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Abstract

We compute and study the behavior of the solutions of the equation λMzX = XMzk , which are
referred as generalized λ−slant Toeplitz operators, for general complex number λ and k ≥ 2.
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1 Introduction

Toeplitz operators on the Hardy space H2, are characterized by the operator equation U∗XU = X,
where U is the forward unilateral shift operator on the Hardy spaceH2. However, Toeplitz operators
on the space L2 are nothing but the operators in the commutant of the multiplication operator Mz

and thus can be written as solutions to the operator equation MzX = XMz. The set {en : n ∈ Z},
where en(z) = zn, is the standard orthonormal basis of the Hilbert space L2. Multiple papers
have been published in the 1960s, 1970s, 1980s, 1990s, and the 2000s that extend and generalize
the study made in the paper [4] of Brown and Halmos. For an integer k ≥ 2, the kth−order slant
Toeplitz operators are defined as Uϕ = WkMϕ, where Mϕ is the Laurent operator on L2 induced
by ϕ and Wk is an operator on L2 such that Wk(ei) = ei/k, if i is divisible by k, otherwise 0. In

[1], kth−order slant Toeplitz operators are characterized as the solutions of the operator equation
MzX = XMzk , k ≥ 2.

Question imposed by Barría and Halmos [3] led to the introduction of classes such as class of
λ−Toeplitz operators, λ−slant Toeplitz operators [5, 6, 8-10]. Motivated by the work of Avendaño
[2] and Barría and Halmos [3], we are inspired to solve the operator equation λMzX = XMzk , for
λ ∈ C and k ≥ 2. We call the solutions of the operator equation λMzX = XMzk , for λ ∈ C and
k ≥ 2 to be “Generalized λ−slant Toeplitz operators”.

In this paper, we find an explicit formula for the generalized λ−slant Toeplitz operators and
also give a matrix characterization to the generalized λ−slant Toeplitz operators. We obtain some
spectral properties of the generalized λ−slant Toeplitz operators, which have always been a topic
of interest of many mathematicians. An attempt is also made to discuss the properties of the
compression of generalized λ− slant Toeplitz operators to the Hardy space H2.

2 Generalized λ−slant Toeplitz operators

λ−slant Toeplitz operators are characterized as the operators satisfying the operator equation
λMzX = XMz2 and are discussed in [6]. Now we ask about the solutions of the equation λMzX =
XMzk , for general complex number λ and integer k ≥ 2. Throughout this paper, we assume k is
an integer satisfying k ≥ 2. We begin with the following definition.

Definition 2.1. For k ≥ 2 and a fixed complex number λ, an operator X on L2 is said to be
generalized λ−slant Toeplitz operator if it is a solution of the equation λMzX = XMzk .
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It is very interesting to obtain the following.

Theorem 2.2. If X is a solution of λMzX = XMzk , |λ| 6= 1 then X = 0.

Proof. Suppose X is a solution of the equation λMzX = XMzk , |λ| 6= 1. We first consider the
case |λ| < 1. In this case, define an operator τ on B(L2) such that τ(X) = λMzXMzk . Then
‖τ‖ < 1, which implies that (I− τ) is invertible. X being solution of the equation λMzX = XMzk ,
(I − τ)X = 0. This gives that X is zero operator.

Now consider the case |λ| > 1. In this case, we define τ as τ(X) = MzXMzk . Now we find the
invertibility of (λI − τ), which provides that X is zero operator. q.e.d.

We now consider the case for |λ| = 1 and claim the following.

Theorem 2.3. For λ ∈ C with |λ| = 1, the operator equation λMzX = XMzk admits of non-zero
solutions and each non-zero solution is of the form X = DλS, where S is a kth−order slant Toeplitz

operator and Dλ is the composition operator on L2 induced by z 7→ λz, i.e, Dλf(z) = f(λz) for all
f ∈ L2.

Proof. Suppose X is an operator of the form DλS for some kth−order slant Toeplitz operator S.

Since MzDλ = λDλMz and MzS = SMzk , it is easy to verify that X satisfies λMzX = XMzk .
Conversely, suppose that X is an operator satisfying λMzX = XMzk . Then MzDλX =

DλXMzk , which implies that DλX is a kth−order slant Toeplitz operator. Therefore, X = DλS
for some kth−order slant Toeplitz operator S. q.e.d.

Since kth−order slant Toeplitz operators are always of the form Uϕ(= WkMϕ), ϕ ∈ L∞ [1],
hence in view of Theorem 2.3, we see that generalized λ−slant Toeplitz operator are always of the
form Uϕ,λ = DλUϕ. If ϕ =

∑
n∈Z

anen in L∞, Uϕ,λ is given by

Uϕ,λei =
∑
m∈Z

λmakm−iem

for each i ∈ Z.
Since for |λ| 6= 1, the only generalized λ−slant Toeplitz operator is the zero operator so now

onward the generalized λ−slant Toeplitz operator Uϕ,λ, ϕ ∈ L∞, is used in reference to the solution
of the equation λMzX = XMzk , where |λ| = 1. It is clear that ‖Uϕ,λ‖ ≤ ‖ϕ‖∞. For ϕ =∑
n∈Z

anen ∈ L∞, λ ∈ C, the adjoint of Uϕ,λ satisfies U∗ϕ,λ = (DλUϕ)
∗

= U∗ϕDλ and for each i, j ∈ Z,

〈U∗ϕ,λej , ei〉 = 〈ej , Uϕ,λei〉 = 〈ej ,
∑
m∈Z

λmakm−iem〉 = λ
j
akj−i. This helps us to prove the following.

Theorem 2.4. Adjoint of a non-zero generalized λ−slant Toeplitz operator is not a generalized
λ−slant Toeplitz operator.

Proof. Let, if possible, U∗ϕ,λ be a non-zero generalized λ−slant Toeplitz operator. Then for each
i, j ∈ Z,

λ〈U∗ϕ,λej , ei〉 = 〈U∗ϕ,λej+k, ei+1〉

⇒ λλ
j
akj−i = λ

(j+k)
ak(j+k)−(i+1)

⇒ akj−i = λ
(k+1)

ak(j+k)−(i+1)
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This on substituting j = 0 provides that at = λ
n(k+1)

an(k2−1)+t for each t ∈ Z. Since an → 0 as
n→∞, we get that at = 0 for each t ∈ Z. As a consequence ϕ = 0, which contradicts that U∗ϕ,λ is
non-zero. This completes the proof. q.e.d.

Next we move on to calculate the norm of the generalized λ−slant Toeplitz operator Uϕ,λ. For
this, we first prove the following.

Lemma 2.5. Product of a generalized λ−slant Toeplitz operator and its adjoint is a Laurent
operator.

Proof. For ϕ ∈ L∞, the kth-order slant Toeplitz operator Uϕ = WkMϕ satisfies UϕUϕ
∗ = Mψ, where

ψ = Wk(|ϕ|2) =
∑
m∈Z
〈ψ, em〉em ∈ L∞ (see [1]). This gives Uϕ,λU

∗
ϕ,λ = DλUϕUϕ

∗Dλ = DλMψDλ.

Now for each n ∈ Z,

DλMψDλen = λ
n
Dλ

∑
m∈Z
〈ψ, em〉em+n

= (
∑
m∈Z
〈ψ, em〉λmem)en

= Mψλen.

Therefore Uϕ,λU
∗
ϕ,λ is a Laurent operator induced by the symbol ψλ in L∞ given by ψλ(z) =∑

n∈Z
〈ψ, en〉λnzn. q.e.d.

From Lemma 2.5, we have the following.

Theorem 2.6. For ϕ ∈ L∞, ‖Uϕ,λ‖ =
√
‖ψλ‖∞, where ψλ(z) =

∑
n∈Z
〈ψ, en〉λnzn, ψ = Wk(|ϕ|2).

For ϕ =
∑
n∈Z

anen in L∞, the matrix representation of generalized λ−slant Toeplitz operator

Uϕ,λ with respect to the standard orthonormal basis {en}n∈Z of L2is

...
...

...
...

...
...

...
· · · λ−1a−k+1 λ−1a−k λ−1a−k+1 λ−1a−k−2 · · · λ−1a−2k · · ·
· · · a1 a0 a−1 a−2 · · · a−k · · ·
· · · λak+1 λak λak−1 λak−2 · · · λa0 · · ·
· · · λ2a2k+1 λ2a2k λ2a2k−1 λ2a2k−2 · · · λ2ak · · ·

· · ·
...

...
...

...
...

...
...


.

Operators like Toeplitz [4] and kth−order slant Toeplitz operators [1], are characterized in terms of
their respective named matrices. In order to do the same for generalized λ−slant Toeplitz operators,
we define the following notion.

Definition 2.7. For a fixed integer k ≥ 2, a generalized λ−slant Toeplitz matrix is a two way
infinite matrix (aij) such that ai+1,j+k = λai,j for i, j ∈ Z.

This notion helps us to obtain the following.
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Theorem 2.8. A necessary and sufficient condition for an operator S on L2 to be a generalized
λ−slant Toeplitz operator, |λ| = 1, is that its matrix (with respect to the standard orthonormal
basis {en : n ∈ Z}) is a generalized λ−slant Toeplitz matrix.

Proof. It is clear that the matrix of Uϕ,λ, ϕ =
∑
n∈Z

anen ∈ L∞ is always a generalized λ−slant

Toeplitz matrix.
Conversely, let the matrix (αij) of an operator S on L2 be a generalized λ−slant Toeplitz matrix.

Then for all i, j ∈ Z

λ〈Sej , ei〉 = λαi,j = αi+1,j+k = 〈Sej+k, ei+1〉 = 〈M∗z SMzkej , ei〉.

Thus λMzSei = SMzkei for each i ∈ Z. Therefore λMzS = SMzk and hence S is a generalized
λ−slant Toeplitz operator. q.e.d.

It is apparent to see that the sum of two generalized λ−slant Toeplitz operators is a general-
ized λ−slant Toeplitz operator. However, the following properties of generalized λ−slant Toeplitz
operators, which are known for kth−order slant Toeplitz operators (see [1]), can be proved without
any extra efforts.

Proposition 2.9. Let λ ∈ C with |λ| = 1.

1. The mapping ϕ 7→ Uϕ,λ from L∞ into B(L2) is linear and one-one.

2. The set of all generalized λ−slant Toeplitz operators is weakly closed and hence strongly
closed.

3. For an unimodular complex number µ, DµλUϕ,λ is a generalized µ−slant Toeplitz operator.

4. A generalized λ−slant Toeplitz operator Uϕ,λ for ϕ ∈ L∞ is compact if and only if ϕ = 0.

5. Let λ = eιθ̂, θ̂ ∈ [0, 2π[. Then Uϕ,λ is co-isometry if and only if |ϕ( θk )|2 + |ϕ( θ+2π
k )|2 + · · · ·

+|ϕ( θ+(k−1)2π
k )|2 = k for a.e. θ ∈ [0, 2π[.

6. For unimodular ϕ ∈ L∞, Uϕ,λ is always a co-isometry.

7. A generalized λ-slant Toeplitz operator Uϕ,λ is a partial isometry if and only if ϕ=ϕW ∗k (Wk|ϕ|2)

Now we find that the only hyponormal generalized λ−slant Toeplitz operator on L2 is the zero
operator.

Theorem 2.10. A generalized λ−slant Toeplitz operator Uϕ,λ is hyponormal if and only if ϕ = 0.

Proof. Suppose generalized λ−slant Toeplitz operator Uϕ,λ is hyponormal. Then for all f ∈ L2,
||Uϕ,λf || ≥ ||U∗ϕ,λf ||. On substituting f = e0 in above inequality, we have

∑
n∈Z
|akn|2 ≥

∑
n∈Z
|an|2,

which implies that akn−m = 0,m = 1, 2, · · ·, k − 1 for all n ∈ Z. Now on substituting f = e1 in
the inequality, we find

∑
n∈Z
|akn−1|2 ≥

∑
n∈Z
|ak−n|2, which yields that ak−n = 0 for all n ∈ Z. Thus

ϕ = 0.
Converse is obvious. q.e.d.
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We know the fact that an isometry is always hyponormal, so in view of Theorem 2.10, the set
of generalized λ−slant Toeplitz operators does not contain an isometry.

Proposition 2.11. For ϕ ∈ L∞, WkUϕ,λ is a generalized λ−slant Toeplitz operator if and only if
ϕ = 0.

Proof. If part of the result is obvious. We prove the reverse part. For, suppose ϕ =
∑
n∈Z

anen ∈

L∞ is such that WkUϕ,λ is a generalized λ−slant Toeplitz operator. Then λ〈WkUϕ,λej , ei〉 =
〈WkUϕ,λej+k, ei+1〉, which yields that

ak2i−j = λk−1ak2i+k2−j−k

for each i, j ∈ Z. This helps us in concluding that for each t ∈ Z, at = λn(k−1)an(k2−k)−t → 0 as
n→∞. Therefore ϕ = 0. q.e.d.

Proposition 2.11 helps us to provide a characterization for the product UψUϕ,λ to be a generalized
λ−slant Toeplitz operator, where Uψ(= WkMψ) is a slant Toeplitz operator and ϕ,ψ ∈ L∞.

Theorem 2.12. Let ϕ,ψ ∈ L∞. Then UψUϕ,λ is a generalized λ−slant Toeplitz operator if and
only if ψ(λzk)ϕ(z) = 0.

Proof. Suppose ϕ,ψ ∈ L∞. Then UψUϕ,λ = WkMψDλWkMϕ = WkDλ Mψ(λz)WkMϕ

= WkDλWkMψ(λzk)Mϕ(z) = WkUψ(λzk)ϕ(z),λ. On applying the lemma, we have the result. q.e.d.

It can be easily shown that WkMϕWkMψ = WkMϕψ for ϕ,ψ in the space generated by {ekn :
n ∈ Z}. This serves a great tool to show the following.

Theorem 2.13. Let ϕ,ψ ∈ L∞ be such that either ϕ or ψ is h(zk) for some h ∈ L∞. Then
Uϕ,λUψ = Uϕψ,λ.

Proof. Suppose ϕ (or ψ) = h(zk) for some h ∈ L∞. Then WkMϕWkMψ = WkMϕψ, which serves
that Uϕ,λUψ = DλWk(ϕψ) = DλWkMϕψ = DλUϕψ = Uϕψ,λ. q.e.d.

As a consequence of Theorem 2.13, we see that the product of a generalized λ−slant Toeplitz
operator with a kth−order slant Toeplitz operator induced by a symbol in the space generated by
{ekn : n ∈ Z} becomes a generalized λ−slant Toeplitz operator. However, in the next result we
show that the product of a generalized λ−slant Toeplitz operator with a multiplication operator is
always a generalized λ−slant Toeplitz operator.

Theorem 2.14. MϕUψ,λ and Uψ,λMϕ are always generalized λ−slant Toeplitz operators for ϕ,ψ ∈
L∞. Further, MϕUψ,λ = Uψ,λMϕ if and only if ϕ(λzk)ψ(z) = ϕ(z)ψ(z), z ∈ T.

Proof. With little efforts, we can prove that λMz(MϕUψ,λ) = (MϕUψ,λ) Mzk and λMz(Uψ,λMϕ)
= (Uψ,λMϕ) Mzk for ϕ,ψ ∈ L∞. As a consequence, both MϕUψ,λ and Uψ,λMϕ are generalized
λ−slant Toeplitz operators.

Furhter, we find that Mϕ(z)Uψ(z),λ = Mϕ(z)DλWkMψ(z) = DλMϕ(λz) WkMψ(z)

= DλWkMϕ(λzk)Mψ(z) = Uϕ(λzk)ψ(z),λ and Uψ(z),λMϕ(z) = DλWkMψ(z)Mϕ(z) = DλWkMψ(z)ϕ(z) =

Uϕ(z)ψ(z),λ. Now Proposition 2.9 (1) gives the result. q.e.d.
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On looking the kth−order slant Toeplitz operators as generalized 1−slant Toeplitz operators, it
becomes genuine to know the product of two generalized λ−slant Toeplitz operators. In order to
answer this query, we first prove the the following.

Lemma 2.15. Let ϕ ∈ L∞. Then DλWkUϕ,λ is a generalized λ−slant Toeplitz operator if and
only if ϕ = 0.

Proof. We need to prove one way only. For, suppose DλWkUϕ,λ is a generalized λ−slant Toeplitz
operator. Then for integers i, j, we have λ〈DλWkUϕ,λ ej , ei〉 = 〈DλWkUϕ,λej+k, ei+1〉. This gives
〈
∑
n
λnakn−jen, eki〉 = 〈

∑
λn akn−j−ken, eki+k〉 or ak(ki)−j = λkak2(i+1)−(j+k) for each i, j ∈ Z.

From this, we can prove that at = λknan(k2−k)+t for all n ∈ Z. This provide that at = 0 for all
t ∈ Z and hence ϕ = 0. q.e.d.

Now, we answer our query in the following form.

Theorem 2.16. The product of two generalized λ−slant Toeplitz operators is a generalized λ−slant
Toeplitz operator if and only if the product is zero.

Proof. Let ϕ,ψ ∈ L∞ and Uϕ,λ and Uψ,λ be two generalized λ−slant Toeplitz operators. Now

Uϕ,λUψ,λ = DλWkMϕDλWkMψ

= DλWkDλMϕ(λz)WkMψ(z)

= DλWkDλWkMϕ(λzk)ψ(z)

= DλWkUϕ(λzk)ψ(z),λ.

Now use of Lemma 2.15 completes the proof. q.e.d.

An immediate information that we receive from Theorem 2.16 is that the class of generalized
λ−slant Toeplitz operators neither forms an algebra nor contains any non-zero idempotent operator.

3 Spectrum of generalized λ−Slant Toeplitz operators

It is shown in Theorem 2.3 that each generalized λ−slant Toeplitz operator, |λ| = 1 is induced
on multiplying a generalized slant Toeplitz operator by a unitary composition operator and as a
consequence there is a one-one correspondence between the class of generalized λ−slant Toeplitz
operators and the class of generalized slant Toeplitz operators. We use the symbols σ(A), σp(A)
and Π(A) to denote the spectrum, the point spectrum and the approximate spectrum of an operator
A respectively. Motivated by the approach initiated by Ho [8], the following information without
any extra efforts can be gathered along the lines of techniques used to obtain the same results in
case of λ−slant Toeplitz operators in [6]. We are giving the outlines of the proof in some cases and
refer [8] and [6] for details.

Theorem 3.1. If ϕ is invertible in L∞ then σp(Uϕ,λ) = σp(Uϕ(zk),λ), where ϕ =
∑
n∈Z
〈ϕ, en〉λnen.

For ϕ ∈ L∞, Mϕ = DλMϕDλ so that MϕDλWk = DλMϕWk = DλWkMϕ(zk) = DλUϕ(zk) =
Uϕ(zk),λ, where ϕ =

∑
n∈Z
〈ϕ, en〉λnen. We use this observation to obtain the following.
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Theorem 3.2. For ϕ ∈ L∞, σ(Uϕ,λ) = σ(Uϕ(zk),λ), where ϕ =
∑
n∈Z
〈ϕ, en〉λnen.

Proof. Let ϕ ∈ L∞ and ϕ =
∑
n∈Z
〈ϕ, en〉λnen. Then σ(Uϕ,λ) ∪ {0} = σ(Mϕ(DλWk)) ∪ {0} =

σ(Uϕ(zk),λ) ∪ {0}. As R(U∗
ϕ(zk),λ

) = R(W ∗kDλMϕ) ⊆ R(W ∗k ), which is the closed linear subspace

generated by {ekn : n ∈ Z}, where R(·) stands for the range of the operator (·). Hence σ(Uϕ(zk),λ)
contains 0. Proof completes once we prove that σ(Uϕ,λ) also contains 0. This holds trivially using
Theorem 3.1 in case ϕ is invertible in L∞. We consider the case when ϕ is non-invertible element of
L∞. In this case, we get a sequence < ϕn > of invertible elements in L∞ satisfying ‖ϕn−ϕ‖∞ → 0
as n→∞. Then ‖ϕn−ϕ‖∞ = ‖ϕn−ϕ‖∞ → 0 as n→∞, where ϕn(z) = ϕn(λz) and ϕ(z) = ϕ(λz).
For each n ∈ N, choose a non-zero element fn in L2 such that Uϕn,λfn = 0 with ‖fn‖ = 1. Now
‖Uϕ,λfn‖ ≤ ‖Uϕ,λfn − Uϕn,λfn‖ ≤ ‖ϕ − ϕn‖ → 0 as n → ∞. This yields that 0 ∈ Π(Uϕ,λ) and
hence 0 ∈ σ(Uϕ,λ). This completes the proof. q.e.d.

Theorem 3.3. For any invertible ϕ in L∞, σ(Uϕ,λ) contains a closed disc, where ϕ =
∑
n∈Z
〈ϕ, en〉λnen.

Proof. Let Pk be the projection of L2 onto the closed span of {ekn : n ∈ Z}. Now, if µ is any
non-zero complex number and ϕ is invertible in L∞ then for each f ∈ L2, we have

(U∗ϕ−1(zk),λ − µI)f = Mϕ−1(zk)W
∗
kDλf − µ(Pkf ⊕ (I − Pk)f)

= µW ∗kMϕ−1(µ−1Dλ −MϕWk)f ⊕ (−µ(I − Pk)f),

Suppose that (U∗
ϕ−1(zk),λ

− µI) is onto. Now, pick 0 6= g0 in (I − Pk)(L2). Then we find f ∈ L2

such that
g0 = µW ∗kMϕ−1(µ−1Dλ −MϕWk)f ⊕ (−µ(I − Pk)f).

Since g0 ∈ (I − Pk)(L2), we have µW ∗kMϕ−1(µ−1Dλ −MϕWk)f = 0. This provides (µ−1Dλ −
MϕWk)f = 0 as Wk is co-isometry (i.e. WkW

∗
k = I). Hence we have 0 = (µ−1I −DλMϕWk)f =

(µ−1I − DλWkMϕ(zk))f = (µ−1I − Uϕ(zk),λ)f . This implies that µ−1 ∈ σp(Uϕ(zk),λ). Now
(U∗

ϕ−1(zk),λ
− µI) is onto (in fact invertible) for each µ in the resolvent of U∗

ϕ−1(zk),λ
, so on ap-

plying Theorem 3.1, we get that

{µ−1 : µ ∈ ρ(U∗ϕ−1(zk),λ)} ⊆ σp(Uϕ(zk),λ) = σp(Uϕ,λ) ⊆ σ(Uϕ,λ),

where ϕ =
∑
n∈Z
〈ϕ, en〉λnen. As spectrum of any operator is compact it follows that σ(Uϕ,λ) contains

a disc of eigenvalues of Uϕ,λ. q.e.d.

Remark 3.4. We conclude with the following observation.

1. The spectrum σ(Uϕ,λ) of the generalized λ−slant Toeplitz operator Uϕ,λ contains a closed
disc of radius is 1

r(Uϕ−1,λ)
, where r(A) denotes the spectral radius of the operator A.

2. For unimodular ϕ ∈ L∞, ||Unϕ,λ||2 = ||Unϕ,λU∗nϕ,λ|| = ||I|| = 1, so that r(Uϕ,λ) = 1 (using

Gelfand formula for spectral radius). Hence, if |ϕ| = 1, then σ(Uψ,λ) = D, the closed unit
disc.
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4 Compressions of generalized λ−slant Toeplitz operators

We denote the compression of a generalized λ−slant Toeplitz operator Uϕ,λ, ϕ ∈ L∞, |λ| = 1 to
H2 by Vϕ,λ or simply by V if there is no confusion about the symbol ϕ. Then by the definition
of compression, we have Vϕ,λ = PUϕ,λ|H2 , that is, Vϕ,λP = PUϕ,λP , where P is the orthogonal
projection of L2 onto H2. As Uϕ,λ = DλUϕ, we have Vϕ,λ = PDλUϕ|H2 , where Uϕ denotes the
kth-order slant Toeplitz operator. Since PDλ = DλP , we further have Vϕ,λ = DλVϕ, where Vϕ is
the compression of kth−order slant Toeplitz operator Uϕ to H2. It is straight forward to verify
that ϕ→ Vϕ,λ is one-one. It is interesting to obtain the following.

Theorem 4.1. An operator V on H2 is the compression of a generalized λ−slant Toeplitz operator
if and only if λV = U∗V Uk, where U is the forward unilateral shift on H2.

Proof. Suppose V is compression of a generalized λ−slant Toeplitz operator. Then V = DλVϕ for
some ϕ in L∞. Now U∗V Uk = U∗DλVϕU

k = λDλU
∗Vϕ U

k = λDλVϕ = λV .
Conversely, suppose that V is an operator satisfying λV = U∗V Uk. Then λDλV = DλU

∗V Uk =
λU∗DλV U

k. Since |λ| = 1, we get DλV = U∗DλV U
k. So DλV is compression of a kth−order slant

Toeplitz operator [1]. So DλV = Vϕ for some ϕ in L∞. Thus V = DλVϕ for some ϕ in L∞. q.e.d.

To discuss the compactness of compression of a generalized λ−slant Toeplitz operators, we first
prove the following.

Lemma 4.2. Let |λ| = 1 and ϕ ∈ L∞. Then we have the following:

1. WkV
∗
ϕ,λ = DλTψ, where Tψ is Toeplitz operator induced by ψ(z) = Wkϕ(λz).

2. If ϕ ( or ψ ) is analytic then Vϕ,λTψ = Vϕψ,λ.

3. If ϕ ( or ψ ) is analytic then Vϕ,λV
∗
ψ,λ is a Toeplitz operator.

4. If ψ is analytic then TψVϕ,λ is again compression of a generalized λ−slant Toeplitz operator.

Proof. Proof of (1) follows as WkV
∗
ϕ,λ = WkPU

∗
ϕDλ|H2 = PMWkϕDλ|H2 = DλPMWkϕ(λz)|H2 =

DλTψ, where ψ = Wkϕ(λz).
Proof of (2) follows using the fact that VϕTψ = Vϕψ when either of ϕ ( or ψ ) is analytic [1].
A simple computation shows that if ϕ ( or ψ ) is analytic then Vϕ,λV

∗
ψ,λ = DλTWkϕψ

Dλ|H2 =

PDλMWkϕψDλ|H2 = PMξ|H2 = Tξ, where ξ(z) = Wkϕψ(λz). This completes the proof of (3).
Now for (4), if ψ is analytic then TψVϕ,λ = PDλMψ(λz)Vϕ|H2 = Dλ Vψ(λzk)ϕ(z) = Vψ(λzk)ϕ(z),λ.
Hence the result. q.e.d.

Now we see the following, which is a very common result known for various classes of operators,
like, Toeplitz operators [4], slant Toeplitz operators [8].

Theorem 4.3. Vϕ,λ is compact if and only if ϕ = 0.

Proof. Proof of one part is obvious. For the converse, suppose ϕ(z) =
∑
n∈Z

anz
n is such that Vϕ,λ

is compact. By Lemma 4.2(1), DλTψ is compact, where ψ(z) = Wkϕ(λz). Now Dλ being unitary,
we have Tψ is compact. Thus Wkϕ(λz) = ψ = 0. This means that Wkϕ = 0. Therefore a−kn = 0
for all n ∈ Z.
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Now we use Lemma 4.2(2) that provides the compactness of Vϕzm,λ for m = 1, 2, ......, k − 1.
As a consequence WkV

∗
ϕzm,λ and hence DλTψ is compact, where ψ(z) = Wk(ϕzm)(λz). This

implies Wk(ϕzm) = 0, which means that a−kn−m = 0 for all n ∈ Z, m = 1, 2, ......, k − 1. Hence
ϕ = 0. q.e.d.
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