m,n
i,j=1 xij(m,n = 1, 2, 3, ...) .

A double sequence x = (xmn)is said to be double analytic if

supm,n |xmn|
1

m+n <∞.

The vector space of all double analytic sequences are usually denoted by Λ2. A sequence
x = (xmn) is called double entire sequence if

|xmn|
1

m+n → 0 as m,n→∞.

The vector space of all double entire sequences are usually denoted by Γ2. Let the set of sequences
with this property be denoted by Λ2 and Γ2 is a metric space with the metric

d(x, y) = supm,n

{
|xmn − ymn|

1
m+n : m,n : 1, 2, 3, ...

}
, (1.1)
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forallx = {xmn}andy = {ymn} inΓ2. Let φ = {finite sequences} .

Consider a double sequence x = (xmn). The (m,n)th section x[m,n] of the sequence is defined
by x[m,n] =

∑m,n
i,j=0xijδij for all m,n ∈ N,

δmn =



0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...


with 1 in the (m,n)th position and zero otherwise.

A double sequence x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)
1

m+n → 0 as
m,n→∞. The double gai sequences will be denoted by χ2.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [12]
as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent,null and bounded scalar valued single sequences
respectively. The difference sequence space bvp of the classical space `p is introduced and studied
in the case 1 ≤ p ≤ ∞ by Başar and Altay and in the case 0 < p < 1 by Altay and Başar. The
spaces c (∆) , c0 (∆) , `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp = (
∑∞
k=1 |xk|

p
)
1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn − xmn+1 −

xm+1n + xm+1n+1 for all m,n ∈ N. The generalized difference double notion has the following
representation: ∆mxmn = ∆m−1xmn − ∆m−1xmn+1 − ∆m−1xm+1n + ∆m−1xm+1n+1, and also
this generalized difference double notion has the following binomial representation: ∆mxmn =∑m
i=0

∑m
j=0 (−1)

i+j

(
m
i

)(
m
j

)
xm+i,n+j .
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2 Definitions and preliminaries

Let X and Y be Banach metric spaces and T : X → Y be a bounded linear operator. The set of all
bounded linear operators on X into itself is denoted by B(X). The adjoint T ∗ : X∗ → X∗ of T is
defined by (T ∗φ) (x) = φ (Tx) for all φ ∈ X∗ and x ∈ X. Clearly, T ∗ is a bounded linear operator
on the dual space X∗.

Let T : D (T )→ X a linear operator, defined on D (T ) ⊂ X, where D (T ) denote the domain of
T and X is a complex normed linear space. For T ∈ B (X) we associate a complex number α with
the operator (T − αI) denoted by Tα defined on the same domain D(T ), where I is the identity
operator. The inverse (T − αI)−1, denoted by T−1

α is known as the resolvent operator of T. Many
properties of Tα and T−1

α depend on á and spectral theory is concerned with those properties. We
are interested in the set of all α in the complex plane such that T−1

α exists. Boundedness of T−1
α is

another essential property. We also detemine α′s, for which the domain of T−1
α is dense in X.

A regular value is a complex number α of T such that
(N1) T−1

α exists
(N2) T−1

α is bounded and
(N3) T−1

α is defined on a set which is dense in X.
The resolvent set of T is the set of all such regular values α of T, denoted by ρ (T ) . Its comple-

ment is given by C\ρ (T ) in the complex plane C is called the spectrum of T, denoted by σ (T ) .
Thus the spectrum σ (T ) consists of those values of α ∈ C, for which Tα is not invertible.

We discuss about the point spectrum, continuous spectrum, residual spectrum, approximate
point spectrum, defect spectrum and compression spectrum. There are many different ways to
subdivide the spectrum of a bounded linear operator.Some of them are motivated by applications
to physics, in particular in quantum mechanics.

Definition 2.1. The point (discrete) spectrum σp (T,X) is the set of complex number α such that
T−1
α does not exist. Further α ∈ σp (T,X) is called the eigen value of T.

Definition 2.2. The continuous spectrum σc (T,X) is the set of complex number α such that T−1
α

exists and satisfies (N3) but not (N2) that is T−1
α is unbounded.

Definition 2.3. The residual spectrum σr (T,X) is the set of complex number α such that T−1
α

exists (and may be bounded or not) but not satisfy (N3) , that is the domain of T−1
α is not dense

in X.
This is to note that in finite dimensional case, continuous spectrum coincides with the residual

spectrum and equal to the empty set and the spectrum consists of only the point spectrum.
Given a bounded linear operator T in a Banach metric space X, we call a sequence (xmn) ∈ X

as a sequence for T if
d (x, 0) = 1 =⇒ ‖xmn − 0‖ = 1 = ‖xmn‖ (1.2)

and
d (Tx, 0) = 1 =⇒ ‖Txmn − 0‖ = ‖Txmn‖ → 0 as m, n→∞.̄̄̄̄ (1.3)

Definition 2.4. The approximate point spectrum
σap (T,X) = {α ∈ C : there exists (2.1), (2.2) sequence for T − αI} .

Definition 2.5. The defect spectrum σd (T,X) = {α ∈ C : T − αI is not surjective} .

Definition 2.6. The compression spectrum σd (T,X) =
{
α ∈ C : R (T − αI) 6= X

}
.
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Theorem 2.7. (Goldberg’s classification of spectrum, see [13])
If X is Banach metric space and T ∈ B (X) , then there are three possibilities for R (T ) :

(I) R (T ) = X,
(II) R (T ) 6= R (T ) = X,
(III) R (T ) 6= X. and
(1)T−1 exists and is continuous.
(2)T−1 exists but is discontinuous.
(3)T−1 does not exist.

Definition 2.8 (see [10). ] An Orlicz function is a functionM : [0,∞)→ [0,∞) which is continuous,
non-decreasing and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) → ∞ as x → ∞. If
convexity of Orlicz function M is replaced by M (x+ y) ≤ M (x) + M (y) , then this function is
called modulus function.

Lemma 2.9. Let M be an Orlicz function which satisfies ∆2− condition and let 0 < δ < 1. Then
for each t ≥ δ, we have M (t) < Kδ−1M (2) for some constant K > 0.

Definition 2.10 (see [11). ] Let n ∈ N and X be a real vector space of dimension m, where n ≤ m.
A real valued function dp(x1, . . . , xn) = ‖(d1(x1, 0), . . . , dn(xn, 0))‖p on X satisfying the following
four conditions:
(i) ‖(d1(x1, 0), . . . , dn(xn, 0))‖p = 0 if and and only if d1(x1, 0), . . . , dn(xn, 0) are linearly dependent,
(ii) ‖(d1(x1, 0), . . . , dn(xn, 0))‖p is invariant under permutation,
(iii) ‖(αd1(x1, 0), . . . , αdn(xn, 0))‖p = |α| ‖(d1(x1, 0), . . . , dn(xn, 0))‖p, α ∈ R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)p + dY (y1, y2, · · · yn)p)

1/p
for1 ≤ p < ∞;

(or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of the Cartesian product of n
metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is X = R equipped
with the following Euclidean metric in the product space is the p norm:

‖(d1(x1, 0), . . . , dn(xn, 0))‖E = sup (|det(dmn (xmn, 0))|) =

sup



∣∣∣∣∣∣∣∣∣∣∣∣

d11 (x11, 0) d12 (x12, 0) ... d1n (x1n, 0)
d21 (x21, 0) d22 (x22, 0) ... d2n (x1n, 0)

.

.

.
dn1 (xn1, 0) dn2 (xn2, 0) ... dnn (xnn, 0)

∣∣∣∣∣∣∣∣∣∣∣∣


where xi = (xi1, · · ·xin) ∈ Rn for each i = 1, 2, · · ·n.
If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect
to the p− metric. Any complete p− metric space is said to be p− Banach metric space.

Definition 2.11. Let A =
(
amnk,`

)
denote a four dimensional summability method that maps the

complex double sequences x into the double sequence Ax where the k, `− th term of Ax is as follows:
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(Ax)k` =
∑∞
m=1

∑∞
n=1 a

mn
k` xmn

such transformation is said to be non-negative if amnk` is non-negative.

Let E and F be two sequence spaces and A =
(
amnk,`

)
be an four dimensional infinite matrix

of real or complex numbers amnk,` , where m,n ∈ N. Then A : E → F, if for every sequence x =

(xmn)k` ∈ E the sequence Ax = {(Ax)k`} is in F where (Ax)k` =
∑∞
m=1

∑∞
n=1 a

mn
k` xmn, provided

the right hand side converges for every k, ` ∈ N and x ∈ E.
Consider the operator D (p, q, r, s) , where

D (p, q, r, s) =



p 0 0 0 0 0 0 . . .
q p 0 0 0 0 0 . . .
r q p 0 0 0 0 . . .
s r q p 0 0 0 . . .
0 s r q p 0 0 . . .
0 0 s r q p 0 . . .
0 0 0 s r q p . . .
. . . . . . . . . .
. . . . . . . . . .

. . . . . . .
. . .


Remark: In particular if we consider p=1,q=1,r=1,s=1 then D (p, q, r, s) = ∆2.

Definition 2.12. Let f be an sequence of Musielak Orlicz functions and a sequence of spectrum
operator is defined as following :[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

]
= limm,n→∞{[

f
(
σ (D (p, q, r, s)) ((m+ n)! |xmn|)(1/m)+n

, ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p
)]

= 0
}
.[

Λ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

]
=

supmn

{[
f
(
σ (D (p, q, r, s)) |xmn|(1/m)+n

, ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p
)]

<∞
}
.

3 Main results

Theorem 3.1. If α, β, γ = p, q, r, then α, β, γ ∈
III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
.

Proof. If α = p, β = q, γ = r then the operator D (p, q, r, s) − αI − βI − γI = D (0, 0, 0, s) . Since
R (D (0, 0, 0, s)) 6=[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

]
. It is not invertible and hence[

χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

]
∈ III1. Therefore we have∥∥∥[χ2

f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p
]∥∥∥ = s

2 d (x, 0) . It is bounded below

and it has a bounded inverse. Hence α, β, γ ∈
III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p This completes the proof.
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Lemma 3.2.
[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} .

Theorem 3.3.
[
χ2
f (σap (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} \ {p} , {q} , {r}

Proof. We have
[
χ2
f (σap (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
\

III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
,[

χ2
f (σap (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} \ {p} , {q} , {r} is obtained by Lemma (3.2) and Theo-
rem (3.1). This completes the proof.

Lemma 3.4.
[
χ2
f (σp (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
= φ

Theorem 3.5.
[
χ2
f (σd (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} \ {p} , {q} , {r}

Proof. We have
[
χ2
f (σd (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
\

I3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
.

Now, I3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

II3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

III3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σp (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
= φ by Lemma (3.4). Hence[

χ2
f (σd (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
.

Lemma 3.6.
[
χ2
f (σr (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} .

Theorem 3.7.
[
χ2
f (σco (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} \ {p} , {q} , {r}

Proof.
[
χ2
f (σco (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)⋃
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III2

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)⋃
III3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
. Now,

III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)⋃
III2

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σr (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} is obtained by Lemma (3.6). Again,

III3

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=[

χ2
f (σp (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
= φ is obtained by Lemma (3.4).

Hence,[
χ2
f (σco (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
=

{α, β, γ ∈ C : |α− p| , |β − q| , |γ − r| ≤ |s|} \ {p} , {q} , {r} . This completes the proof.

Lemma 3.8. The adjoint operator T ∗ of T is onto if and only if T has a bounded inverse.

Theorem 3.9. If α, β, γ = p, q, r, then α, β, γ ∈
III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
.

Proof. By Lemma (3.6), α, β, γ ∈
III1

[
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
whenever α = p, β = q, γ = r.

By Lemma (3.8), α = p, β = q, γ = r is not in[
χ2
f (σp (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
and hence([

χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
− αI − βI − γI

)−1

exists. We have

to prove that([
χ2
f (σ (D (p, q, r, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
− αI − βI − γI

)−1

must be con-

tinuous, hence it is show that[
χ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)∗
− αI − βI − γI =[

χ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)∗
is onto by Lemma (3.8). Given y =

(ymn) ∈
[
Λ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
we can find x = (xmn) ∈[

Λ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
such that

[
χ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)∗
=[

Λ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)
. Therefore we have xmn = 1

sym−1,n−2

which shows that
[
χ2
f (σ (D (0, 0, 0, s))) , ‖(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))‖p

)∗
is onto. This

completes the proof.
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