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Abstract

Inspired by the advent of bi-unique range sets [2], we obtain a new bi-unique range sets,
with smallest cardinalities ever for the derivatives of meromorphic functions which improves
all the results obtained so far in some sense including a result of Banerjee-Bhattacharjee [4].
Furthermore at the last section we pose an open question for future research.
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1 Introduction, definitions and results

Let C = C ∪ {∞}, where C denotes the set of all complex numbers. In the paper by any
meromorphic function f we always mean it is defined on C. Here we consider standard notations of
Nevanlinna theory as explained in [8]. For any non-constant meromorphic function h(z) we define
S(r, h) by S(r, h) = o(T (r, h)), (r −→ ∞, r 6∈ E) where E denotes any set of positive real number
having finite linear measure.

It is well-known to all of us that Gross is the trailblazer of the value sharing problem to the set
sharing problem. Hence we have the following definition in the literature.

Definition 1.1. Let for a non constant meromorphic function f and S ⊂ C, Ef (S) =
⋃

a∈S{(z, p) ∈
C× N : f(z) = a with multiplicity p}

(
Ef (S) =

⋃
a∈S{(z, 1) ∈ C× N : f(z) = a}

)
, then we say f ,

g share the set S CM(IM) if Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
.

In 2001 Lahiri ([10], [11]) introduced the following notion of scalings between CM and IM which
further add essence to the uniqueness literature.

Definition 1.2 ([10], [11]). Let k be a nonnegative integer or infinity. For a ∈ C we denote by
Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted m times if m ≤ k
and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a value
a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 1.3. [10] For S ⊂ C we define Ef (S, k) = ∪a∈SEk(a; f), where k is a non-negative
integer a ∈ S or infinity. Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0)

In 1977, Gross [7] posed his famous question related to the uniqueness of entire functions sharing
sets. In connection to that the following question regarding the uniqueness of meromorphic functions
was asked.
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Question A ([18], [19]). Can one find two finite sets Sj (j = 1, 2) such that any two non-constant
meromorphic functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2 must be identical ?

Germane to the Question A, in 1996 Li-Yang[14] provided S1 with 1 element and S2 with 15
elements such that any two non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj)
for j = 1, 2 must be identical.

Later on Fang-Guo [6] improved the above result introducing such two sets where S1 contains
1 element and S2 contains 9 elements.

Lastly in 2002 Yi [18] improved all these results introducing S1 with 1 element and S2 with 8
elements.

Recently the present first author [1] improved the result of Yi [18] by relaxing the nature of
sharing the range sets under the aegis of weighted sharing. He established that there exist two
finite sets S1 containing 1 element and S2 containing 8 elements such that any two non-constant
meromorphic functions f and g satisfying Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 2) = Eg(S2, 2) must
be identical.

Later on in order to reduce the cardinality of S2 the research in this particular set up has
somehow been shifted to-wards considering the derivatives of meromorphic functions sharing one
or two sets. Below we are recalling some results.

Theorem A. [19] Let S1 = {∞} and S2 = {z : zn + azn−1 + b = 0}, where a, b are nonzero
constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 7), k be two positive
integers. Let f and g be two non-constant meromorphic functions such that Ef (S1) = Eg(S1) and
Ef(k)(S2) = Eg(k)(S2) then f (k) ≡ g(k).

In 2010, Banerjee-Bhattacharjee [3] proved the following two theorems which improved the
above results.

Theorem B. [3] Let Si, i = 1, 2 and k be given as in Theorem A. Let f and g be two non-
constant meromorphic functions such that Ef (S1, 1) = Eg(S1, 1) and Ef(k)(S2, 2) = Eg(k)(S2, 2)

then f (k) ≡ g(k).

Theorem C. [3] Let Si, i = 1, 2 be given as in Theorem A. Let f and g be two non-constant
meromorphic functions such that Ef (S1, 0) = Eg(S1, 0) and Ef(k)(S2, 3) = Eg(k)(S2, 3) then f (k) ≡
g(k).

In 2011, Banerjee-Bhattacharjee [4] further improved the above results in the following manner.

Theorem D. [4] Let Si, i = 1, 2 and k be given as in Theorem A. Let f and g be two non-
constant meromorphic functions such that Ef (S1, 0) = Eg(S1, 0) and Ef(k)(S2, 2) = Eg(k)(S2, 2)

then f (k) ≡ g(k).

Observe that in Theorems A-D, one set contains n elements where as the other set contains only
∞ and then the authors tried to reduce the value of n as much as possible.

Under such circumstances, patently the following question steps into the literature.

Question B. Is it possible to obtain better result for Question A considering two sets in C?

In this perspective the introduction of Bi-Unique range sets can be thought of as the inception
of a new direction in set sharing problem. Below we recall the definition.
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Definition 1.4. [2] A pair of finite sets S1 and S2 in C is called bi unique range sets for meromorphic
(entire) functions with weights m, k if for any two non-constant meromorphic (entire) functions f
and g, Ef (S1,m) = Eg(S1,m), Ef (S2, k) = Eg(S2, k) implies f ≡ g. We write Si’s i = 1, 2 as
BURSMm, k (BURSEm, k) in short. As usual if both m = k =∞, we say Si’s i = 1, 2 as BURSM
(BURSE).

In apt to this we recall the following theorem of H.X.Yi [17] which is most probably the first
BURSM prior to its introduction.

Theorem E. [17] Let S1 = {a+ b, a+ bω, . . . , a+ bωn−1}, S2 = {c1, c2} where ω = e
2πi
n and b 6= 0,

c1 6= a, c2 6= a, (c1 − a)n 6= (c2 − a)n, (ck − a)n(cj − a)n 6= b2n (k, j = 1, 2) are constants. If n ≥ 9
then Then Si’s i = 1, 2 are BURSM.

Afterwards in 2012 Yi and Li [13] improved the above theorem providing the following result.

Theorem F. [16] Let S1 = {0, 1}, S2 =
{
z : (n−1)(n−2)

2 zn − n(n− 2)zn−1 + n(n−1)
2 zn−2 + 1 = 0

}
,

where n(≥ 5) is an integer. Then Si’s i = 1, 2 are BURSM.

The above result is obviously better than all the results discussed so far in the direction of
Question A. So Theorem F provides the affirmative answer of Question B and enriches the notion
of BURSM.

Observe that the set S1 in Theorem F is nothing but the set of zeros of the derivatives of the
polynomial whose zeros are used to form the set S2. With the help of this inherited property
the first author tried to generalize the polynomial used to form S2 of Theorem F and obtain the
following result.

Theorem G. [2] Let S1 = {0, 1}, S2 =
{
z : (n−1)(n−2)

2 zn − n(n− 2)zn−1 + n(n−1)
2 zn−2 − c = 0

}
,

where n(≥ 5) is an integer and c 6= 0, 1, 1
2 is a complex number such that c2− c+ 1 6= 0. Then Si’s

i = 1, 2 are BURSM1, 3, BURSM3, 2.

Clearly Theorem G directly improves Theorem F. Notice that the polynomial used in Theorems
F - G are of the same type. Recently to-wards finding different BURSM, present authors proved
the following theorem with a different type of polynomial.

Theorem H. [5] Let S1 = {0, c1, c2}, S2 = {z : z5 + az3 + b = 0} where a and b be two nonzero
constants such that z5+az3+b = 0 has no multiple root. If Ef (S1, p) = Eg(S1, p), and Ef (S2,m) =
Eg(S2,m), with 2p(4m− 9) > 15, then f ≡ g.

If we minutely delve into the construction of BURSM’s used in Theorems F - H then we see
that the underlying polynomial whose zeros are forming S2 is the backbone of a BURSM and S1 is
the collection of all the zeros of derivative of the polynomial whose zeros generate S2. Also we note
that in Theorems F - H the cardinality of the second set could not further be diminished rather
for the variation of the polynomial corresponding to S2 the cardinality of S1 increases even if the
cardinality of S2 remains the same. Naturally the following two questions comes in mind in terms
of BURSM concerning the improvements of all the above results.

Question 1.1. Is it possible to further reduce the cardinality as well as relax the nature of sharing
the set S2 ?
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Question 1.2. Is there any compulsion to consider all the zeros of derivative of the underlying
polynomial to form S1 ?

In this paper we shall show that if we consider the derivatives of the meromorphic function
instead of the original function as used in Theorems A-D then we can answer Question 1.1 and
1.2. We have the next theorem as the main result of this paper which is also the best result ever
obtained till today in terms of BURSM for a special class of meromorphic function. Henceforth
throughout the paper for an integer n and a non-zero constant a, let us denote −an−1

n by c1.

Theorem 1.1. Let S1 = {0}, S2 = {z : zn + azn−1 + b = 0}, where n(≥ 4) be an integer
and a and b be two nonzero constants such that zn + azn−1 + b has no multiple zero. If for
two non constant meromorphic functions f and g, with f (k) and g(k) having no simple c1 points;
Ef(k)(S1, 1) = Eg(k)(S1, 1) and Ef(k)(S2, 2) = Eg(k)(S2, 2), then f (k) ≡ g(k).

The following example shows that in Theorem 1.1 a 6= 0 is necessary.

Example 1.1. Let f(z) = 4
√
−b ez and g(z) = (−1)k 4

√
−b e−z and S1 = {0}, S2 = {z : z4 +b = 0}.

Then f (k), g(k) share (Si,∞), i = 1, 2 but f (k) 6≡ g(k).

The next example shows that S2 of Theorem 1.1 can not be replaced by any arbitrary set
containing 4 elements.

Example 1.2. Let S1 = {0} and S2 = {i,−1,−i, 1}. Then for the functions f = iez and g = −ez
we have f (k), g(k) share (Si,∞), i = 1, 2 but f (k) 6≡ g(k).

Though for the standard definitions and notations of the value distribution theory we refer to
[8], we now explain some notations which are frequently used in the paper.

Definition 1.5. [9] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the counting function of simple
a points of f . For a positive integer m we denote by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting
function of those a points of f whose multiplicities are not greater(less) than m where each a point
is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the a-points of f we
ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined analo-
gously.

Definition 1.6 ([10], [11]). Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplicities of the
corresponding a-points of g. Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and in particular if f and g share
(a, p) then N∗(r, a; f, g) ≤ N(r, a; f |≥ p+ 1) = N(r, a; g |≥ p+ 1).

Definition 1.7. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f | g 6= b1, b2, . . . , bq)
the counting function of those a-points of f , counted according to multiplicity, which are not the
bi-points of g for i = 1, 2, . . . , q.
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2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be
two non-constant meromorphic functions defined in C as follows.

F =
P (f (k))

−b
=

(
f (k)

)n−1
(f (k) + a)

−b
, G =

P (g(k))

−b
=

(
g(k)

)n−1
(g(k) + a)

−b
, (2.1)

where n(≥ 2) and k are two positive integers and for a meromorphic function h we put
P (h) = (h)n + a(h)n−1. Henceforth we shall denote by H and Φ the following two functions

H =

(
F
′′

F ′
− 2F

′

F − 1

)
−

(
G
′′

G′
− 2G

′

G− 1

)
(2.2)

and

Φ =
F
′

F − 1
− G

′

G− 1
. (2.3)

Lemma 2.1. ([11], Lemma 1) Let F , G be two non-constant meromorphic functions sharing (1, 1)
and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let S1 and S2 be defined as in Theorem 1.1 and F , G be given by (2.1). If for two non-
constant meromorphic functions f and g, Ef(k)(S1, p) = Eg(k)(S1, p), Ef(k)(S2, 0) = Eg(k)(S2, 0),
where 0 ≤ p <∞ and H 6≡ 0 then

N(r,H) ≤ N(r, 0; f (k) |≥ p+ 1) +N(r,∞; f) +N(r,∞; g)

+N∗(r, 1;F,G) +N0(r, 0;F
′
) +N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are not the zeros of

f (k)(F − 1) and N0(r, 0;G
′
) is similarly defined.

Proof. We note that F
′

= (f(k))n−2(nf(k)+a(n−1))f(k+1)

−b , G
′

= (f(k))n−2(ng(k)+a(n−1))g(k+1)

−b and

F
′′

=
(f (k))n−2(nf (k) + a(n− 1))f (k+2) + (f (k))n−3(n(n− 1)f (k) + a(n− 1)(n− 2))(f (k+1))

2

−b
,

G
′′

=
(g(k))n−2(ng(k) + a(n− 1))g(k+2) + (g(k))n−3(n(n− 1)g(k) + a(n− 1)(n− 2))(g(k+1))

2

−b
.

So

H =
(n− 1)(nf (k) + a(n− 2))f (k+1)

f (k)(nf (k) + a(n− 1))
− (n− 1)(ng(k) + a(n− 2))g(k+1)

g(k)(ng(k) + a(n− 1))

+
f (k+2)

f (k+1)
− g(k+2)

g(k+1)
−

(
2F
′

F − 1
− 2G

′

G− 1

)
.

Clearly F and G share (1, 0). Since H has only simple poles, the lemma can easily be proved by
simple calculation. q.e.d.
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Lemma 2.3. [4] Let f and g be two meromorphic functions sharing (1,m), where 1 ≤ m < ∞.
Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
m− 1

2

)
N∗(r, 1; f, g) ≤ 1

2
[N(r, 1; f) +N(r, 1; g)] .

Lemma 2.4. [15] Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where an 6= 0 and
bm 6= 0 Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.5. Let S1 and S2 be defined as in Theorem 1.1 and F , G be given by (2.1). If for two non-
constant meromorphic functions f and g, Ef(k)(S1, p) = Eg(k)(S1, p), Ef(k)(S2,m) = Eg(k)(S2,m),
0 ≤ p <∞ and Φ 6≡ 0 then

(3p+ 2)
{
N
(
r, 0; f (k) |≥ p+ 1

)}
≤ N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

Proof. By the given condition clearly F and G share (1,m). Also we see that

Φ =
(f (k))n−2

(
nf (k) + a(n− 1)

)
f (k+1)

−b(F − 1)
−

(g(k))n−2
(
ng(k) + a(n− 1)

)
g(k+1)

−b(G− 1)
.

Let z0 be a zero of f (k) with multiplicity r. Since Ef(k)(S1, p) = Eg(k)(S1, p) then that would be
a zero of Φ of multiplicity (n − 2)r + r − 1 i.e., of multiplicity (n − 1)r − 1 if r ≤ p and a zero of
multiplicity at least (n− 2)(p+ 1) + p i.e., a zero of multiplicity at least (n− 1)p+ (n− 2) ≥ 3p+ 2
if r > p. So by a simple calculation we can write

{3p+ 2}
{
N(r, 0; f (k) |≥ p+ 1)

}
≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f (k)) + S(r, g(k)).

q.e.d.

Lemma 2.6. Let S1, S2 be defined as in Theorem 1.1 and F , G be given by (2.1). If for two
non-constant meromorphic functions f and g, with f (k) and g(k) having no simple c1 points;
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Ef(k)(S1, p) = Eg(k)(S1, p), Ef(k)(S2,m) = Eg(k)(S2,m), where 0 ≤ p < ∞, 2 ≤ m < ∞ and
H 6≡ 0, then

n {T (r, f (k)) + T (r, g(k)}

≤ 2N(r, 0; f (k)) +N
(
r, 0; f (k) |≥ p+ 1

)
+ 2{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]−

(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f (k)) + S(r, g(k)).

Proof. By the second fundamental theorem we get

n{T (r, f (k)) + T (r, g(k))} (2.4)

≤ N(r, 1;F ) +N(r, 0; f (k)) +N(r,∞; f) +N(r, 1;G)

+N(r, 0; g(k) +N(r,∞; g)−N0(r, 0; f (k+1))

−N0(r, 0; g(k+1)) + S(r, f (k)) + S(r, g(k)).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

N(r, 1;F ) +N(r, 1;G) (2.5)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F |= 1)−

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f (k) |≥ p+ 1)

+N(r,∞; f) +N(r,∞; g)−
(
m− 3

2

)
N∗(r, 1;F,G) +N0(r, 0;F

′
) +N0(r, 0;G

′
)

+S(r, f (k)) + S(r, g(k)).

Using (2.5) in (2.4) and noting that N(r, c1; f (k) |= 1) = S(r, f (k)), N(r, c1; g(k) |= 1) = S(r, g(k))
and N(r, 0; f (k)) = N(r, 0; g(k)), the lemma follows. q.e.d.

Lemma 2.7. Let f , g be two non-constant meromorphic functions such that

Ef(k)(S1, 0) = Eg(k)(S1, 0). Then
(
f (k)

)n−1 (
f (k) + a

)
≡
(
g(k)

)n−1 (
g(k) + a

)
implies

f (k) ≡ g(k), where n (≥ 2) is an integer, k is a positive integer and a is a nonzero finite constant.

Proof. Since Ef(k)(S1, 0) = Eg(k)(S1, 0) and(
f (k)

)n−1 (
f (k) + a

)
≡
(
g(k)

)n−1 (
g(k) + a

)
. (2.6)

Therefore clearly from (2.6) we conclude that f (k) and g(k) share (0,∞) and (∞,∞). We also note
that Θ

(
∞; f (k)

)
+ Θ

(
∞; g(k)

)
≥ 2− 2

k+1 = 2k
k+1 > 0. Now the lemma can be proved in the line of

proof of Lemma 3 [13]. q.e.d.

Lemma 2.8. Let S1, S2 be defined as in Theorem 1.1. If for two non-constant meromorphic
function f and g, Ef(k)(S1, 0) = Eg(k)(S1, 0), Ef(k)(S2,m) = Eg(k)(S2,m) where 2 ≤ m < ∞ and
Φ 6≡ 0. Also let ω1, ω2 . . . ωn are the members of the set S2. Then

N∗(r, 1;F,G) ≤ 2

2m− 1

[
N(r,∞; f) +N(r,∞; g)

]
+ S(r, f (k)) + S(r, g(k)).
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Proof. First we note that ‘0’ is not a member of S2. Therefore proceeding as follows with the help
of Lemma 2.5 for p = 0 we get,

N∗(r, 1;F,G)

≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(
N(r, 1;F )−N(r, 1;F )

)
≤ 1

m

 n∑
j=1

(
N(r, ωj ; f

(k))−N(r, ωj ; f
(k))
)

≤ 1

m

[
N
(
r, 0; f (k+1) | f (k) 6= 0

)]
≤ 1

m

[
N

(
r,∞;

f (k)

f (k+1)

)]
≤ 1

m

[
N

(
r,∞;

f (k+1)

f (k)

)]
+ S(r, f (k))

≤ 1

m

[
N(r, 0; f (k)) +N(r,∞; f)

]
+ S(r, f (k))

≤ 1

2m

[
3N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)

]
+ S(r, f (k)) + S(r, g(k)),

which clearly implies

N∗(r, 1;F,G) ≤ 1

2m− 1

[
3N(r,∞; f) +N(r,∞; g)

]
+ S(r, f (k)) + S(r, g(k)). (2.7)

Similarly, applying the above method for G instead of F we can obtain

N∗(r, 1;F,G) ≤ 1

2m− 1

[
3N(r,∞; g) +N(r,∞; f)

]
+ S(r, f (k)) + S(r, g(k)). (2.8)

Now adding (2.7) and (2.8) we get the desired result. q.e.d.

3 Proof of the theorem

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share (1, 3). We consider the
following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.6 for m = 2, Lemma 2.5 for p = 0 and p = 1,
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Lemma 2.8 for m = 2 and Lemma 2.4 we obtain,

n {T (r, f (k)) + T (r, g(k))}

≤ 2N(r, 0; f (k)) +N(r, 0; f (k) |≥ 2) + 2{N(r,∞; f) +N(r,∞; g)} − 1

2
N∗(r, 1;F,G)

+
1

2
[N(r, 1;F ) +N(r, 1;G)] + S(r, f (k)) + S(r, g(k))

≤
{

1 +
1

5
+ 2

}{
N(r,∞; f) +N(r,∞; g)

}
+

{
1 +

1

5
− 1

2

}
N∗(r, 1;F,G)

+
1

2
[N(r, 1;F ) +N(r, 1;G)] + S(r, f (k)) + S(r, g(k))

≤
{

16

5
+

14

30

}{
N(r,∞; f) +N(r,∞; g)

}
+

1

2
[N(r, 1;F ) +N(r, 1;G)] + S(r, f (k)) + S(r, g(k))

≤
{
n

2
+

11

3(k + 1)

}
[T (r, f (k)) + T (r, g(k))] + S(r, f (k)) + S(r, g(k)),

which gives a contradiction for n ≥ 4.
Subcase 1.2 Let H ≡ 0. Then

1

F − 1
≡ A

G− 1
+B, (3.1)

where A(6= 0), B are constants. Also T (r, F ) = T (r,G) +O(1). i.e.,

nT (r, f (k)) = nT (r, g(k)) +O(1). (3.2)

We now consider the following cases.
Subcase 1.2.1.
Let B = 0. From (3.1) we get

1

F − 1
≡ A

G− 1
.

i.e.,
G
′
≡ AF

′
.

i.e.,
Φ ≡ 0,

a contradiction.
Subcase 1.2.2.
If B 6= 0 then

F − 1 ≡ G− 1

BG+A−B
. (3.3)

Subcase 1.2.2.1.
If A−B 6= 0, then from (3.3) we get

F − 1 ≡ G− 1

B
(
G− (B−A

B )
) . (3.4)
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Subcase 1.2.2.1.1.
If g(k) − c1 is a repeated factor of G− B−A

B then

(g(k) − c1)2
n−2∏
i=1

(g(k) − αi) ≡
1

B

G− 1

F − 1
,

where g(k) − αi’s (i = 1, 2, . . . , n − 2) are the distinct simple factors of G − B−A
B . Since B−A

B 6= 1

therefore c1 points and αi points of g(k) are neutralised by the poles of f . Now if z0 is a zero of
g(k)−c1 of multiplicity p, then it would be pole of f (k) of multiplicity q such that 2p = nq ≥ n(k+1).
Similarly for a zero of g(k) − αi of multiplicity r is a pole of f (k) of multiplicity s (say) we have
r = ns ≥ n(k + 1). So in view of the second fundamental theorem and (3.2) we get

(n− 2)T (r, g(k)) ≤
n−2∑
i=1

N(r, αi; g
(k)) +N(r, c1; g(k)) +N(r,∞; g) + S(r, g(k))

i.e.,

(n− 2)T (r, g(k)) ≤ (n− 2)

n(k + 1)
T (r, g(k)) +

2

n(k + 1)
T (r, g(k)) +

1

k + 1
T (r, g(k)) + S(r, g(k)),

which gives a contradiction for n ≥ 4.
Subcase 1.2.2.1.2. If (g(k) − c1) is not a factor of G− B−A

B then

n∏
i=1

(g(k) − βi) ≡
1

B

G− 1

F − 1
,

where g(k) − βi’s (i = 1, 2, . . . , n) are the distinct simple factors of G − B−A
B . Clearly from above

we get
n∑

i=1

N(r, βi; g
(k)) = N(r,∞; f).

Again by the second fundamental theorem we get

(n− 1)T (r, g(k)) ≤
n∑

i=1

N(r, βi; g
(k)) +N(r,∞; g) + S(r, g(k))

≤ N(r,∞; f) +N(r,∞; g) + S(r, g(k)),

i.e., in view of (3.2) (
n− 1− 2

k + 1

)
T (r, g(k)) ≤ S(r, g(k)),

which is a contradiction for n ≥ 3.
Subcase 1.2.2.2.
If A−B = 0, then from (3.3) we get

B

−b

(
g(k)

)n−1
(g(k) + a) ≡ G− 1

F − 1
.
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Using the similar argument as in Subcase 1.2.2.1.1. we get that zeros and ‘−a’ points of g(k) are
nutralised by the poles of f . Also we have f (k), g(k) share (0, 0) therefore from the above equation
we get that 0 is an e.v.P. of g(k) and

N(r,−a; g(k)) ≤ 1

n(k + 1)
T (r, f (k)).

So by the second fundamental theorem and (3.2) we get

T (r, g(k)) ≤ N(r,−a; g(k)) +N(r, 0; g(k)) +N(r,∞; g) + S(r, g(k))

≤
{

1

n(k + 1)
+

1

k + 1

}
T (r, g(k)) + S(r, g(k)),

a contradiction for n ≥ 3.
Case 2. Suppose that Φ ≡ 0. On integration we get

(F − 1) ≡ A(G− 1) (3.5)

for some non-zero constant A. Here also in view of Lemma 2.4, (3.2) holds. Since by the given
condition of the theorem Ef (S1, 0) = Eg(S1, 0) we consider the following subcases.
Subcase 2.1. Suppose A 6= 1 then from (3.5) we get

F

A
≡ G+

1−A
A

. (3.6)

Now let us consider the following subcases.
Subcase 2.1.1. Suppose G+ 1−A

A has n− 2 distinct zeros, ηi, i = 1, 2, . . . , n− 2 and a double zero
at c1. Then from (3.6) we get

(f (k))n−1(f (k) + a)

A
≡
(
g(k) − c1

)2
(g(k) − η1)(g(k) − η2) . . . (g(k) − ηn−2). (3.7)

Since f (k), g(k) share (0, 0), then from (3.7) ‘0’ is clearly an e.v.P of f (k) and hence e.v.P. of g(k).
So again from the second fundamental theorem we get

(n− 1)T (r, g(k))

≤
n−2∑
i=1

N(r, ηi; g
(k)) +N(r, c1; g(k)) +N(r, 0; g(k)) +N(r,∞; g) + S(r, g(k))

≤ N(r,−a; f (k)) +
1

k + 1
T (r, g(k)) + S(r, g(k)),

which in view of (3.2) gives a contradiction for n ≥ 3.
Subcase 2.1.2 Suppose G+ 1−A

A has n distinct zeros, ξi, i = 1, 2, . . . , n. Then (3.5) takes the form

(f (k))n−1(f (k) + a)

A
≡ (g(k) − ξ1)(g(k) − ξ2) . . . (g(k) − ξn).
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Similarly as above we can prove here that ‘0’ is an e.v.P. of g(k). Then from the second fundamental
theorem we get

nT (r, g(k))

≤
n∑

i=1

N(r, ξi; g
(k)) +N(r, 0; g(k)) +N(r,∞; g(k)) + S(r, g(k))

≤ N(r,−a; f (k)) +
1

k + 1
T (r, g(k)) + S(r, g(k)),

which in view of (3.2) gives a contradiction for n ≥ 3.
Subcase 2.2. Suppose A = 1 then we have F ≡ G, which in view of Lemma 2.7 implies f (k) ≡ g(k).

q.e.d.

4 Concluding remark and an open question

Theorem 1.1 shows that all the zeros of the derivatives of the underlying polynomial is not
necessary to form S1. Also Example 1.2 shows that S2 of Theorem 1.1 cannot be replaced by any
arbitrary set containing 4 elements. Using the method adopted to prove Theorem 1.1 one can verify
that for any underlying polynomial of a BURSM the lower bound of the degree of the polynomial
cannot be reduced further. Therefore the following question is ineludible for the construction of
BURSM.

Question 4.1. Does there exist any pair of Bi-Unique range sets, even if for a special class of
meromorphic functions, sum of whose cardinalities are less than 5?
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