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Abstract

We extend the fractional actionlike variational approach where we substitute the standard
Lagrangian by a non-standard power-law Lagrangian holding a generalized derivative opera-
tor. We focus on degenerate Lagrangians for the constructed fractional formalism where we
show that non-linear oscillators with damping solutions may be obtained from degenerate non-
standard Lagrangians which are linear in velocities. We explore as well the case of 2nd-order
derivatives non-standard Lagrangians and we study the case where Lagrangians are linear in
accelerations where damping solutions are obtained as well. It was observed that these exten-
sions give another possibility to obtain more fundamental aspects which may have interesting
classical effects.
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1 Introduction

It is well-known that the calculus of variations is applied fruitfully in sciences and engineering
as it is capable to describe the dynamical behavior of a given system by means of the Euler-
Lagrange equation. Regrettably the standard approach is limited as it somewhat fails to describe
nonconservative systems. A valid and mathematically solid novel or an extended approach is
therefore required. One possible extension of the calculus of variations is based on the fractional
calculus. In fact, in recent years, there has been lot of works dedicated to the fractional actionlike
variational approach with fractional derivatives and fractional integrals where different forms of the
fractional Euler-Lagrange equations were obtained depending on the type of fractional functional or
fractional Lagrangian systems used [1, 3, 26, 27, 31, 39, 40]. Most recent and broadest overviews of
applications of the fractional calculus of variations are found in [34, 36]. One successful version of the
fractional calculus of variations is known as the fractional actionlike variational approach (FALVA)
formulated in details in [26, 27]. An advantage of this approach is that dissipative dynamical
systems are described appropriately.

Besides, there are already a series of arguments which make obvious that the notion of non-
standard Lagrangians (NSL) introduced by Arnold in his classic masterpiece book [2] play an
important role in different domains of applied mathematics, e.g. nonlinear differential equations
[7, 8, 9, 10] and dissipative dynamical systems [12, 13, 14, 15, 16, 17, 21, 37, 38, 41, 42, 44] as well
as in theoretical physics [18, 19, 20, 22]. In general, NSL are characterized by a deformed kinetic
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term and a deformed potential function, yet the Euler-Lagrange equation that results from the
standard calculus of variations lead to equations of motion that correspond to physically attractive
nonlinear dynamical systems. In [17], we have introduced two different types of NSL: the so-
called exponentially NSL and the power-law NSL. The resulting equations of motion are based
on the standard calculus of variations and it was observed that both types exhibit interesting
dynamical properties. More recently, in [44], the application of generalized fractional operators was
applied to NSL and the consequential approach has proved to be useful to understand dissipative
systems. More recently degenerate NSL approach was also applied to nonlinear oscillators [21]
where it was observed that the theory describes correctly oscillators characterized by a position-
dependent mass which represent an interesting class of problem in different field of sciences and
engineering. However, as it is well-known there exist different types of oscillators derived usually
from non-degenerate Lagrangians, e.g. oscillators characterized by time-dependent masses and time-
dependent frequencies depending on the dynamical problem under study (see [28] and references
therein). These types of oscillators could not be derived from degenerate Lagrangians which in
their turns fail to portray damping oscillators.

In this paper, we would like to show that by merging the FALVA and degenerate NSL which
are linear in velocities (mainly the power-law NSL (NSPL)) for the case of 1st-order Lagrangians
derivative and linear in accelerations for the case of 2nd-order Lagrangians derivative, damping
oscillators may be obtained directly. In addition, we will show that exotic complexified oscillators
represent one particular class of solution. However in our approach, the time-derivative operator
is replaced by a new type of generalized derivative operator (GDO) motivated from non-standard
dynamics. More precisely, it was observed that in the theory of NSL discussed in [17] the total
derivative operator which is defined by d/dt = ∂/∂t+q̇∂/∂q+q̈∂/∂q̇ occurs naturally in the modified
Euler-Lagrange equations. We will show that the fractional approach constructed in this paper will
give us the opportunity to acquire more fundamental aspects on the theory of nonlinear damping
oscillators which may have motivating classical consequences in dissipative dynamical systems.

The paper is organized as follows: In Sec. 2, we introduce the FALVA with an NSPL and
a GDO, then we construct the corresponding Lagrangian formalism; in Sec. 3 we extend the
formalism for the case of higher-order derivatives NSPL; finally conclusions are given in Sec. 4.
The paper is accompanied by a number of illustrations.

2 FALVA with non-standard power-law degenerate Lagrangians and a
GDO

We start by introducing the following definition:
Definition 2.1. The generalized derivative operator (GDO) of 1st-order is given by :

Dα =
d

dt
+ αq̇

∂

∂q
, (1)

where αis a real parameter and α 6= −1. Obviously we have D0 = d/dt.
It is worth noting that Dαq = (1+α)q̇, Dαq

n = (1+α)qn−1q̇, Dαq̇ = q̈ DαL
1+ξ = (1+ξ)LξDαL

and d(Dαq)/dt = (1 + α)q̈. For α = −1, the following relations hold as well: D−1q = 0, D−1q
n =

0, D−1q̇ = q̈ D−1L
1+ξ = (1 + ξ)LξD−1L, d(D−1q)/dt = 0 and hence the problem looses its

mathematical aspects.
Definition 2.2. If L(Dαq, q, t) : R2n+1 → R be a sufficiently smooth differentiable function

subject to the boundary conditions q(0) = A and q(τ) = B, then we define the extended fractional
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actionlike action functional defined on the space of CA,B of C2 curves q ∈ [0, t]→ Rn for the case
of an NSPL by S : CA,B → R:

S =
1

Γ(β)

τ∫
0

L1+ξ(Dαq, q, t)(τ − t)β−1dt, (2)

where ξ ∈ Γ is the Euler gamma function, βis a real or complex parameter, τ is the observer time
and t is the intrinsic time with t 6= τ .

It is notable that the eventuality for the action S to be complexified is not ruled out in our
arguments. Examples of complexified action dynamics have already been studied in connection
with the problem of complexified Hamiltonian and Lagrangian dynamics [35, 43] and they have
motivating theoretical interest in both classical and quantum theories.

The problem is to find a function q for which the functional (2) subject to the given boundary
conditions has an extremum. It is notable that the assumption q ∈ C1[0, t]is sufficient in our
arguments.

Remark 2.1. When β = 1, equation (1) is reduced to the action functional for the case of a
NSL introduced in [14] and when ξ = 0, we find the action functional introduced in [26, 27], i.e.
the FALVA approach.

Theorem 2.1 (Generalized Fractional Euler–Lagrange equations). If q(t)is a solution
to the problem of finding a function q(t) that extremizes the fractional functional (2) subject to
given boundary conditions, then the following generalized fractional Euler-Lagrange equation holds:

∂L(Dαq, q, t)

∂q
− 1

Lξ(Dαq, q, t)
Dα

(
Lξ(Dαq, q, t)

∂L(Dαq, q, t)

∂Dαq

)
=
β − 1

t− τ
∂L(Dαq, q, t)

∂Dαq
. (3)

The proof follows from [17, 26, 27, 32] after replacing L→ L1+ξand d
dt → Dα.

Remark 2.2. When ξ = 0, equation (3) is reduced to the fractional Euler-Lagrange equation
derived in [26, 27] and when β = 1, it is reduced to reduced to the modified Euler-Lagrange equation
derived in [17].

Corollary 2.1. The generalized Euler-Lagrange equation takes the 2nd useful form:

=
∂L(Dαq, q, t)

∂q
− d

dt

(
∂L(Dαq, q, t)

∂Dαq

)
− αq̇ ∂

∂q

(
∂L(Dαq, q, t)

∂Dαq

)
− β − 1

t− τ
∂L(Dαq, q, t)

∂Dαq

=
ξ

L(Dαq, q, t)

(
∂L(Dαq, q, t)

∂t
+ (1 + α)q̇

∂L(Dαq, q, t)

∂q
+ (1 + α)q̈

∂L(Dαq, q, t)

∂Dαq

)
∂L(Dαq, q, t)

∂Dαq

Proof: We can write equation (3) as:

∂L(Dαq, q, t)

∂q
− d

dt

(
∂L(Dαq, q, t)

∂Dαq

)
− αq̇ ∂

∂q

(
∂L(Dαq, q, t)

∂Dαq

)
− β − 1

t− τ
∂L(Dαq, q, t)

∂Dαq

Using DαL
1+ξ(Dαq, q, t) = (1 + ξ)LξDαL(Dαq, q, t), d(Dαq)/dt = (1 + α)q̈ and the chain rule:
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we obtain equation

=
ξ

L(Dαq, q, t)

(
d

dt
+ αq̇

∂

∂q

)
L(Dαq, q, t)

∂L(Dαq, q, t)

∂Dαq
. (4)

dL(Dαq, q, t)

dt
=
∂L(Dαq, q, t)

∂t
+ q̇

∂L(Dαq, q, t)

∂q
+
∂L(Dαq, q, t)

∂Dαq

d(Dαq)

dt
,

=
∂L(Dαq, q, t)

∂t
+ q̇

∂L(Dαq, q, t)

∂q
+ (1 + α)q̈

∂L(Dαq, q, t)

∂Dαq
,

Remark 2.3. From equation (4), we observe the occurrence of another implicit GDO which is:(
d

dt

)
α

≡ Dα =
∂

∂t
+ (1 + α)q̇

∂

∂q
+ q̈

∂

∂q̇
,

and hence we can rewrite equation (4) as:

∂L(Dαq, q, t)

∂q
−Dα

(
∂L(Dαq, q, t)

∂Dαq

)
− β−1

t− τ
∂L(Dαq, q, t)

∂Dαq
=

ξ

L(Dαq, q, t)
DαL(Dαq, q, t)

∂L(Dαq, q, t)

∂Dαq
.

Illustrations:
To illustrate, we choose the degenerate time-independent NSL L(Dαq, q, t) = Dαq + bq = (1 +
α)q̇ + bq. Equation (4) gives straightforwardly the following 2nd-order linear differential equation
of motion:

2ξ(1 + α)q̈ + ((2 + α)ξ − b(1 + α))bq̇ +
(β − 1)(1 + α)

t− τ
q̇ +

β − 1

t− τ
bq − b2q = 0. (5)

If we set for numerical purpose ξ = − 1
2 , α = 1

2 , b = −1, β = 1
2 , then equation (5) is reduced to:

6q̈ + q̇ − 3

t− τ
q̇︸ ︷︷ ︸

dampingterms

+

(
4− 2

t− τ

)
︸ ︷︷ ︸

time−dependentfrequency

q = 0, (6)

and the solution is given by:

q(T ) = e−
1
12 i(
√
95−i)TT

3
2

(
c1U

(
5

4
− 7i

4
√

95
,

5

2
,

1

6
i
√

95T

)
+ c2L

3
2

− 4
3+

7i
4
√
95

(
1

6
i
√

95T

))
, (7)

where cj , j = 1, 2, ... are integration constants, T = t − τ , i =
√
−1 ∈ C, U(a, b, x) is the con-

fluent hypergeometric function of the 2nd kind and Lan(x) is the associated Laguerre polynomial.
This solution describes harmonic oscillator with damping terms and a time-dependent frequency.
However, forξ = − 1

2 , α = 1, b = − 3
4β = 1

2 , equation (5) is reduced to:

32q̈ +
16

t− τ
q̇︸ ︷︷ ︸

dampingterm

+

(
9− 6

t− τ

)
︸ ︷︷ ︸

time−dependentfrequency

q = 0, (8)
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and the solution is given by:

q(T ) = e
− 3

4
√
2
iT√

T

(
c3U

(
1

8
(6− i

√
2),

3

2
,

3iT

2
√

2

)
+ c4L

1
2
1
8 (6i+

√
2)

(
3iT

2
√

2

))
, (9)

We plot respectively in Figures 1 and 2 sample individual solutions for (6) and (8) and for different
initial conditions:

Fig. 1: Sample individual solution of equation (6)

Fig 2: Sample individual solution of equation (8).

If we set β = 1, we can have an idea about the main difference between the NSL approach
constructed in [17] and FALVA with NSL+GDO. Hence, if we set ξ = − 1

2 , α = 1
2 , b = −1, β = 1,

equation (5) is reduced to: 6q̈ + q̇ + 4q = 0 and the solution is simply given by

q(T ) = e−
T
12

(
c5 sin

(√
95T

12

)
+ c6 cos

(√
95T

12

))
. (10)

However, forξ = − 1
2 , α = 1, b = − 3

4β = 1, equation (5) is reduced to 32q̈ + 9q = 0 and the solution
is simply given by

q(T ) = c7 sin

(
3T

4
√

2

)
+ c8 cos

(
3T

4
√

2

)
. (11)

We plot respectively in Figures 3 and 4 sample individual solutions for (10) and (11) and for
different initial conditions:
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Fig. 3: Sample individual solution of equation (10)

Fig. 4: Sample individual solution of equation (11)

Figures 1, 2 and 3 describe decaying dynamical systems with time due to the presence of
dissipation, yet in Figure 4, we have standard oscillations yet the corresponding Lagrangian is
non-standard. Nevertheless, the main difference between the NSL approach constructed in [17]
and FALVA with NSL+GDO is that the case β = 1does not hold a time-dependent frequency and
time-dependent damping terms. Besides, in the standard FALVA approach, oscillators with
time-dependent frequencies are not obtained. It is noteworthy that all the previous approach fails
for α = −1, i.e. absence of the GDO.
We choose now the time-dependent NSL L(Dαq, q, t) = (t− τ)(Dαq + bq). Equation (4) results
into the following equation of motion:

ξ(1 + α)T q̈ + (ξ − 1)(1 + α)bT q̇ + (ξ + 1)(1 + α)q̇ + (ξ + β)bq = 0. (12)

For ξ = 1, α = 1
2 , β = 1

2 , b = 1, equation (12) is reduced to T q̈ + 2q̇ + q = 0 and the solution is
given by:

q(T ) =
1√
T

(
c9J1(2

√
T )− 2ic10Y1(2

√
T )
)
, (13)

where Jn(z)and Yn(z)are respectively the Bessel functions of 1st and 2nd kinds. However, if we
choose the complexified NSL L(Dαq, q, t) = Dαq + b(t− τ)q, then equation (4) gives:

ξ(1 + α)q̈ +
β − 1

T
(1 + α)q̇ + (ξ − 1)(1 + α)bT q̇ + (ξ + β − 1)bq − b2T 2q = 0. (14)
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For ξ = 1, β = 2, α = −5, b = −2, equation (14) is reduced to q̈ + 1
T q̇ + q + T 2q = 0which

corresponds to a damping oscillator with a time-dependent frequency and the solution is given by:

q(T ) =
e
iT 2

2
√

2T 2

T

(
c11U

(
1

2
− i

4
, 1,−iT 2

)
+ c12L− 1

2+
i
4

(−iT 2)

)
. (15)

We plot respectively in Figures 5 and 6 sample individual solutions for (13) and (15) and for
different initial conditions:

Fig. 5: Sample individual solution of equation (13)

Fig. 6: Sample individual solution of equation (15)

It is notable that complexified oscillators or complex exotic oscillators which play an important
role in quantum theory [11, 30, 33, 35] may also be obtained in our framework. To show this, we
set in equation (14) ξ = 1, α = 1, β = 2, b = −iwhich reduces equation (14) to
2q̈ + 2

T q̇ − 2iq + T 2q = 0which corresponds to a damping oscillator with a complex
time-dependent frequency and having the following solution:

q(T ) =
e
iT 2

2
√
2
√

2T 2

T

(
c13U

(
2 +
√

2

4
, 1,

iT 2

√
2

)
+ c14L

− 2+
√
2

4

(
iT 2

√
2

))
. (16)

We plot respectively in Figures 7 and 8 sample individual solutions for different initial conditions
and a sample solution family in the complex plane for equation (16):
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Fig. 7: Sample individual solution of equation (16)

Fig. 8: Sample solution family of equation (16).

The blue line in Figure 3 corresponds for the real part, and the red line corresponds for the
imaginary part. Under fixed initial conditions, these families of solutions show the oscillatory
damping behavior of the system. Figure 4 shows symmetric closed and periodic complex
trajectories in the complex q-plane representing the potential dynamics of the particle and
enclosing real turning points. It is then obvious that real and complexified damping oscillators
characterized by time-dependent masses and real and complexified time-dependent frequencies
may be obtained directly from the present approach.

3 FALVA with non-standard power-law Lagrangians and 2nd-order
Lagrangian GDO

In this section, we will extend the previous case for the case of FALVA with NSL holding
2nd-order GDO. It is notable that in the standard FALVA approach characterized by a standard
Lagrangian with higher-order derivative [29], a Lagrangian holding a singular second-order
derivative will not lead to any realistic equation of motion. This is also the case in the standard
calculus of variations with second-order derivative. We will show in this section that both
approaches may be solved by means of a GDO. We begin by introducing the following definition:

Definition 3.1: The generalized derivative operator (GDO) of 2nd-order is given by :

Dα,γ =
d

dt
+ αq̇

∂

∂q
+ γq̈

∂

∂q̇
, (17)

where αand βare real parameters.
The following relations hold accordingly: Dα,γq = (1 + α)q̇, Dα,γq

n = (1 + α)qn−1q̇,
Dα,γ q̇ = (1 + γ)q̈ and d(Dα,γq)/dt = (1 + α)q̈.

Definition 3.2. We define the extended fractional actionlike action functional for the case of an
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NSPL with 2nd order Lagrangian derivative holding a 2nd-order GDO is defined by :

S =
1

Γ(β)

τ∫
0

L1+ξ(Dα,γ q̇, Dαq, q, t)(τ − t)β−1dt. (18)

Theorem 3.1 (Generalized 2nd-order Fractional Euler–Lagrange equations). The
function q = q(t)that extremizes the functional (18) necessarily satisfies the following modified
Euler-Lagrange equations on [0, τ ]:

∂L(Dα,γ q̇, Dαq, q, t)

∂q
−Dα

(
∂L(Dα,γ q̇, Dαq, q, t)

∂Dαq

)
+Dα,γDα,γ

(
∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)
+

ξ(ξ − 1)

L(Dα,γ q̇, Dαq, q, t)

∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇
(DαL(Dα,γ q̇, Dαq, q, t))

2

+
ξ

L(Dα,γ q̇, Dαq, q, t)
DαL(Dα,γ q̇, Dαq, q, t)Dα

(
∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)
+

(β−1)(β−2)

(t− τ)2
∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

+
ξ

L(Dα,γ q̇, Dαq, q, t)

∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇
Dα,γL(Dα,γ q̇, Dαq, q, t) +

1 − β

t− τ

∂L(Dα,γ q̇, Dαq, q, t)

∂Dαq

−2
1 − β

t− τ

(
Dα

(
∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)
+

ξ

L(Dα,γ q̇, Dαq, q, t)
DαL(Dα,γ q̇, Dαq, q, t)

∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)

+
ξ

L(Dα,γ q̇, Dαq, q, t)
DαL(Dα,γ q̇, Dαq, q, t)

(
Dα

(
∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)
− ∂L(Dα,γ q̇, Dαq, q, t)

∂Dα,γ q̇

)
= 0.

(19)

The proof follows from [17, 26, 27, 32] after replacing L→ L1+ξ, d
dt → Dα and d2

dt2 → Dα,β .

Remark 3.1. For α = γ = ξ = 0, equation (14) is reduced to the Euler-Lagrange equation obtained
in the FALVA approach with 2nd-order derivatives:

∂L(q̈, q̇, q, t)

∂q
− d

dt

(
∂L(q̈, q̇, q, t)

∂q̇

)
+
d2

dt2

(
∂L(q̈, q̇, q, t)

∂q̈

)
+

1− β
t− τ

∂L(q̈, q̇, q, t)

∂q̇

+
(β − 1)(β − 2)

(t− τ)
2

∂L(q̈, q̇, q, t)

∂q̈
− 2

1− β
t− τ

d

dt

(
∂L(q̈, q̇, q, t)

∂q̈

)
= 0. (20)

Illustrations:
We choose the singular time-independent NSL
L(Dα,γ q̇, Dαq, q, t) = ADα,γ q̇ + Cq = A(1 + γ)q̈ + Cq, (A,C) ∈. Equation (19) gives ξ = 1for the
following nonlinear 3rd-order differential equation of motion:(

C +
(β − 1)(β − 2)A

(t− τ)
2

)
(A(1 + γ)q̈ + Cq)− 2A

1− β
t− τ

(A(1 + γ)
...
q + (1 + α)Cq̇) = 0 (21)
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If we set for illustration purpose A = 1
2 , C = 2and α = 1, β = 2, γ = 1 then equation (21) is

reduced to:

2q̈ + 4q +
1

t− τ
(
...
q + 4q̇) = 0. (22)

Whereas for A = 1
2 , C = 2 and α = − 1

2 , β = 2, γ = 1, equation (19) is reduced to:

2q̈ + 4q +
1

t− τ
(
...
q + q̇) = 0. (23)

We solve equations (22) and (23) numerically and we plot their solutions for different initial
conditions in Figures 9 and 10:

Fig.9: Sample individual solution of equation (22)

Fig. 10: Sample individual solution of equation (23)

We select now the time-dependent NSL L(Dα,γ q̇, Dαq, q, t) = (t− τ)(Dα,γ q̇+Cq) = (t− τ)((1+
γ)q̈ + Cq), C ∈. Equation (19) gives:

CT +
ξ(ξ − 1)

L
T (DαL)

2
+
ξ

L
DαL+

(β − 1)(β − 2)

T 2
T

+
ξ

L
TDα,γL− 2

1− β
T

(
1 +

ξT

L
DαL

)
+
ξ

L
DαL (1− T ) = 0, (24)
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where

DαL =
dL

dt
+ αq̇

∂L

∂q
= T (1 + γ)

...
q + (1 + γ)q̈ + (α+ 1)CT q̇ + Cq, (25)

and

Dα,γL =
dL

dt
+ αq̇

∂L

∂q
+ γq̈

∂L

∂q̇
= T (1 + γ)

...
q + (1 + γ)q̈ + (α+ 1)CT q̇ + Cq. (26)

For illustration purpose we set ξ = 1, β = 2, C = 1, α = 1
4 , γ = 1 which reduces equation (24) to

CTL+ 4DαL+ 2 = 0or more explicitly to:

2T
...
q + 2(T 2 + 4)q̈ + T q̇ + T 2q + 4q + 2 = 0. (27)

For ξ = 1, β = 1, C = 1, α = 1
4 , γ = 1, i.e. absence of the fractional formalism, equation (27) is

reduced to:

4T
...
q + 2(1 + T 2)q̈ + 2T q̇ + T 2q + q = 0. (28)

We solve equations (27) and (28) numerically and we plot their solutions for different initial
conditions in Figures 11 and 12:

Fig. 11:Sample individual solution of equation (27)

Fig. 12: Sample individual solution of equation (28)
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The dynamics differs slightly between both equations. It is obvious that an oscillatory behaviour
is obtained whereas the dynamics is governed by 3rd-order differential equations. In reality, oscilla-
tory solutions of 3rd-order differential equations were discussed in [4, 5, 6]] but through a different
approach. Our approach is based on the presence of a generalized derivative operator in the La-
grangian formulation of FALVA whereas in [4, 5, 6] quasiderivatives vanishing at infinity were used.

Exotic complexified oscillators may also be obtained in our approach. By setting α = −1, C =
1 + γ, 2β = −i, equation (27) will be reduced to the 3rd-order linear differential equation:

T
...
q + q̈ + iT 2q̈ + iT 2q + q = 0. (29)

Figures 13 and 14 illustrate sample individual numerical solutions for different initial conditions
and a sample solution family in the complex plane for equation (29):

Fig. 13: Sample individual solution of equation (29)

Fig.14: Sample solution family of equation (29)

Once more, these families of solutions demonstrate the oscillatory behavior of the dynamical
system. These solutions are characterized by complexified Lagrangians which generalize the classical
Lagrangian mechanics due to expansion of coordinates and momenta to an imaginary region. They
are considered seriously in literature through different aspects (see [35, 43] and references therein).

All previous approaches may be extended for the case of higher-order GDO defined by:

Dα1,α2,...,αn
=

d

dt
+ α1q̇

∂

∂q
+ α2q̈

∂

∂q̇
+ ...+ αnq

(n) ∂

∂q(n−1)
=

d

dt
+

n∑
i=1

αiq
(i) ∂

∂q(i−1)
, (30)

where q(n) = ∂nq/∂tnand so on.
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4 Conclusions and perspectives

The purpose of this paper was to generalize the fractional actionlike variational approach where
the standard Lagrangian is replaced by its non-standard power-law counterpart and the time-
derivative operator is replaced by a generalized derivative operator. The main goal was to show
that singular Lagrangians in velocities (for the case of 1st-order derivatives Lagrangians) and sin-
gular Lagrangians in accelerations (for the case of 2nd-order derivatives Lagrangians) may exhibit
oscillatory dynamics characterized by special interesting properties, e.g. time-dependent masses,
time-dependent frequencies, exotic complexified oscillators and so on. These features are absent in
the standard FALVA and in the standard calculus of variations approach where singular Lagrangians
will not lead to any dynamics. It will be interesting to construct the corresponding Hamiltonian
formalism in a future work. Some complementary analysis in connection with quantum dynamics
will be investigated in a future work.
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