A generalization of λ -slant Toeplitz operators

Gopal Datt and Ritu Aggarwal

Department of Mathematics, PGDAV College, University of Delhi, Delhi - 110065, India. E-mail: gopal.d.sati@gmail.com, durituaggawal@gmail.com

Abstract

We compute and study the behavior of the solutions of the equation $\lambda M_z X = X M_{z^k}$, which are referred as generalized λ -slant Toeplitz operators, for general complex number λ and k > 2.

2010 Mathematics Subject Classification. **47B35**. 47B30 Keywords. Toeplitz operators, slant Toeplitz operators, compression, compact operator.

1 Introduction

Toeplitz operators on the Hardy space H^2 , are characterized by the operator equation $U^*XU=X$, where U is the forward unilateral shift operator on the Hardy space H^2 . However, Toeplitz operators on the space L^2 are nothing but the operators in the commutant of the multiplication operator M_z and thus can be written as solutions to the operator equation $M_zX=XM_z$. The set $\{e_n:n\in\mathbb{Z}\}$, where $e_n(z)=z^n$, is the standard orthonormal basis of the Hilbert space L^2 . Multiple papers have been published in the 1960s, 1970s, 1980s, 1990s, and the 2000s that extend and generalize the study made in the paper [4] of Brown and Halmos. For an integer $k\geq 2$, the k^{th} -order slant Toeplitz operators are defined as $U_\varphi=W_kM_\varphi$, where M_φ is the Laurent operator on L^2 induced by φ and W_k is an operator on L^2 such that $W_k(e_i)=e_{i/k}$, if i is divisible by k, otherwise 0. In [1], k^{th} -order slant Toeplitz operators are characterized as the solutions of the operator equation $M_zX=XM_z^k$, $k\geq 2$.

Question imposed by $Barr\acute{i}a$ and Halmos [3] led to the introduction of classes such as class of λ -Toeplitz operators, λ -slant Toeplitz operators [5, 6, 8-10]. Motivated by the work of $Avenda\~no$ [2] and Barr'ia and Halmos [3], we are inspired to solve the operator equation $\lambda M_z X = X M_{z^k}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$. We call the solutions of the operator equation $\lambda M_z X = X M_{z^k}$, for $\lambda \in \mathbb{C}$ and $k \geq 2$ to be "Generalized λ -slant Toeplitz operators".

In this paper, we find an explicit formula for the generalized λ -slant Toeplitz operators and also give a matrix characterization to the generalized λ -slant Toeplitz operators. We obtain some spectral properties of the generalized λ -slant Toeplitz operators, which have always been a topic of interest of many mathematicians. An attempt is also made to discuss the properties of the compression of generalized λ - slant Toeplitz operators to the Hardy space H^2 .

2 Generalized λ -slant Toeplitz operators

 λ —slant Toeplitz operators are characterized as the operators satisfying the operator equation $\lambda M_z X = X M_{z^2}$ and are discussed in [6]. Now we ask about the solutions of the equation $\lambda M_z X = X M_{z^k}$, for general complex number λ and integer $k \geq 2$. Throughout this paper, we assume k is an integer satisfying k > 2. We begin with the following definition.

Definition 2.1. For $k \geq 2$ and a fixed complex number λ , an operator X on L^2 is said to be generalized λ -slant Toeplitz operator if it is a solution of the equation $\lambda M_z X = X M_{z^k}$.

It is very interesting to obtain the following.

Theorem 2.2. If X is a solution of $\lambda M_z X = X M_{z^k}$, $|\lambda| \neq 1$ then X = 0.

Proof. Suppose X is a solution of the equation $\lambda M_z X = X M_{z^k}$, $|\lambda| \neq 1$. We first consider the case $|\lambda| < 1$. In this case, define an operator τ on $\mathfrak{B}(L^2)$ such that $\tau(X) = \lambda M_z X M_{\overline{z}^k}$. Then $||\tau|| < 1$, which implies that $(I - \tau)$ is invertible. X being solution of the equation $\lambda M_z X = X M_{z^k}$, $(I - \tau)X = 0$. This gives that X is zero operator.

Now consider the case $|\lambda| > 1$. In this case, we define τ as $\tau(X) = M_{\overline{z}}XM_{z^k}$. Now we find the invertibility of $(\lambda I - \tau)$, which provides that X is zero operator.

We now consider the case for $|\lambda| = 1$ and claim the following.

Theorem 2.3. For $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, the operator equation $\lambda M_z X = X M_{z^k}$ admits of non-zero solutions and each non-zero solution is of the form $X = D_{\overline{\lambda}}S$, where S is a k^{th} -order slant Toeplitz operator and $D_{\overline{\lambda}}$ is the composition operator on L^2 induced by $z \mapsto \overline{\lambda}z$, i.e, $D_{\overline{\lambda}}f(z) = f(\lambda z)$ for all $f \in L^2$.

Proof. Suppose X is an operator of the form $D_{\overline{\lambda}}S$ for some k^{th} -order slant Toeplitz operator S. Since $M_zD_{\overline{\lambda}}=\overline{\lambda}D_{\overline{\lambda}}M_z$ and $M_zS=SM_{z^k}$, it is easy to verify that X satisfies $\lambda M_zX=XM_{z^k}$.

Conversely, suppose that X is an operator satisfying $\lambda M_z X = X M_{z^k}$. Then $M_z D_\lambda X = D_\lambda X M_{z^k}$, which implies that $D_\lambda X$ is a k^{th} -order slant Toeplitz operator. Therefore, $X = D_{\overline{\lambda}} S$ for some k^{th} -order slant Toeplitz operator S.

Since k^{th} -order slant Toeplitz operators are always of the form $U_{\varphi}(=W_k M_{\varphi})$, $\varphi \in L^{\infty}$ [1], hence in view of Theorem 2.3, we see that generalized λ -slant Toeplitz operator are always of the form $U_{\varphi,\lambda} = D_{\overline{\lambda}} U_{\varphi}$. If $\varphi = \sum_{n \in \mathbb{Z}} a_n e_n$ in L^{∞} , $U_{\varphi,\lambda}$ is given by

$$U_{\varphi,\lambda}e_i = \sum_{m \in \mathbb{Z}} \lambda^m a_{km-i} e_m$$

for each $i \in \mathbb{Z}$.

Since for $|\lambda| \neq 1$, the only generalized λ -slant Toeplitz operator is the zero operator so now onward the generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}, \varphi \in L^{\infty}$, is used in reference to the solution of the equation $\lambda M_z X = X M_{z^k}$, where $|\lambda| = 1$. It is clear that $||U_{\varphi,\lambda}|| \leq ||\varphi||_{\infty}$. For $\varphi = \sum_{n \in \mathbb{Z}} a_n e_n \in L^{\infty}$, $\lambda \in \mathbb{C}$, the adjoint of $U_{\varphi,\lambda}$ satisfies $U_{\varphi,\lambda}^* = (D_{\overline{\lambda}} U_{\varphi})^* = U_{\varphi}^* D_{\lambda}$ and for each $i, j \in \mathbb{Z}$, $\langle U_{\varphi,\lambda}^* e_j, e_i \rangle = \langle e_j, U_{\varphi,\lambda} e_i \rangle = \langle e_j, \sum_{m \in \mathbb{Z}} \lambda^m a_{km-i} e_m \rangle = \overline{\lambda}^j \overline{a}_{kj-i}$. This helps us to prove the following.

Theorem 2.4. Adjoint of a non-zero generalized λ -slant Toeplitz operator is not a generalized λ -slant Toeplitz operator.

Proof. Let, if possible, $U_{\varphi,\lambda}^*$ be a non-zero generalized λ -slant Toeplitz operator. Then for each $i, j \in \mathbb{Z}$,

$$\begin{split} &\lambda \langle U_{\varphi,\lambda}^* e_j, e_i \rangle = \langle U_{\varphi,\lambda}^* e_{j+k}, e_{i+1} \rangle \\ &\Rightarrow \lambda \overline{\lambda}^j \overline{a}_{kj-i} = \overline{\lambda}^{(j+k)} \overline{a}_{k(j+k)-(i+1)} \\ &\Rightarrow \overline{a}_{kj-i} = \overline{\lambda}^{(k+1)} \overline{a}_{k(j+k)-(i+1)} \end{split}$$

This on substituting j=0 provides that $\overline{a}_t=\overline{\lambda}^{n(k+1)}\overline{a}_{n(k^2-1)+t}$ for each $t\in\mathbb{Z}$. Since $a_n\to 0$ as $n\to\infty$, we get that $\overline{a}_t=0$ for each $t\in\mathbb{Z}$. As a consequence $\varphi=0$, which contradicts that $U_{\varphi,\lambda}^*$ is non-zero. This completes the proof.

Next we move on to calculate the norm of the generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$. For this, we first prove the following.

Lemma 2.5. Product of a generalized λ -slant Toeplitz operator and its adjoint is a Laurent operator.

Proof. For $\varphi \in L^{\infty}$, the k^{th} -order slant Toeplitz operator $U_{\varphi} = W_k M_{\varphi}$ satisfies $U_{\varphi} U_{\varphi}^* = M_{\psi}$, where $\psi = W_k(|\varphi|^2) = \sum_{m \in \mathbb{Z}} \langle \psi, e_m \rangle e_m \in L^{\infty}$ (see [1]). This gives $U_{\varphi,\lambda} U_{\varphi,\lambda}^* = D_{\overline{\lambda}} U_{\varphi} U_{\varphi}^* D_{\lambda} = D_{\overline{\lambda}} M_{\psi} D_{\lambda}$. Now for each $n \in \mathbb{Z}$,

$$D_{\overline{\lambda}} M_{\psi} D_{\lambda} e_{n} = \overline{\lambda}^{n} D_{\overline{\lambda}} \sum_{m \in \mathbb{Z}} \langle \psi, e_{m} \rangle e_{m+n}$$
$$= (\sum_{m \in \mathbb{Z}} \langle \psi, e_{m} \rangle \lambda^{m} e_{m}) e_{n}$$
$$= M_{\psi}, e_{n}.$$

Therefore $U_{\varphi,\lambda}U_{\varphi,\lambda}^*$ is a Laurent operator induced by the symbol ψ_{λ} in L^{∞} given by $\psi_{\lambda}(z) = \sum_{n \in \mathbb{Z}} \langle \psi, e_n \rangle \lambda^n z^n$.

From Lemma 2.5, we have the following.

Theorem 2.6. For
$$\varphi \in L^{\infty}$$
, $||U_{\varphi,\lambda}|| = \sqrt{||\psi_{\lambda}||_{\infty}}$, where $\psi_{\lambda}(z) = \sum_{n \in \mathbb{Z}} \langle \psi, e_n \rangle \lambda^n z^n$, $\psi = W_k(|\varphi|^2)$.

For $\varphi = \sum_{n \in \mathbb{Z}} a_n e_n$ in L^{∞} , the matrix representation of generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ with respect to the standard orthonormal basis $\{e_n\}_{n \in \mathbb{Z}}$ of L^2 is

$$\begin{bmatrix} \vdots & \vdots \\ \cdots & \lambda^{-1}a_{-k+1} & \lambda^{-1}a_{-k} & \lambda^{-1}a_{-k+1} & \lambda^{-1}a_{-k-2} & \cdots & \lambda^{-1}a_{-2k} & \cdots \\ \cdots & a_1 & a_0 & a_{-1} & a_{-2} & \cdots & a_{-k} & \cdots \\ \cdots & \lambda a_{k+1} & \lambda a_k & \lambda a_{k-1} & \lambda a_{k-2} & \cdots & \lambda a_0 & \cdots \\ \cdots & \lambda^2 a_{2k+1} & \lambda^2 a_{2k} & \lambda^2 a_{2k-1} & \lambda^2 a_{2k-2} & \cdots & \lambda^2 a_k & \cdots \\ \vdots & \vdots \end{bmatrix}.$$

Operators like Toeplitz [4] and k^{th} —order slant Toeplitz operators [1], are characterized in terms of their respective named matrices. In order to do the same for generalized λ —slant Toeplitz operators, we define the following notion.

Definition 2.7. For a fixed integer $k \geq 2$, a generalized λ -slant Toeplitz matrix is a two way infinite matrix (a_{ij}) such that $a_{i+1,j+k} = \lambda a_{i,j}$ for $i,j \in \mathbb{Z}$.

This notion helps us to obtain the following.

224 G. Datt and R. Aggarwal

Theorem 2.8. A necessary and sufficient condition for an operator S on L^2 to be a generalized λ -slant Toeplitz operator, $|\lambda| = 1$, is that its matrix (with respect to the standard orthonormal basis $\{e_n : n \in \mathbb{Z}\}$) is a generalized λ -slant Toeplitz matrix.

Proof. It is clear that the matrix of $U_{\varphi,\lambda}$, $\varphi = \sum_{n \in \mathbb{Z}} a_n e_n \in L^{\infty}$ is always a generalized λ -slant Toeplitz matrix.

Conversely, let the matrix (α_{ij}) of an operator S on L^2 be a generalized λ -slant Toeplitz matrix. Then for all $i, j \in \mathbb{Z}$

$$\lambda \langle Se_j, e_i \rangle = \lambda \alpha_{i,j} = \alpha_{i+1,j+k} = \langle Se_{j+k}, e_{i+1} \rangle = \langle M_z^* SM_{z^k} e_j, e_i \rangle.$$

Thus $\lambda M_z S e_i = S M_{z^k} e_i$ for each $i \in \mathbb{Z}$. Therefore $\lambda M_z S = S M_{z^k}$ and hence S is a generalized λ -slant Toeplitz operator.

It is apparent to see that the sum of two generalized λ -slant Toeplitz operators is a generalized λ -slant Toeplitz operator. However, the following properties of generalized λ -slant Toeplitz operators, which are known for k^{th} -order slant Toeplitz operators (see [1]), can be proved without any extra efforts.

Proposition 2.9. Let $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

- 1. The mapping $\varphi \mapsto U_{\varphi,\lambda}$ from L^{∞} into $\mathfrak{B}(L^2)$ is linear and one-one.
- 2. The set of all generalized λ -slant Toeplitz operators is weakly closed and hence strongly closed.
- 3. For an unimodular complex number μ , $D_{\overline{\mu}\lambda}U_{\varphi,\lambda}$ is a generalized μ -slant Toeplitz operator.
- 4. A generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ for $\varphi \in L^{\infty}$ is compact if and only if $\varphi = 0$.
- 5. Let $\lambda = e^{i\hat{\theta}}$, $\hat{\theta} \in [0, 2\pi[$. Then $U_{\varphi,\lambda}$ is co-isometry if and only if $|\varphi(\frac{\theta}{k})|^2 + |\varphi(\frac{\theta+2\pi}{k})|^2 + \cdots + |\varphi(\frac{\theta+(k-1)2\pi}{k})|^2 = k$ for a.e. $\theta \in [0, 2\pi[$.
- 6. For unimodular $\varphi \in L^{\infty}$, $U_{\varphi,\lambda}$ is always a co-isometry.
- 7. A generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ is a partial isometry if and only if $\varphi = \varphi W_k^*(W_k|\varphi|^2)$

Now we find that the only hyponormal generalized λ -slant Toeplitz operator on L^2 is the zero operator.

Theorem 2.10. A generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ is hyponormal if and only if $\varphi = 0$.

Proof. Suppose generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ is hyponormal. Then for all $f \in L^2$, $||U_{\varphi,\lambda}f|| \geq ||U_{\varphi,\lambda}^*f||$. On substituting $f = e_0$ in above inequality, we have $\sum_{n \in \mathbb{Z}} |a_{kn}|^2 \geq \sum_{n \in \mathbb{Z}} |\overline{a}_n|^2$, which implies that $a_{kn-m} = 0, m = 1, 2, \cdots, k-1$ for all $n \in \mathbb{Z}$. Now on substituting $f = e_1$ in the inequality, we find $\sum_{n \in \mathbb{Z}} |a_{kn-1}|^2 \geq \sum_{n \in \mathbb{Z}} |\overline{a}_{k-n}|^2$, which yields that $a_{k-n} = 0$ for all $n \in \mathbb{Z}$. Thus $\varphi = 0$.

Converse is obvious. Q.E.D.

We know the fact that an isometry is always hyponormal, so in view of Theorem 2.10, the set of generalized λ -slant Toeplitz operators does not contain an isometry.

Proposition 2.11. For $\varphi \in L^{\infty}$, $W_k U_{\varphi,\lambda}$ is a generalized λ -slant Toeplitz operator if and only if $\varphi = 0$.

Proof. If part of the result is obvious. We prove the reverse part. For, suppose $\varphi = \sum_{n \in \mathbb{Z}} a_n e_n \in L^{\infty}$ is such that $W_k U_{\varphi,\lambda} e_j$, is a generalized λ -slant Toeplitz operator. Then $\lambda \langle W_k U_{\varphi,\lambda} e_j, e_i \rangle = \langle W_k U_{\varphi,\lambda} e_{j+k}, e_{i+1} \rangle$, which yields that

$$a_{k^2i-j} = \lambda^{k-1} a_{k^2i+k^2-j-k}$$

for each $i, j \in \mathbb{Z}$. This helps us in concluding that for each $t \in \mathbb{Z}$, $a_t = \lambda^{n(k-1)} a_{n(k^2-k)-t} \to 0$ as $n \to \infty$. Therefore $\varphi = 0$.

Proposition 2.11 helps us to provide a characterization for the product $U_{\psi}U_{\varphi,\lambda}$ to be a generalized λ -slant Toeplitz operator, where $U_{\psi}(=W_kM_{\psi})$ is a slant Toeplitz operator and $\varphi, \psi \in L^{\infty}$.

Theorem 2.12. Let $\varphi, \psi \in L^{\infty}$. Then $U_{\psi}U_{\varphi,\lambda}$ is a generalized λ -slant Toeplitz operator if and only if $\psi(\overline{\lambda}z^k)\varphi(z) = 0$.

Proof. Suppose $\varphi, \psi \in L^{\infty}$. Then $U_{\psi}U_{\varphi,\lambda} = W_k M_{\psi} D_{\overline{\lambda}} W_k M_{\varphi} = W_k D_{\overline{\lambda}} M_{\psi(\overline{\lambda}z)} W_k M_{\varphi} = W_k D_{\overline{\lambda}} W_k M_{\psi(\overline{\lambda}z^k)} M_{\varphi(z)} = W_k U_{\psi(\overline{\lambda}z^k)\varphi(z),\lambda}$. On applying the lemma, we have the result. Q.E.D.

It can be easily shown that $W_k M_{\varphi} W_k M_{\psi} = W_k M_{\varphi\psi}$ for φ, ψ in the space generated by $\{e_{kn} : n \in \mathbb{Z}\}$. This serves a great tool to show the following.

Theorem 2.13. Let $\varphi, \psi \in L^{\infty}$ be such that either φ or ψ is $h(z^k)$ for some $h \in L^{\infty}$. Then $U_{\varphi,\lambda}U_{\psi} = U_{\varphi\psi,\lambda}$.

Proof. Suppose φ (or ψ) = $h(z^k)$ for some $h \in L^{\infty}$. Then $W_k M_{\varphi} W_k M_{\psi} = W_k M_{\varphi\psi}$, which serves that $U_{\varphi,\lambda} U_{\psi} = D_{\overline{\lambda}} W_k (\varphi \psi) = D_{\overline{\lambda}} W_k M_{\varphi\psi} = D_{\overline{\lambda}} U_{\varphi\psi} = U_{\varphi\psi,\lambda}$.

As a consequence of Theorem 2.13, we see that the product of a generalized λ -slant Toeplitz operator with a k^{th} -order slant Toeplitz operator induced by a symbol in the space generated by $\{e_{kn}: n \in \mathbb{Z}\}$ becomes a generalized λ -slant Toeplitz operator. However, in the next result we show that the product of a generalized λ -slant Toeplitz operator with a multiplication operator is always a generalized λ -slant Toeplitz operator.

Theorem 2.14. $M_{\varphi}U_{\psi,\lambda}$ and $U_{\psi,\lambda}M_{\varphi}$ are always generalized λ -slant Toeplitz operators for $\varphi,\psi\in L^{\infty}$. Further, $M_{\varphi}U_{\psi,\lambda}=U_{\psi,\lambda}M_{\varphi}$ if and only if $\varphi(\bar{\lambda}z^k)\psi(z)=\varphi(z)\psi(z), z\in\mathbb{T}$.

Proof. With little efforts, we can prove that $\lambda M_z(M_{\varphi}U_{\psi,\lambda}) = (M_{\varphi}U_{\psi,\lambda}) M_{z^k}$ and $\lambda M_z(U_{\psi,\lambda}M_{\varphi}) = (U_{\psi,\lambda}M_{\varphi}) M_{z^k}$ for $\varphi, \psi \in L^{\infty}$. As a consequence, both $M_{\varphi}U_{\psi,\lambda}$ and $U_{\psi,\lambda}M_{\varphi}$ are generalized λ -slant Toeplitz operators.

Further, we find that $M_{\varphi(z)}U_{\psi(z),\lambda}=M_{\varphi(z)}D_{\overline{\lambda}}W_kM_{\psi(z)}=D_{\overline{\lambda}}M_{\varphi(\overline{\lambda}z)}W_kM_{\psi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\varphi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\varphi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\varphi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\varphi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\varphi(z)}=D_{\overline{\lambda}}W_kM_{\psi(z)}M_{\psi(z)}$

226 G. Datt and R. Aggarwal

On looking the k^{th} -order slant Toeplitz operators as generalized 1-slant Toeplitz operators, it becomes genuine to know the product of two generalized λ -slant Toeplitz operators. In order to answer this query, we first prove the the following.

Lemma 2.15. Let $\varphi \in L^{\infty}$. Then $D_{\overline{\lambda}}W_kU_{\varphi,\lambda}$ is a generalized λ -slant Toeplitz operator if and only if $\varphi = 0$.

Proof. We need to prove one way only. For, suppose $D_{\overline{\lambda}}W_kU_{\varphi,\lambda}$ is a generalized λ -slant Toeplitz operator. Then for integers i,j, we have $\lambda\langle D_{\overline{\lambda}}W_kU_{\varphi,\lambda}\ e_j,e_i\rangle=\langle D_{\overline{\lambda}}W_kU_{\varphi,\lambda}e_{j+k},e_{i+1}\rangle$. This gives $\langle \sum_n \lambda^n a_{kn-j}e_n,\ e_{ki}\rangle=\langle \sum_n \lambda^n a_{kn-j-k}e_n,e_{ki+k}\rangle$ or $a_{k(ki)-j}=\lambda^k a_{k^2(i+1)-(j+k)}$ for each $i,j\in\mathbb{Z}$. From this, we can prove that $a_t=\lambda^{kn}a_{n(k^2-k)+t}$ for all $n\in\mathbb{Z}$. This provide that $a_t=0$ for all $t\in\mathbb{Z}$ and hence $\varphi=0$.

Now, we answer our query in the following form.

Theorem 2.16. The product of two generalized λ -slant Toeplitz operators is a generalized λ -slant Toeplitz operator if and only if the product is zero.

Proof. Let $\varphi, \psi \in L^{\infty}$ and $U_{\varphi,\lambda}$ and $U_{\psi,\lambda}$ be two generalized λ -slant Toeplitz operators. Now

$$\begin{array}{rcl} U_{\varphi,\lambda}U_{\psi,\lambda} & = & D_{\overline{\lambda}}W_kM_\varphi D_{\overline{\lambda}}W_kM_\psi \\ & = & D_{\overline{\lambda}}W_kD_{\overline{\lambda}}M_{\varphi(\overline{\lambda}z)}W_kM_{\psi(z)} \\ & = & D_{\overline{\lambda}}W_kD_{\overline{\lambda}}W_kM_{\varphi(\overline{\lambda}z^k)\psi(z)} \\ & = & D_{\overline{\lambda}}W_kU_{\varphi(\overline{\lambda}z^k)\psi(z),\lambda}. \end{array}$$

Now use of Lemma 2.15 completes the proof.

Q.E.D.

An immediate information that we receive from Theorem 2.16 is that the class of generalized λ -slant Toeplitz operators neither forms an algebra nor contains any non-zero idempotent operator.

3 Spectrum of generalized λ -Slant Toeplitz operators

It is shown in Theorem 2.3 that each generalized λ -slant Toeplitz operator, $|\lambda|=1$ is induced on multiplying a generalized slant Toeplitz operator by a unitary composition operator and as a consequence there is a one-one correspondence between the class of generalized λ -slant Toeplitz operators and the class of generalized slant Toeplitz operators. We use the symbols $\sigma(A)$, $\sigma_p(A)$ and $\Pi(A)$ to denote the spectrum, the point spectrum and the approximate spectrum of an operator A respectively. Motivated by the approach initiated by Ho [8], the following information without any extra efforts can be gathered along the lines of techniques used to obtain the same results in case of λ -slant Toeplitz operators in [6]. We are giving the outlines of the proof in some cases and refer [8] and [6] for details.

Theorem 3.1. If
$$\varphi$$
 is invertible in L^{∞} then $\sigma_p(U_{\varphi,\lambda}) = \sigma_p(U_{\varphi(z^k),\lambda})$, where $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$.

For
$$\varphi \in L^{\infty}$$
, $M_{\varphi} = D_{\overline{\lambda}} M_{\varphi} D_{\lambda}$ so that $M_{\varphi} D_{\overline{\lambda}} W_k = D_{\overline{\lambda}} M_{\varphi} W_k = D_{\overline{\lambda}} W_k M_{\varphi(z^k)} = D_{\overline{\lambda}} U_{\varphi(z^k)} = U_{\varphi(z^k),\lambda}$, where $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$. We use this observation to obtain the following.

Theorem 3.2. For $\varphi \in L^{\infty}$, $\sigma(U_{\varphi,\lambda}) = \sigma(U_{\varphi(z^k),\lambda})$, where $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$.

Proof. Let $\varphi \in L^{\infty}$ and $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$. Then $\sigma(U_{\varphi,\lambda}) \cup \{0\} = \sigma(M_{\varphi}(D_{\overline{\lambda}}W_k)) \cup \{0\} = \sigma(U_{\varphi(z^k),\lambda}) \cup \{0\}$. As $\overline{R(U_{\varphi(z^k),\lambda}^*)} = \overline{R(W_k^*D_{\lambda}M_{\overline{\varphi}})} \subseteq \overline{R(W_k^*)}$, which is the closed linear subspace generated by $\{e_{kn} : n \in \mathbb{Z}\}$, where $R(\cdot)$ stands for the range of the operator (\cdot) . Hence $\sigma(U_{\varphi(z^k),\lambda})$ contains 0. Proof completes once we prove that $\sigma(U_{\varphi,\lambda})$ also contains 0. This holds trivially using Theorem 3.1 in case φ is invertible in L^{∞} . We consider the case when φ is non-invertible element of L^{∞} . In this case, we get a sequence $\langle \varphi_n \rangle$ of invertible elements in L^{∞} satisfying $\|\varphi_n - \varphi\|_{\infty} \to 0$ as $n \to \infty$. Then $\|\varphi_n - \varphi\|_{\infty} = \|\varphi_n - \varphi\|_{\infty} \to 0$ as $n \to \infty$, where $\varphi_n(z) = \varphi_n(\lambda z)$ and $\varphi(z) = \varphi(\lambda z)$. For each $n \in \mathbb{N}$, choose a non-zero element f_n in L^2 such that $U_{\varphi_n,\lambda}f_n = 0$ with $\|f_n\| = 1$. Now $\|U_{\varphi,\lambda}f_n\| \leq \|U_{\varphi,\lambda}f_n - U_{\varphi_n,\lambda}f_n\| \leq \|\varphi - \varphi_n\| \to 0$ as $n \to \infty$. This yields that $0 \in \Pi(U_{\varphi,\lambda})$ and hence $0 \in \sigma(U_{\varphi,\lambda})$. This completes the proof.

Theorem 3.3. For any invertible φ in L^{∞} , $\sigma(U_{\varphi,\lambda})$ contains a closed disc, where $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$.

Proof. Let P_k be the projection of L^2 onto the closed span of $\{e_{kn} : n \in \mathbb{Z}\}$. Now, if μ is any non-zero complex number and φ is invertible in L^{∞} then for each $f \in L^2$, we have

$$(U_{\overline{\varphi}^{-1}(z^k),\lambda}^* - \mu I)f = M_{\varphi^{-1}(z^k)}W_k^*D_{\lambda}f - \mu(P_k f \oplus (I - P_k)f)$$

$$= \mu W_k^*M_{\varphi^{-1}}(\mu^{-1}D_{\lambda} - M_{\varphi}W_k)f \oplus (-\mu(I - P_k)f),$$

Suppose that $(U^*_{\overline{\varphi}^{-1}(z^k),\lambda} - \mu I)$ is onto. Now, pick $0 \neq g_0$ in $(I - P_k)(L^2)$. Then we find $f \in L^2$ such that

$$g_0 = \mu W_k^* M_{\varphi^{-1}} (\mu^{-1} D_\lambda - M_{\varphi} W_k) f \oplus (-\mu (I - P_k) f).$$

Since $g_0 \in (I - P_k)(L^2)$, we have $\mu W_k^* M_{\varphi^{-1}}(\mu^{-1}D_\lambda - M_\varphi W_k) f = 0$. This provides $(\mu^{-1}D_\lambda - M_\varphi W_k) f = 0$ as W_k is co-isometry (i.e. $W_k W_k^* = I$). Hence we have $0 = (\mu^{-1}I - D_{\overline{\lambda}}M_\varphi W_k) f = (\mu^{-1}I - D_{\overline{\lambda}}W_k M_{\varphi(z^k)}) f = (\mu^{-1}I - U_{\varphi(z^k),\lambda}) f$. This implies that $\mu^{-1} \in \sigma_p(U_{\varphi(z^k),\lambda})$. Now $(U_{\overline{\varphi}^{-1}(z^k),\lambda}^* - \mu I)$ is onto (in fact invertible) for each μ in the resolvent of $U_{\overline{\varphi}^{-1}(z^k),\lambda}^*$, so on applying Theorem 3.1, we get that

$$\{\mu^{-1}: \mu \in \rho(U^*_{\overline{\varphi}^{-1}(z^k),\lambda})\} \subseteq \sigma_p(U_{\varphi(z^k),\lambda}) = \sigma_p(U_{\varphi,\lambda}) \subseteq \sigma(U_{\varphi,\lambda}),$$

where $\varphi = \sum_{n \in \mathbb{Z}} \langle \varphi, e_n \rangle \lambda^n e_n$. As spectrum of any operator is compact it follows that $\sigma(U_{\varphi,\lambda})$ contains a disc of eigenvalues of $U_{\varphi,\lambda}$.

Remark 3.4. We conclude with the following observation.

- 1. The spectrum $\sigma(U_{\varphi,\lambda})$ of the generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}$ contains a closed disc of radius is $\frac{1}{r(U_{\overline{\varphi}^{-1},\lambda})}$, where r(A) denotes the spectral radius of the operator A.
- 2. For unimodular $\varphi \in L^{\infty}$, $||U_{\varphi,\lambda}^{n}||^{2} = ||U_{\varphi,\lambda}^{n}U_{\varphi,\lambda}^{*n}|| = ||I|| = 1$, so that $r(U_{\varphi,\lambda}) = 1$ (using Gelfand formula for spectral radius). Hence, if $|\varphi| = 1$, then $\sigma(U_{\psi,\lambda}) = \overline{\mathbb{D}}$, the closed unit disc.

228 G. Datt and R. Aggarwal

4 Compressions of generalized λ -slant Toeplitz operators

We denote the compression of a generalized λ -slant Toeplitz operator $U_{\varphi,\lambda}, \ \varphi \in L^{\infty}, \ |\lambda| = 1$ to H^2 by $V_{\varphi,\lambda}$ or simply by V if there is no confusion about the symbol φ . Then by the definition of compression, we have $V_{\varphi,\lambda} = PU_{\varphi,\lambda}|_{H^2}$, that is, $V_{\varphi,\lambda}P = PU_{\varphi,\lambda}P$, where P is the orthogonal projection of L^2 onto H^2 . As $U_{\varphi,\lambda} = D_{\overline{\lambda}}U_{\varphi}$, we have $V_{\varphi,\lambda} = PD_{\overline{\lambda}}U_{\varphi}|_{H^2}$, where U_{φ} denotes the k^{th} -order slant Toeplitz operator. Since $PD_{\overline{\lambda}} = D_{\overline{\lambda}}P$, we further have $V_{\varphi,\lambda} = D_{\overline{\lambda}}V_{\varphi}$, where V_{φ} is the compression of k^{th} -order slant Toeplitz operator U_{φ} to H^2 . It is straight forward to verify that $\varphi \to V_{\varphi,\lambda}$ is one-one. It is interesting to obtain the following.

Theorem 4.1. An operator V on H^2 is the compression of a generalized λ -slant Toeplitz operator if and only if $\lambda V = U^*VU^k$, where U is the forward unilateral shift on H^2 .

Proof. Suppose V is compression of a generalized λ -slant Toeplitz operator. Then $V=D_{\overline{\lambda}}V_{\varphi}$ for some φ in L^{∞} . Now $U^*VU^k=U^*D_{\overline{\lambda}}V_{\varphi}U^k=\lambda D_{\overline{\lambda}}U^*V_{\varphi}$ $U^k=\lambda D_{\overline{\lambda}}V_{\varphi}=\lambda V$.

Conversely, suppose that V is an operator satisfying $\lambda V = U^*VU^k$. Then $\lambda D_{\lambda}V = D_{\lambda}U^*VU^k = \lambda U^*D_{\lambda}VU^k$. Since $|\lambda| = 1$, we get $D_{\lambda}V = U^*D_{\lambda}VU^k$. So $D_{\lambda}V$ is compression of a k^{th} -order slant Toeplitz operator [1]. So $D_{\lambda}V = V_{\varphi}$ for some φ in L^{∞} . Thus $V = D_{\overline{\lambda}}V_{\varphi}$ for some φ in L^{∞} . Q.E.D.

To discuss the compactness of compression of a generalized λ -slant Toeplitz operators, we first prove the following.

Lemma 4.2. Let $|\lambda| = 1$ and $\varphi \in L^{\infty}$. Then we have the following:

- 1. $W_k V_{\varphi,\lambda}^* = D_{\lambda} T_{\psi}$, where T_{ψ} is Toeplitz operator induced by $\psi(z) = W_k \overline{\varphi}(\lambda z)$.
- 2. If $\overline{\varphi}$ (or ψ) is analytic then $V_{\varphi,\lambda}T_{\psi}=V_{\varphi\psi,\lambda}$.
- 3. If $\overline{\varphi}$ (or $\overline{\psi}$) is analytic then $V_{\varphi,\lambda}V_{\psi,\lambda}^*$ is a Toeplitz operator.
- 4. If ψ is analytic then $T_{\psi}V_{\varphi,\lambda}$ is again compression of a generalized λ -slant Toeplitz operator.

Proof. Proof of (1) follows as $W_k V_{\varphi,\lambda}^* = W_k P U_{\varphi}^* D_{\lambda}|_{H^2} = P M_{W_k \overline{\varphi}} D_{\lambda}|_{H^2} = D_{\lambda} P M_{W_k \overline{\varphi}(\lambda z)}|_{H^2} = D_{\lambda} T_{\psi}$, where $\psi = W_k \overline{\varphi}(\lambda z)$.

Proof of (2) follows using the fact that $V_{\varphi}T_{\psi} = V_{\varphi\psi}$ when either of $\overline{\varphi}$ (or ψ) is analytic [1]. A simple computation shows that if $\overline{\varphi}$ (or $\overline{\psi}$) is analytic then $V_{\varphi,\lambda}V_{\psi,\lambda}^* = D_{\overline{\lambda}}T_{W_k\varphi\overline{\psi}}D_{\lambda}|_{H^2} = PD_{\overline{\lambda}}M_{W_k\overline{\varphi}\psi}D_{\lambda}|_{H^2} = T_{\xi}$, where $\xi(z) = W_k\varphi\overline{\psi}(\lambda z)$. This completes the proof of (3). Now for (4), if ψ is analytic then $T_{\psi}V_{\varphi,\lambda} = PD_{\overline{\lambda}}M_{\psi(\overline{\lambda}z)}V_{\varphi}|_{H^2} = D_{\overline{\lambda}}V_{\psi(\overline{\lambda}z^k)\varphi(z)} = V_{\psi(\overline{\lambda}z^k)\varphi(z),\lambda}$. Hence the result.

Now we see the following, which is a very common result known for various classes of operators, like, Toeplitz operators [4], slant Toeplitz operators [8].

Theorem 4.3. $V_{\varphi,\lambda}$ is compact if and only if $\varphi = 0$.

Proof. Proof of one part is obvious. For the converse, suppose $\varphi(z) = \sum_{n \in \mathbb{Z}} a_n z^n$ is such that $V_{\varphi,\lambda}$ is compact. By Lemma 4.2(1), $D_{\lambda}T_{\psi}$ is compact, where $\psi(z) = W_k\overline{\varphi}(\lambda z)$. Now D_{λ} being unitary, we have T_{ψ} is compact. Thus $W_k\overline{\varphi}(\lambda z) = \psi = 0$. This means that $W_k\overline{\varphi} = 0$. Therefore $\overline{a}_{-kn} = 0$ for all $n \in \mathbb{Z}$.

Now we use Lemma 4.2(2) that provides the compactness of $V_{\varphi z^m,\lambda}$ for m=1,2,.....,k-1. As a consequence $W_k V_{\varphi z^m,\lambda}^*$ and hence $D_{\lambda} T_{\psi}$ is compact, where $\psi(z) = W_k(\overline{\varphi z^m})(\lambda z)$. This implies $W_k(\overline{\varphi z^m}) = 0$, which means that $\overline{a}_{-kn-m} = 0$ for all $n \in \mathbb{Z}$, m = 1, 2,, k-1. Hence $\varphi = 0$.

References

- [1] S.C. Arora and R. Batra, Generalized slant Toeplitz operators on H^2 , Math. Nachr. 278, No. 4, 347–355, 2005.
- [2] R. Martínez-Avendaño, A generalization of Hankel operators, J. Func. Anal., 190, 2002, 418–446.
- [3] J. Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621–630.
- [4] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reigne Angew. Math., 213, 1963, 89–102.
- [5] G. Datt and R. Aggarwal, On some generalizations of Toeplitz operators via operator equations, General Mathematics, Vol.21(2), 2013, 57–69.
- [6] G. Datt and R. Aggarwal, A generalization of slant Toeplitz operators, To appear in Jordan Journal of Mathematics and Statistics.
- [7] T. Goodman, C. Micchelli and J. Ward, Spectral radius formula for subdivision operators, Recent advances in wavelet analysis, ed. L. Schumaker and G. Webb, Academic press, 1994, 335–360.
- [8] M. C. Ho, Properties of slant Toeplitz operators, Indiana University Mathematics Journal, 45, No. 3, 1996, 843–862.
- [9] M. C. Ho, A criterion for finite rank λ -slant Toeplitz operators, arXiv:1404, 2700V1.
- [10] C.H. Chen, P. H. Chen, M. C. Ho and M. S. Syu, λ-Toeplitz operators with analytic symbols, arXiv: 1312.2883vi, 10 Dec 2013.
- [11] S. Sun, On the operator equation $U^*TU = \lambda T$, Kexue Tongbao (English ed.), 29, 1984, 298–299.