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Abstract

We compute and study the behavior of the solutions of the equation AM, X = X M, which are
referred as generalized A—slant Toeplitz operators, for general complex number A and k& > 2.
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1 Introduction

Toeplitz operators on the Hardy space H?2, are characterized by the operator equation U*XU = X,
where U is the forward unilateral shift operator on the Hardy space H2. However, Toeplitz operators
on the space L? are nothing but the operators in the commutant of the multiplication operator M,
and thus can be written as solutions to the operator equation M, X = X M,. The set {e,, : n € Z},
where e,(z) = 2", is the standard orthonormal basis of the Hilbert space L?. Multiple papers
have been published in the 1960s, 1970s, 1980s, 1990s, and the 2000s that extend and generalize
the study made in the paper [4] of Brown and Halmos. For an integer k& > 2, the k" —order slant
Toeplitz operators are defined as U, = W} M, where M, is the Laurent operator on L? induced
by ¢ and W}, is an operator on L? such that Wy(e;) = ei/k, if @ is divisible by k, otherwise 0. In
[1], k*"—order slant Toeplitz operators are characterized as the solutions of the operator equation
M, X = XM, k> 2.

Question imposed by Barria and Halmos [3] led to the introduction of classes such as class of
A—Toeplitz operators, A—slant Toeplitz operators [5, 6, 8-10]. Motivated by the work of Avendano
[2] and Barria and Halmos [3], we are inspired to solve the operator equation AM, X = X M_«, for
A€ C and k > 2. We call the solutions of the operator equation AM, X = XM, for A € C and
k > 2 to be “Generalized A—slant Toeplitz operators”.

In this paper, we find an explicit formula for the generalized A—slant Toeplitz operators and
also give a matrix characterization to the generalized A—slant Toeplitz operators. We obtain some
spectral properties of the generalized A—slant Toeplitz operators, which have always been a topic
of interest of many mathematicians. An attempt is also made to discuss the properties of the
compression of generalized A— slant Toeplitz operators to the Hardy space H?2.

2  Generalized \—slant Toeplitz operators

A—slant Toeplitz operators are characterized as the operators satisfying the operator equation
AM,.X = XM,2 and are discussed in [6]. Now we ask about the solutions of the equation A\M,X =
XM, x, for general complex number A and integer £ > 2. Throughout this paper, we assume k is
an integer satisfying k > 2. We begin with the following definition.

Definition 2.1. For £ > 2 and a fixed complex number A, an operator X on L? is said to be
generalized \—slant Toeplitz operator if it is a solution of the equation AM, X = X M.
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It is very interesting to obtain the following.
Theorem 2.2. If X is a solution of AM, X = XM_x, |A\| # 1 then X = 0.

Proof. Suppose X is a solution of the equation A\M,X = XM_x, |A| # 1. We first consider the
case |A| < 1. In this case, define an operator 7 on B(L?) such that 7(X) = AM,XMzx. Then
|I7]| < 1, which implies that (I —7) is invertible. X being solution of the equation A\M,X = XM _«,
(I —7)X = 0. This gives that X is zero operator.

Now consider the case |A| > 1. In this case, we define 7 as 7(X) = MzX M,». Now we find the
invertibility of (Al — 7), which provides that X is zero operator. Q.E.D.

We now consider the case for |A| =1 and claim the following.

Theorem 2.3. For )\ € C with |[A\| = 1, the operator equation AM, X = X M,» admits of non-zero
solutions and each non-zero solution is of the form X = DS, where S is a kth —order slant Toeplitz

operator and Dy is the composition operator on L? induced by z Az, i.e, D+ f(2) = f(Az) for all
felL?

Proof. Suppose X is an operator of the form DS for some k" —order slant Toeplitz operator S.
Since M, Dy = AD;M, and M,S = SM.x, it is easy to verify that X satisfies A\M, X = X M._x.
Conversely, suppose that X is an operator satisfying AM,X = XM,x. Then M.,D\X =
D)X M,«, which implies that Dy X is a k' —order slant Toeplitz operator. Therefore, X = DyS
for some k*"—order slant Toeplitz operator S. Q.E.D.

Since k' —order slant Toeplitz operators are always of the form U,(= WiM,), ¢ € L= [1],
hence in view of Theorem 2.3, we see that generalized A—slant Toeplitz operator are always of the
form Uy, = DyU,. If o = 37 ane, in L™, U, y is given by

neEZ

ng,)\ei = Z )\makmfiem
mEeZ
for each i € Z.

Since for |A| # 1, the only generalized A—slant Toeplitz operator is the zero operator so now
onward the generalized A—slant Toeplitz operator U, x, ¢ € L, is used in reference to the solution
of the equation AM,X = XM, where |[A| = 1. It is clear that ||[U,|| < ||¢|lec. For ¢ =
> anen € L, X € C, the adjoint of U, ) satisfies Usa= (DxU,)" = U;Dy and for each i, j € Z,
nez
(U;’)\ej, ei) = (e, Ugnei) = (€5, > AN apm—im) = Xjakj_i. This helps us to prove the following.

meZ
Theorem 2.4. Adjoint of a non-zero generalized A—slant Toeplitz operator is not a generalized
A—slant Toeplitz operator.

Proof. Let, if possible, U; » be a non-zero generalized A—slant Toeplitz operator. Then for each
1,] € Z,

MUz x€js€i) = (U \€j+ks €it1)

i ~(j+k)_
= )\)\jakjfi =V )ak(j+k)f(i+1)
_ X(kJrl)f

= Qkj—i Ak(j+k)—(i+1)
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~—n(k+1)_

This on substituting j = 0 provides that a; = A Ap(k2—1)4+¢ for each t € Z. Since a, — 0 as
n — 00, we get that a; = 0 for each t € Z. As a consequence ¢ = 0, which contradicts that U;’)\ is
non-zero. This completes the proof. Q.E.D.

Next we move on to calculate the norm of the generalized A—slant Toeplitz operator U, ». For
this, we first prove the following.

Lemma 2.5. Product of a generalized A—slant Toeplitz operator and its adjoint is a Laurent
operator.

Proof. For ¢ € L*, the k"-order slant Toeplitz operator U, = WM, satisfies U,U,* = My, where

P =Wi(le]?) = X (¥, em)em € L (see [1]). This gives U, zU} \ = DxU,U," Dy = DxMyDi.
mEZ

Now for each n € Z,

Dde}D)\en = XnDX Z<’¢,€m>€m+n
meZ
= (D (W em)A em)en
meZ

= Mwen.
Therefore U%,\U;,)\ is a Laurent operator induced by the symbol ¢y in L™ given by ¥y (z) =
STy en) A2, Q.E.D.
neE”Z

From Lemma 2.5, we have the following.

| = V[¥alloo, where ¥a(2) = 32 (1, en)A"2", 1 = Wi(|o]?).

ne”Z

Theorem 2.6. For ¢ € L>, ||U, \

For ¢ = Y ane, in L, the matrix representation of generalized A—slant Toeplitz operator
neZ
U, with respect to the standard orthonormal basis {ey }nez of L?is

1

)\*la_;ﬁ_l )Fla_k )\710,_]@_;_1 /\71(1_]6_2 e AT ralgg
ay ap a_1 a_9g s a_p
)\a/k;+1 )\ak )\ak,1 )\ak,Q s )\ao
MNaggr1  MNag  MNag—1 MNagg—a - Nay

Operators like Toeplitz [4] and k" —order slant Toeplitz operators [1], are characterized in terms of
their respective named matrices. In order to do the same for generalized A—slant Toeplitz operators,
we define the following notion.

Definition 2.7. For a fixed integer k > 2, a generalized A—slant Toeplitz matrix is a two way
infinite matrix (a;;) such that a;11 j4r = Aa; ; for i,j € Z.

This notion helps us to obtain the following.
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Theorem 2.8. A necessary and sufficient condition for an operator S on L? to be a generalized
A—slant Toeplitz operator, |A\| = 1, is that its matrix (with respect to the standard orthonormal
basis {e,, : n € Z}) is a generalized A—slant Toeplitz matrix.

Proof. Tt is clear that the matrix of U, x, ¢ = > ane, € L™ is always a generalized A—slant

neZ
Toeplitz matrix.

Conversely, let the matrix («;;) of an operator .S on L? be a generalized A—slant Toeplitz matrix.
Then for all 4,5 € Z

)\(S’ej,ei> = )\ai,j = aiJrl,jJrk = <Sej+k7ei+1> = <M;SMzk€j,6i>.

Thus AM,Se; = SM_re; for each i € Z. Therefore AM,S = SM_» and hence S is a generalized
A—slant Toeplitz operator. Q.E.D.

It is apparent to see that the sum of two generalized A—slant Toeplitz operators is a general-
ized A—slant Toeplitz operator. However, the following properties of generalized A—slant Toeplitz
operators, which are known for k" —order slant Toeplitz operators (see [1]), can be proved without
any extra efforts.

Proposition 2.9. Let A € C with |A] = 1.
1. The mapping ¢ + U, » from L into B(L?) is linear and one-one.

2. The set of all generalized A—slant Toeplitz operators is weakly closed and hence strongly
closed.

3. For an unimodular complex number p, Dp)\U,, » is a generalized p—slant Toeplitz operator.

4. A generalized A—slant Toeplitz operator U, » for ¢ € L°° is compact if and only if ¢ = 0.

5. Let A = eLé, e [0,27[. Then U, is co-isometry if and only if |<p(%)|2 4 |<p(9+%)|2 NN
H‘P(W)P =k for a.e. 0 € [0, 27][.

6. For unimodular ¢ € L, U, » is always a co-isometry.
7. A generalized A-slant Toeplitz operator U, , is a partial isometry if and only if o =W} (W |¢[?)

Now we find that the only hyponormal generalized A—slant Toeplitz operator on L? is the zero
operator.

Theorem 2.10. A generalized A—slant Toeplitz operator Uy, » is hyponormal if and only if ¢ = 0.

Proof. Suppose generalized A—slant Toeplitz operator U, » is hyponormal. Then for all f € L?,
HUp Sl = [[U 1 fl|. On substituting f = €o in above inequality, we have }_ lagn)? > Y [@n|?,

nez ne”z
which implies that axn—pm = 0,m = 1,2,-- -,k — 1 for all n € Z. Now on substituting f = e; in
the inequality, we find 3" |akn—1|> > > |@r_n|?, which yields that ay_, = 0 for all n € Z. Thus

neZ ne”Z
v =0.
Converse is obvious. Q.E.D.
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We know the fact that an isometry is always hyponormal, so in view of Theorem 2.10, the set
of generalized \—slant Toeplitz operators does not contain an isometry.

Proposition 2.11. For ¢ € L*°, WU,  is a generalized A—slant Toeplitz operator if and only if
@ =0.

Proof. If part of the result is obvious. We prove the reverse part. For, suppose ¢ = > ane, €
nez
L> is such that WU, x is a generalized A—slant Toeplitz operator. Then A(WipU, rej, ;) =

(WiUgp x€jtk, €it1), which yields that
ap2i—5 = )\kilak21+k2_j_k

for each i,j € Z. This helps us in concluding that for each t € Z, a; = )\”(’“_l)an(kz,k),t — 0 as
n — oco. Therefore p = 0. Q.E.D.

Proposition 2.11 helps us to provide a characterization for the product U, U, x to be a generalized
A—slant Toeplitz operator, where Uy (= Wi My) is a slant Toeplitz operator and ¢, € L.

Theorem 2.12. Let ¢,¢p € L. Then U,U, ) is a generalized A—slant Toeplitz operator if and
only if (A2*)p(z) = 0.

Proof. Suppose ¢,vp € L. Then UyU, = WiMyDWiM, = W;Dx Mw(Xz)Wkop
= WkDXWkM¢(XZk)M¢(z) = WkUw(sz)w(z),/\‘ On applying the lemma, we have the result. q.E.n.

It can be easily shown that Wi, M, W My = Wi, M,y for ¢, in the space generated by {exy :
n € Z}. This serves a great tool to show the following.

Theorem 2.13. Let ¢,1) € L™ be such that either ¢ or 1 is h(z*) for some h € L. Then
Up AUy = Uy -

Proof. Suppose ¢ (or ) = h(z*) for some h € L>. Then Wi M, WMy = Wy, My, which serves
that U%)\U¢ = wak(cpd)) = DXWkMgow = DxUpr = UWZ’J\' Q.E.D.

As a consequence of Theorem 2.13, we see that the product of a generalized A—slant Toeplitz
operator with a k" —order slant Toeplitz operator induced by a symbol in the space generated by
{exn : n € Z} becomes a generalized A—slant Toeplitz operator. However, in the next result we
show that the product of a generalized A—slant Toeplitz operator with a multiplication operator is
always a generalized A—slant Toeplitz operator.

Theorem 2.14. M, Uy » and Uy xM,, are always generalized A—slant Toeplitz operators for ¢, €
L. Further, M Uy \ = Uy xM,, if and only if p(Az")1(2) = p(2)¥(2),z € T.

Proof. With little efforts, we can prove that AM,(M,Uy ») = (MyUyp x) M. and MM, (Uy xM,)
= (UpaM,) M, for ¢, € L. As a consequence, both M,Uy » and Uy M, are generalized
A—slant Toeplitz operators.

Furhter, we find that Mgp(z)Ud)(z),/\ = M@(Z)DXWka(z) = DXMLP(XZ) WkM¢(z)
= DxWiM 5.0 My(z) = Upxaryg ) 2 304 Uy ) 3 Mop(z) = DxWieMy(e) M) = DxWiMy z)p(z) =

Ug(z)p(2),x- Now Proposition 2.9 (1) gives the result. Q.E.D.
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On looking the k" —order slant Toeplitz operators as generalized 1—slant Toeplitz operators, it
becomes genuine to know the product of two generalized A—slant Toeplitz operators. In order to
answer this query, we first prove the the following.

Lemma 2.15. Let ¢ € L*°. Then D;W,U, ) is a generalized A—slant Toeplitz operator if and
only if ¢ = 0.

Proof. We need to prove one way only. For, suppose DyW},U,, » is a generalized A—slant Toeplitz
operator. Then for integers 4, j, we have A\(DxW3iUy, x €, €;) = (DxWiUg a€jqk, €ir1). This gives
(" N'akn—j€n, €ri) = (30N Qhn—j—k€ns Chitk) OF A(ki)—; = A¥ag2(i11)—(j+k) for each i,j € Z.

From this, we can prove that a; = Ak"an(/&—k)ﬂ for all n € Z. This provide that a; = 0 for all

t € Z and hence p = 0. Q.E.D.
Now, we answer our query in the following form.

Theorem 2.16. The product of two generalized A—slant Toeplitz operators is a generalized A—slant
Toeplitz operator if and only if the product is zero.

Proof. Let p,v% € L* and U, » and Uy  be two generalized A—slant Toeplitz operators. Now

UpaUpr = DxWiM,DsWyM,
= DxWiDsM 5 WMy z)
= DxWiDxWiM o xa0)py2)
= DiWil,Rarypay

Now use of Lemma 2.15 completes the proof. Q.E.D.

An immediate information that we receive from Theorem 2.16 is that the class of generalized
A—slant Toeplitz operators neither forms an algebra nor contains any non-zero idempotent operator.

3 Spectrum of generalized A\—Slant Toeplitz operators

It is shown in Theorem 2.3 that each generalized A—slant Toeplitz operator, |A\| = 1 is induced
on multiplying a generalized slant Toeplitz operator by a unitary composition operator and as a
consequence there is a one-one correspondence between the class of generalized A\—slant Toeplitz
operators and the class of generalized slant Toeplitz operators. We use the symbols o(A), o,(A4)
and II(A) to denote the spectrum, the point spectrum and the approximate spectrum of an operator
A respectively. Motivated by the approach initiated by Ho [8], the following information without
any extra efforts can be gathered along the lines of techniques used to obtain the same results in
case of A—slant Toeplitz operators in [6]. We are giving the outlines of the proof in some cases and
refer [8] and [6] for details.

Theorem 3.1. If ¢ is invertible in L> then o,(U, \) = 0,(Uy(zr),2), Where ¢ = Y~ (@, en)A\"ey.
neE”Z
For ¢ € L, M, = DXMg;D/\ so that MLPDXWI@ = I)X]WS(,VV/C = DXWIcMg;(zk) = DXULP(Z)C) =
(z*),x, Where @ = 37 (¢, e,)A\"e,. We use this observation to obtain the following.
ne”Z

Uy
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Theorem 3.2. For p € L™, 0(Uy ») = 0(Uy(zr),5), where o = 3~ (@, en)\"ep.
nez

Proof. Let ¢ € L™ and ¢ = ) (¢,en)A"e,. Then o(Uy ) U {0} = o(M,(DWy)) U {0} =

neZ
o(Ugpzryn) U {0} As R(U;(zk),/\) = R(W}!DyMg) C R(W), which is the closed linear subspace

generated by {ex, : n € Z}, where R(-) stands for the range of the operator (-). Hence o(Uy,(.),»)
contains 0. Proof completes once we prove that o(U, ») also contains 0. This holds trivially using
Theorem 3.1 in case ¢ is invertible in L°°. We consider the case when ¢ is non-invertible element of
L°°. In this case, we get a sequence < ¢,, > of invertible elements in L™ satisfying ||¢n — ¢|lcc — 0
asn — 00. Then [|on—¢|loo = [lon—¢llec = 0asn — oo, where ¢, (2) = p,(Az) and (z) = p(Az).

For each n € N, choose a non-zero element f, in L? such that Uy, »f, = 0 with [|f,]| = 1. Now
WUoxfrll S WUprfr — Ugpafull < 1l — @nll = 0 as n — oo. This yields that 0 € II(U, ») and
hence 0 € o(U,,»). This completes the proof. Q.E.D.

Theorem 3.3. For any invertible ¢ in L>°, 0(U,,») contains a closed disc, where ¢ = " (¢, e,)\"€y,.
neEZ

Proof. Let Py be the projection of L? onto the closed span of {ex, : n € Z}. Now, if u is any

non-zero complex number and ¢ is invertible in L> then for each f € L?, we have

(Uzeiomn — D) f = My—aomyWiDAf — w(Pof & (I — Py)f)
= uWiMy-1(u™ Dy = MWy) f ® (—u(I — Pi)f),

Suppose that (U%_l(zk) , — pl) is onto. Now, pick 0 # go in (I — P;)(L?). Then we find f € L?
such that
go = Wi My (u™" Dy — MuWy) f & (—p(I — Pr) f).

Since go € (I — P)(L?), we have pWiMy—1(u *Dy — M,Wy,)f = 0. This provides (u='Dy —
M Wi)f =0 as Wy, is co-isometry (i.e. W, W; = I). Hence we have 0 = (u='I — DyM,Wy,)f =
w I — D-Wi M) f = (W' — Ugrryy)f. This implies that u=' € 0,(U,x) ). Now
X @ (zF) @ ("), P\ p(2F),
UX_y .y, — pl) is onto (in fact invertible) for each p in the resolvent of UX_, SO on ap-
?H(2R),A ? (=)
plying Theorem 3.1, we get that

A

{Nil pe P(Ug—l(zk),x)} C UP(ULp(zk),A) = Up(Uso,A) C U(U ,A)a

where ¢ = 3~ (¢, en)A"e,. As spectrum of any operator is compact it follows that o (U, x) contains
ne”Z
a disc of eigenvalues of U, . Q.E.D.

Remark 3.4. We conclude with the following observation.

1. The spectrum o (U, ) of the generalized A—slant Toeplitz operator U, » contains a closed

disc of radius is ﬁ? where 7(A) denotes the spectral radius of the operator A.
P

2. For unimodular ¢ € L, [[UZ,\[|* = [|UZ \UZ4|l = [|[I]| = 1, so that r(U, ) = 1 (using
Gelfand formula for spectral radius). Hence, if || = 1, then o(Uy ) = D, the closed unit
disc.
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4 Compressions of generalized A\—slant Toeplitz operators

We denote the compression of a generalized A—slant Toeplitz operator Uy x, ¢ € L™, |A| =1 to
H? by V,, » or simply by V if there is no confusion about the symbol ¢. Then by the definition
of compression, we have V,, » = PU, \|g2, that is, V, \P = PU, »P, where P is the orthogonal
projection of L? onto H?. As U, ) = DxU,, we have V, x = PD5U,|y2, where U, denotes the
kt"-order slant Toeplitz operator. Since PDy = Dy P, we further have V,, x = DxV,,, where V,, is
the compression of k**—order slant Toeplitz operator U, to H 2, Tt is straight forward to verify
that ¢ — Vi,  is one-one. It is interesting to obtain the following.

Theorem 4.1. An operator V on H? is the compression of a generalized A—slant Toeplitz operator
if and only if AV = U*V U, where U is the forward unilateral shift on H?2.

Proof. Suppose V' is compression of a generalized A—slant Toeplitz operator. Then V = DV, for
some ¢ in L>. Now U*VUF = U*DXV¢U’€ = \D5;U*V, Uk = ADV, = AV.

Conversely, suppose that V is an operator satisfying A\V = U*VU*. Then AD,\V = D\U*VUF =
AU*D,\VU*. Since [A| =1, we get D\V = U*D\VU*. So D,V is compression of a k*"*—order slant
Toeplitz operator [1]. So D,V =V, for some ¢ in L>°. Thus V = D5V, for some ¢ in L*°. q.e.D.

To discuss the compactness of compression of a generalized A—slant Toeplitz operators, we first
prove the following.

Lemma 4.2. Let |A\| =1 and ¢ € L*™. Then we have the following:
L. WV \ = DTy, where Ty is Toeplitz operator induced by ¢(2) = Wip(Az).
2. If @ (or ¢ ) is analytic then Vi, zTy = Vg a-
3. If ¢ (or ¢ ) is analytic then V,, \V;; ; is a Toeplitz operator.
4. If v is analytic then T}, V,, 5 is again compression of a generalized A—slant Toeplitz operator.

PT’OOf. Proof of (1) follows as WkV@*’)\ = WkPU;D)\‘H2 = PMWng)\|H2 = D)\PMWkE(/\z)|H2 =
D)\Tw, where ¢ = Wkﬁ(/\z)

Proof of (2) follows using the fact that V,, T, = Vi,;, when either of @ ( or ¢ ) is analytic [1].

A simple computation shows that if $ ( or ¢ ) is analytic then V,, AVia = DXTWWEDA‘ g2 =
PDxMw, 54Dz = PM¢|g2 = Te, where £(z) = Wip(Az). This completes the proof of (3).
Now for (4), if 1 is analytic then TV, x = PDXMw(Xz)Vv|H2 = Dy Vw(sz)ga(z) = Vw(sz)w(z),x
Hence the result. Q.E.D.

Now we see the following, which is a very common result known for various classes of operators,
like, Toeplitz operators [4], slant Toeplitz operators [8].

Theorem 4.3. V,, , is compact if and only if ¢ = 0.

Proof. Proof of one part is obvious. For the converse, suppose ¢(z) = . a,2" is such that V,, 5
neZ

is compact. By Lemma 4.2(1), D»T, is compact, where ¥(z) = Wi %(Az). Now D, being unitary,

we have T, is compact. Thus Wi B(Az) = ¢ = 0. This means that W% = 0. Therefore a_, =0

for all n € Z.
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Now we use Lemma 4.2(2) that provides the compactness of Vi.m x for m = 1,2,...... Sk — 1.
As a consequence WiV .. \ and hence D)\Ty is compact, where ¢(z) = Wy(pz™)(Az). This
implies Wy, (¢2™) = 0, which means that @_gp—p, = 0 for all n € Z, m = 1,2, ...... ,k — 1. Hence
p=0. Q.E.D.
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