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Abstract

We define the Hankel space H,(]0, +oo[xR"); ut > — 1, and its dual H',,(]0, +co[ x R"). First, we character-
ize the space .#([0,+eo[xR") of multipliers of the space H,(]0, +oo[xR"). Next, we define a subspace
0},([0,+oo[ xR") of the dual H',,(]0, +-eo[x R") which permits to define and study a convolution product *
on H',,(]0,4e0[xR") and we give nice properties.
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1 Introduction.

We define the Hankel space H,,(]0, +-oo[xR"), u > —% to be the space of infinitely differentiable functions
f on]0,+eo[xR", such that for all (k;,a), (k2,B) € N x N", the function

(1) P22 DB (4 £,)

is bounded on [0, 4-co[xR". Where

d 19
‘T o

2 9\
o Df = (507 (5)" B = (Biba.B).

o x% = x{T x%; o = (0,00,...04).

The space H,(]0,4oo[xR") is equipped with a topology for which it is a Fréchet one [2, 10].
Our investigation in this work is to determine the space of multipliers of H,(]0, e[ xR") and a convolution
space for the dual space H',(]0, +oo[xR") of H,,(]0, +-oo[xR").

More precisely, in the second section we define a family of norms Nj,, m € N and a distance d,, on
the space H,(]0, +oo[xR") and we recall some properties. Next, we give the classical description of the
element of H',(]0, +oo[xR"). Also, we define the Fourier-Hankel transform .7, that will be a topological
isomorphism from H,,(]0, +eo[ xR") onto itself and from H',(]0, 4-eo[ x R") onto itself.

The spaces H,,(]0, +oo[ xR") and H',(]0, +oo[xIR") play for the Fourier-Hankel transform .7, the same
role that play the Schwartz space’s .7, (R x R") (the space of infinitely differentiable functions on
R x R” rapidly decreasing together with all their derivatives, even with respect to the first variable) and its
dual
(R x R") for the usual Fourier transform .% [7].
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The second section is devoted to define and study the space of multipliers ., ([0, +oo[xR"). This space is
formed by the infinitely differentiable functions 6 on [0, +eo[xR" such that the mapping
¢~ 00

is continuous from H),(]0,4eo[xRR") into itself. Then we give a nice characterization of the elements of
My ([0, 400 xR").

In the last section, using the fact that the Fourier-Hankel transform is an isomorphism from
H',,(]0, +oo[xR") onto itself; we define a subspace O, ([0,+-oo[xR") of H',(]0, +oo[xR") which permits
to define the convolution product of an element 7' € @, ([0, +oo[xR") and § € H',,(]0, +-eo[xR"). We prove
in particulier that for every T € O, ([0, +-co[xR"); the mapping

S+ T xS,

is continuous from H',(]0, +oo[ xR") into itself and we have

AT S) = 0" AT (Mo, M H(S)
in 1, (]0, +oo[ xR").

2 The multipliers of the Hankel space H,(]0, +eo[xRR").

Through out this paper, u is a real number; y > —%. For all m € N, we define the norm N’ on the space
H,(]0,4eo[xR") by setting
o, 9 \k 1
Ne(f)= sup (147 +x})" (ar2) DY (r 2 f) (rx)] - Q2.1

(rx)€[0,4-0o[ xR"
ki +ky+lo<m

Where [x> =23 + ... +x2;  x= (x1,...,%,) € R".
And the distance

It is well known that a sequence ( fi ) converges to zero in (H,,(]0, +-eo[xR"),d,,) if and only if

VmeN, lim N&(fi)=0.
k= oo

Moreover, the space H,(]0,+oo[xRR") is a Fréchet space when endowed with the topology generated by
(N;;i)mEN-
Definition 2.1. A function 0 defined on [0,+o[xR is said to be a multiplier of the Hankel space
H,(]0, 4+-eo[xR") if the mapping

¢— 00

is continuous from H,,(]0, 4+-co[xR") into itself.
The space formed by the multipliers of H,(]0,4eo[xR") will be denoted by .#,,([0,4oo[xR").
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In this section, we give a nice characterization of the space .#, ([0, +oo[xR"); also we define a topology
on this space and we establish some interesting results.

Lemma 2.2. Forall a,b € R, we have

1+a2 2
— < 2(1 —b|%).
<o fa )

Proof. The result is an immediate consequence of the Peetre’s inequality [1, 8], that is if 7 is a real number

and x,y are vectors in R", then
1 P\
<211 x =y,
(152) <2+ P

Q.E.D.

Lemma 2.3. Let f be an infinitely differentiable function on R, supp(f) = [%, %] and f(1) =1. Let ((rg,xx));
be a sequence in [0, 4oo[ xR", such that

[(ro,x0)[* > 1 and | (resr,s0))* > | ()| + 1.
Then, the function ©q defined by

1o 02 = [eox) P+ 1)
k
S (JawP+1)

belongs to the space H,,(]0,+oo[ xR™).

Proof. Letp e R, p > 1.
For all (r,x) € B(0,p) = {(r,x) € [0,+o0[xR", r* +[x|* < p*}, we have

)

| Ko rx) 2 = |(re, x|
o) = 2 FUEDP ) 1)
k=0 (|(rk,xk)\2+1)

where ko = [| — 1 +p?|] + L, because supp(f) = [1,3].
Consequently, the function

(r,x) — r_”_%(po(r,x)

is infinitely differentiable on [0, +oo[xR". Moreover, for all j,m € N and o € N, we get

(14 2 )" | () D (3 g0) r9) <

. o0 fj+‘“‘(r2+|x|27r27|xk|2+1)
21(1—|—r2—|—|x|2)ij’a(x)Z > 2k .
k=0 (r2+ a2 +1)
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Where P; o is a real polynomial on R". Thus, there exist an integer / and a positive constant C; o such that
N 1

(5,2)' DE( 2 90) (%)

- | 1R = 2 = a2+ 1))
Cio Y (14+7+ x> 5 X :
=0 (r2 + x>+ 1)

(L4 +x?)" <

However, Lemma 2.2 involves

(L7 + x| <28 (147 + ) <1+ [\/r2+|x|2 r? 4 |xi|? >
I

<2+ g+ ) (14 ] + x> = 2 — [ae?)

<2 ) (24 (74 = = ) )

Consequently,

<

m| 0
(17 +1xP)" | (55) D 2q0) (r0)| <
f]+\oc|(r +|x|2 |Xk|2+1)’

(P2 + x> + 1)

ZICL(XZ <2+(r2+|x|2—r,%+|xk| ) ) )
k=0

On the other hand from the hypothesis, for all k£ € N, we have
r,%—i— |)ck|2 >k+1,

finally, for all (r,x) € [0, +oo[xR" we get

oo

0 \j Y
(172 + )" | (5 5) DX (72 90) (r.2)| < 2'Cjalaju(f kzg) k+2 =D

where N (f) = sup(2+ (t — 1)) | £/ 1)) Q.E.D.
teR

Theorem 2.4. The following assumptions are equivalent

i) The function O is infinitely differentiable on [0,o0[xR" and for all (k,a) € N x N" the function

(=)

is slowly increasing, i.e there exists my o € N such that the function

“DY(8)

9 D% (0)(r.1)

(rx) = (177 4 ) e (55

is bounded on [0, xR".
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it) The function © is a multiplier of the space H,(]0,+oo[ xR").

iii) The function © is infinitely differentiable on ]0,00[xR" and for all (k,o) € N x N, the mapping ¢ —
(ar2 )XD%(0)¢ is a continuous endomorphism of Hy(]0, +eo[ x R™).

Proof. . Suppose that i) is satisfied. Let @ be in H,(]0,4+eo[xR"). It is clear that 8¢ is an infinitely
differentiable function on ]0,ec[xR" and for all (k,a) € N x N,

d |
@)"D%(rﬁe(p) (rx) =

ZZ

R
J=0B+y=a B"Y‘ r2

)]Dye(r x) (aaz )kijDE’ (r_“_%(p) (r,x).

Where o! = oy !...a1, !, o= (0, ...,0,) € N". Let m € N and (k;,kz,0) € N x N x N" such that k; +k» + |0l
< m. From the hypothesis there exist [ € N and C,, such that for all (j,7) € Nx N, j+ |y] < m, we have

(5 D100 <

<Cpn (l+r +|x| )
So,

\<1+r2+|x|2>’<1(frz%m?(r-ﬂ—%em)(nx)

ky! ol |, d
L Cu(1 472+ x) T —_—
jz(’)ﬁga (k2_ ) B"Y'

ky
<Cmefl+l((p)Z ((éi)) < Z [30'6;'> 2kl NH (0)

j=0 B+y=a
<2"CuN,,1,(9).

) D ) (1)

(5,2

This inequality shows that for every ¢ € H,(]0,4+o[xR"), the function 6¢ belongs to the space
H,(]0,4eo[xR") and that the mapping ¢ — 0¢ is continuous from H,,(]0, +-co[xR") into itself.

. Suppose that 0 is a multiplier of the space H,,(]0, +-co[xR"). Let y be the element of H,(]0, +oo[xR")
defined by

W) =t ae e
From the hypothesis the function
0(rx) = 0(r,x)y(r,x),
belongs to the space H,,(]0, +oo[xR") and we have
0(r,x) = r H 2 e”HP o(r x), (2.2)

this shows that the function 0 is infinitely differentiable on |0, +-co[ xR".
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Now, the partial differential operators O f(r,x) = Pt (a%)(r’“’% f)(r,x) and %; 1 < j < n, are con-
r J
tinuous from H,(]0, +-eo[xR") into itself, and for every (k,a) € N x N”, we have

Z Z 1)l#l I ke Pl BO!L\‘('(B?»Z) D}(DJ (GDk*J'DE(p)).

Since 0 is a multiplier of the space Hl,(]0, o[ xR"), the last equality shows that for all (k, o) € N x N”, the
mapping
ad
0 () D (O)¢.
is continuous from H,(]0, +oo[xR") into itself.

. Suppose that the function 0 satisfies the assertion iii). From the relation (2.2), and for every k € N,

0 2 0 iyl
(5,2) @) (rx) =¢" B ZCW 52 ) (),
Jj=
Let us prove that for every (k, o) € N x N” the function (%)kD“(G) is slowly increasing. In fact, suppose
9

that there exists (ko, o) € N x N, such that the function (
exists a sequence ((r},x;)); C [0,e0[xR" such that

2 Y DY (@) is not slowly increasing. Then, there

QJ

. r3+\x0|2 > 1.
. }’%_H +|Xj+1‘2 > 1+V§+|Xj|2.

(5%)" D5 (8)(r),x))
(1475 + [x;[2)/

From Lemma 2.3, the function

i (P4 x?—rF = |al>+1)
k=0 (1+r2+ |xk| )
belongs to the Hankel space H],(]0, +-eo[xR") and for all j € N, we have

J 0 %0 oy 77% oy ¢
(5" DR @)y} (p(r”x")‘ T U2+ )

)

(5.5)D% (0)(r),x;)

X

Gronr© )|
= - >
(1475 + |x;[2)/

This contradicts the hypothesis, because
. ad k —H—7 !
lim (570D (O)(ry )" () =0,

The proof of the theorem is complete. Q.E.D.
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Remark 2.1. From Theorem 2.4 i) and ii), we deduce that the space of multipliers .2, ([0,+eo[xR") is
independent of the real parameter u and will be denoted by . ([0, +oo[ xR").

In the following, we will define and study a topology of the space .Z ([0, +oo[xR").
For every m € Nand ¢ € H,,(]0,+eo[xR"), we denote by p}, ¢ the seminorm defined on .2 ([0, +eo[ xR")
by

Php® = sup | R (=) D) ().
(r,x)€[0, 400 X R" or
k+|o<m

and we define a basic of neighborhoods of zero in .# ([0, 4-eo[xR") by setting
WH(0) = {Bloe(0); meN, ¢ € Hy(]0,+0[xR"), & >0} (2.3)
where
Bl 0e(0) = {0 € ([0, +0o[xR"); plyo(0) <e}.

Then, a sequence (Bx); converges to zero in .#([0,+eo[xR") if and only if for all m € N and
¢ € Hy(]0, +eo[ xR"),

lim p’,ﬁ,iq,(ek) =0.

k—>+o0 '

Since the mapping ¢ — r¥ %@ = ® is a topological isomorphism from H,(]0,+eo[xR") into
Hy (]0, +eo[xR") and using the fact that for all m € N and 8 € .# ([0, +-oo[xR"), we have

plrtz,(P(e) = p::17<1>(9)7

it follows that the set ##(0) defined by the relation (2.3) is independent of the real parameter u and will be
denoted by #/(0).

Proposition 2.5. i) Let © be an infinitely differentiable function on [0, +oo[xR", such that for all m € N
and @ € Hy(]0,+oo[XR"); ply,o(8) is finite, then the function © lies in . ([0, +oo[xR").

ii) The family of seminorms defined on ([0, +oo[xR™") by
Yino(0) =Ni(0¢); 6 € ([0, +o[xR") and ¢ € H,(]0, +oo[xR") (2.4)
generates the same topology as the family {ph, o; m € N, @ € H,(]0, +-oo[xR")}.

Proof. 1) Let ¢ € H,(]0,+o[xRR") and m € N. By Leibniz formula, for all k,k> € N,a € N* such that
ki + ko + o] < m, we get

(474 W) (5) " Dx (- Z‘P("")e(""))—;mg‘éaj!(kz—j)!mv!

() DPa) (14 7+ ) () DY 0) ).
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Thus, for all (r,x) € [0,+oo[xR", we have
d
[(1+7+ |x|2)kl (ﬁ)kzDg(r*"*%(p(r,x)O(r,x)) |

Z Z kz— vﬁtyvpkz J+\ﬁ|q>/yk1(e)

o!
<Z Z sz 'B'v'p’”“’wkn(e)' (2.5)

Where, ®;, is the element of H,,(]0, +-eo[xR") given by

@0 () = (1474 )4 (DY () (). 2.6)

The inequality (2.5) shows that for all ¢ € H,,(]0, +-oo[xR"); the function 8¢ belongs to the Hankel space
H,(]0, 4+-eo[xR"). The remainder of this proof is the same as the proof iii) implies i) in Theorem 2.4.

ii) Let m,ki,ky € Nyoo € N* such that k; + ky + || < m.  Let ¢ € H,(]0,4+oo[xR") and
®,, € H,(]0,+oo[xR") such that

P, (0) =sup{p g (0), Jj<hky, v<o: kit+hk+|af <m},

kg

where the functions ®; y, are given by the relation (2.6). The inequality (2.5) involves that

N3 (09) <2"p}, o, (8), 2.7)

which means that
Vnp(8) < 2"p), @, (0)-

. Let 8 and @ be two infinitely differentiable functions on ]0,e[xR". By induction on |a|, o € N", we get
o(r,x)DM0(rx) =Y B' ( ‘BlDY( (r, x)DE(p(nx)). (2.8)
Biy=o PV
And by induction on k € N, we get also
9 k! ad ad
= -1 k=p =— )P . 2.
0) (5800 = Y (17 )P (000 550 0(e0) @9)

Combining the relations (2.8) and (2.9), we deduce that for all (k,a) € N x N”

1

L) () DEO(r ) = 2.10
T e e { CUMIPC AR )L

P=0B+y=a
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Letm € Nand ¢ € H,,(]0, +oo[xR"), from the last equality, it follows that for every (k,a) € Nx N"; k+ |o| <
m, we have

0 e k k! o!
’r b= 2(p(rx)(a D%O( rx‘ ZZ)BZ 7]{ I ,’:pﬂal(efbp’ﬁ)
p=0p+y—a P
k k! al
———— = NL (0D, 5)
pgom;:a (k= )ty !

where 5
1 a1 n
D, 5(rx) :wﬂ(ﬁ)mﬁr H72@(r,x) € H(]0, +oo[xR").

Now, let @,, be an element of H],(]0, 4-co[xR"), such that
sup{N} (6@, 5), p+|B| <m} =N} (6Dy).

Then,
pﬁz.cp(e) <2"Ym@,, (6)-
The proof of the proposition is complete. Q.E.D.

Let ([0, +oo[xRR") be the space of infinitely differential functions on [0, +eo[xR" equipped with the
family of seminorms {P,,;; (m,l) € N?} defined by

d
Pui(f)=sup |(5)D¥f(rx)|
PP O
k+|o| <m

and the distance

mlf g)
Zszﬂler (f g)

m=01[=

Then, we have the following continuous embedding
Lemma 2.6. . ([0, +oo[xR") < €"([0,4oo[xR").

Proof. Let y € H,(]0,4oo[xR"); y(r,x) = P+1e~” =R’ Let m € N. From the relation (2.10), for every
0 € A (]0,+oo[xR"), (k,00) € Nx N", k+|a| < m, we have

(a?»z)kDae(rx) e
Z Y (- B+p(k!)ﬁ?;‘(az ) "DI(O(r,X)(a%)pDEV_”_%\If(rvx))~

p=0pB+y=0

However, for all kK € N, there exist k+ 1 real polynomials, Q;, 0 < j < k, such that

8
- L o0
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with degree(Q;) < j. Hence,

0 & 2 k! o!
—)*D%O(r,x) = ¢ x| 2 2 [ L
(8r ) p=0p+y=a ( ) B"Y'

X{ZQJ (-2 DY(0(r ZQ, Db () } =

o Tl Z Z IBHpLﬂki’Q.(r)(i)jm(fuf%w 5(rx))
p=0B+y=0a (k p) B"Y’ j=0 ! or? * P

with
8
72

q!pﬂﬁ(rx r‘“+2 ZQ )DEF”*%\V(;@X)).

Now, for all 0 < j < k— p, there exists C; > 0, such that
10;(r)| <Ci(1+7) <C;(1+ 7+ |x]?)!

and consequently

[ aa FD%0(r )| < o x
Z )3 %B'Y' ZC (1472 +|x[?) |(%)/D)YC(,—M—%%_’B(F’X))|
=0 iy

r+\x\2 (X' k—p

P=0B+y=a
Let y,,, € H,(]0,4oo[xRR") such that
sup{N;, (0w, 8), p+ (Bl <m} = Nj,(6y).

Then, for all (k,o) € N x N” such that k+ |ot| < m

(2 D20(:)| < Caze” ¥ N0y,
where, C,, = Y7L, C;. This equality shows that for all (k,a) € N x N"

2
Pru(8) < 2"Ce Yy, (0).

Proposition 2.7. The space # ([0, +oo[xR") is Hausdorff and complete.

C. Baccar

Q.E.D.
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Proof. e Let 0 € .#([0,4oo[xR") such that 6 # 0. Let ¢(r,x) = r’”%e_’z_wz, then @ belongs to the Hankel
space and we have

Pho®) = sup e FFle(na) >0,
’ (r,5)€[0,00[ x R"

this shows that the space .# ([0, +-oo[xR") is separated
e Let (6 )« be a Cauchy sequence in .2 ([0, +oo[xR"). This means that for all m € N, ¢ € H,(]0,4oo[xR"),

M (B — ) — 0.
POk — Opr) T

From Lemma 2.6 (8y) is a Cauchy’s sequence in ([0, +oo[xR") which is complete. Consequently, there
exists 0 € €([0, +oo[xR") such that for all m,l € N

P,,,J(ek — 9) — 0.
k—so0

Lete > 0, forall m € N, ¢ € H,,(]0, +oo[xR") there exists ko = ko(m,®,€) € N such that
Vk, K > ko; p‘,ﬁw(ek — ek/) <E,

this means that for all (,x) € [0,0[xR" and (p,a) € Nx N"; p+ |ot| < m;

lfﬂ*&p(r,x)(%)m?(ek —0)(nx)| <e.

and consequently
el J
|r u 2(p(r7x)(a?)ng(9k—9)(r,x)| <E.

This inequality shows that the function 6 belongs to .#Z([0,4+e[xR") and that for all
(m, @) € N x H,(]0,4oo[xR"),

POk — ) — 0.

Q.E.D.
In the following, we shall study the continuity of some operators defined on .# ([0, +oo[ xR").

Proposition 2.8.

i) The bilinear map

([0, +00o[ xR™) x ([0, 400 xR") = 4 ([0, 400 x R")
(6,9) — 60

is separately continuous.

ii) Forevery (k,a) € Nx N", the map 6 — (%)kD%G(r,x) is continuous from A (0, +oo[xR") into itself.

Proof.
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i) Fix 0 € ([0, +oo[xR"). Let O € . ([0, +oo[xR"), ¢ € Hy(]0,4o0[xR") and let k,m € N, o € N" such
that k+ |a| < m.
It is clear that 89 is an infinitely differentiable function on ]0,eo[xR" and by applying Leibniz formula we
get for all (r,x) € [0,00[xR",

r"“*%(p(r,x)(g)kDo‘(Gﬂ (r,x) Z Z k ]) BO'U */’*%(p(r,x)

(ai) DPO(r,x)( 322 )T DY (r,x).

From Theorem 2.4, there exist C B> 0 and m ip € N such that

0 ..
(D200 <

Cjp(1+r*+]x|?)"is
Thus, we have

- zm(rx)(aa DS (69) (1)

d o! ’ 1 0 .
<Y Y s “1d;p(rx)(55) I DYO(r,x)
0Bty / B!y or
d k! al
< jgz)ﬁﬂ(:tx m ka7j+|Yl’q>j-ﬁ (%)
. Kool
< e P 5 (0
j;om;: itk )t By Pmes )

where @; g is the element of H,(]0, +-oo[xR") given by
P, p(rx) = Cjp(L+r7 +[x*)"iPo(rx).
Let @, € H,,(]0,4o0o[xR") such that
Dl (0) = SUp{Plsg (), [0 <m}.
Then, the last inequality involves that

Pino(00) < 2"p), g, (D).

ii) Letm € N, (k,a) € N x N". Then for all 8 € . ([0, 4oo[xR") and ¢ € H,(]0,+oo[xR"), we have

0
Pffu(p((a )kDae) pm+k+\a\(v(e)

Which completes the proof. Q.E.D.
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Proposition 2.9. The bilinear mapping
A ([0, 400 xR™) x H,,(]0, +-00[ x R") — H],(]0, +-00[ xR")
(6,0) — 69
is separately continuous.

Proof. e From Definition 2.1, it follows that for every 8 € .# ([0, +oo[xR") the mapping ¢ — 0¢ is contin-
uous from H,(]0, +oo[ xR") into itself.

e Let ¢ € H,(]0,+oo[xR"). The continuity of the mapping 6 — 6¢ from . ([0,+eo[xRR") into
H,,(]0,4-eo[xR") follows from the relation (2.7). Q.E.D.

Proposition 2.10. The mapping ¢ — r’“’%(p is continuous from H,(]0,4-co[xR") into . ([0, +oo[xR").
Proof. Let @, ¢ € H,(]0,+oo[xR") and m,k € N, o € N" such that k + |a| < m, we have for all (r,x) €
10,00 xR"

1 d el
r(nx) (55) DY (r 2 0) (1) | < NG (9N (@),
which implies that

1
Ping(r 7 20) <Ny ()N (9).
Q.E.D.

3 The convolution space of the dual H',(]0, 4-oo[xRR").

Let H',(]0,+o[xR") be the topological dual of the Hankel space H,(]0,+eo[xR"). To give the usual
characterization of the dual H',(]0, +oo[xIR") we use the fact that for all ¢ € H,(]0,4-eo[xR"), the family

V(@) = {Vineu(0), m € N,e > 0}
is a basis of neighborhoods of ¢ in (H,,(]0, +-eo[xR"),d,). Where
Vineu(@) = {W € Hy(J0, +-oo[xR"); Nj, (¢ — ) <&}
Thus, we have
Proposition 3.1. A linear mapping
T : H,(]0,4+e[xR") — C

belongs to H',(]0,4eo[ xR") if and only if there exist a positive constant C and an integer m such that for
all @ € H, (0, +oo xR);

| <T,0>|<CNL(9). 3.1

The main result of this section consists to define a subspace of the dual H',,(]0, +-e[xR") which permits
to define and study the convolution product on H’,(]0,4-eo[xR"). For this we shall define the Hankel trans-
lation operators, the convolution product and the Fourier-Hankel transform and we recall some properties,
see [6].
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Definition 3.2. 1. For every (r,x) € [0,4oo[xR"; the Hankel translation operator ’C’(Jr_x) is defined on
H,(]0, o[ xR") by

r+s » [/JJ,»% 1
\r—s\(p(t7x+y) ,u(rasat)mdt, > )

@ @) =
g{(p(r-i-s,x—ky)—i-(p(r—s,x—f—y) . 1
T 2 5 u= 5

2. The convolution product of @, y € H,,(]0, +-00[xR"), is given by

bl . dsdy
Qxy(rx) = /0 / T (@) (5. 2)W(s,) 2 (3.2)
Where #,, is the Hankel kernel given by
1 1
I (1) [(r+5)2 = 2] 2 2= (r—s)2]" 2
(rs) e )2[(r1 ) }1 2}[, (r=s)] slr—s|<t<r+s
24u— \/EF(,U+ i)t
0: otherwise,
and (\p(svy) = (p(S, 7y)'
To define the Fourier Hankel transform, we introduce the function (p‘;{).k, (Ao, A) €]0,00[xR" to be
W) = Fulrha)e . 63

Where
e 7, is the modified Bessel function defined by

fu(z) = \/EJ,,(Z).
And J,, is the Bessel function of the first kind and index u (see [4, 3, 5, 9]).
e (.[.) is the usual inner product on R”, (Alx) = ¥ _; Ajx;.

Definition 3.3. The Fourier-Hankel transform 7, is defined on Hy(]0,4oo[xR") by, for all (Ag,A) €
H,.(]0, +oo[xR");
i drdx
A Ao, A :/ / rx rX)— .
10000 = [ [ 06,100
It was shown in [6] that
e J, is a topological isomorphism from H,(]0,4e[xR") onto itself and that the inverse mapping is
given by
dhodA
T

AN =[] f@o,x)w(g)
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e For every y € H,(]0,4-0o[xR"), (r,x) €]0,00[xR" the function ’c’(’r_x) (w) belongs to H,(]0, +oo[ xR")
and we have /

AT (W) (R, M) = @’{ AnX) A (W) (Mo, 1) 3.4)

e For every @,y € H,,(]0, +oo[xR"), the function ¢ %y belongs to the space H,,(]0, +oo[xR") and we
have

S 99) (o, 2) = 1" A5(9) (o, 1) A5 ) ().
The precedent result allows us to define the Fourier-Hankel transform .7, on H';(]0, +-eo[xR") by
< A(T). @ >=< T, 7(9) >, @ € Hy(J0, +oo[ R").
Then, .7, becomes a topological isomorphism from H',(]0, +oo[xR") onto itself.

Next, we establish other properties for the translation operator and the convolution product that we use
later.

Proposition 3.4. For every (r,x) €]0,00[xR", the Hankel translation operator t’(‘r‘x) is continuous from
H,(]0,4co[xR") into itself. Moreover, for all m € N, there exist mi,m> € N and C > 0 such that

Wy € (0, o[ <R, N () (W) < COLP o )" NG, (W) (35)
Proof. From the relation (3.4), we have, for every y € H,,(]0, +-c0[xR")
P
W) =5 (MG ) (59,

Since the transform .#,! is continuous from H,(]0,+oo[xR") onto itself, for every m € N, there exist
m’ € N and C > 0 such that

M () = (7 (20" ) )
<om (1" A, G ) ).

Q.E.D.

Let
f(l(h - (pﬁ x rx )(7\‘07;\')

r"“/2 100 g
= m]u(lﬂr) ,U(W)O\'O»}")?
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where j, is the modified Bessel function defined by
Ju(s
juls) = 2T 1) 2
2r 1 ! _1
(ut )] / (1—12)""2cos(st)dt; pu>—1
=9 Vrl(u+3) Jo
cos(s); p=—1
It is clear that for every k € N,
3 \* (—r2)
— j = ————] . 3.6
(552) Usthon) = sy os ) 66)

Thus, from Leibniz formula, we have

o\ .

(332) (w2 r00m) =
0

r,u+1/2 p)

i(Alx, : ! . d k=t —u—1/2
s L () o) (55) (5" At 00.).

and from the relation (3.6), for every o € N"

2 \* —p—1/2 172
25 (53) (" r00) = gy

21

a r . o i(A|x a ! —u—1/2
gci(—l)lmjwl(lorwx <@ Ao (87%) (7‘0“ %(‘V)(%l)))

a2k 2

T2+ l) &t

k—1
L e ((;%) (%o””%(w(xo,x))) .

p<a F°

er(u+l+1).]/~l+l( OV)X

Let k1,ky € N, o € N" such that kj + k + |a| < m. For every (Ao, L) € [0, +-oo[ xR,

o\, .
(1+25+ A»)M D (W> (7»0“ 1/zf(ko,k))|
0

< C12k2+|(x\ (1 + I"2 + |x|2)2m’+[,u+1/2]+lerrlll (%I(W))
< Cz(l + ’,2 + ‘x|2)2m +[y+1/2]+1N’,l:l” (W)
Which completes the proof.
Proposition 3.5. For every T € H'(]0,+oo[xR") and ¢ € H,,(]0,+oo[xR"), the function defined by
Teo(ra) = (1.7 (3)

is continuous on [0,00[ xR" and slowly increasing.
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Proof. Let T € H',(]0,+oo[xR") and ¢ € H],(]0,+oo[xR"). From Proposition 3.4 and for every (r,x) €
[0,00[xR", the functlon ’C“ ( ) belongs to the space H,,(]0,+oo[xR"). Hence, the convolution product

T x @ is well defined. Let ((rk,xk))k C [0,00[ xR™ such that limy_e (rg,xx) = (1,).
)((T)))k converges to *c’(‘kx) (¢) in H,(]0, +oo[ xR").

Since the Fourier-Hankel transform is a topological isomorphism from H],(]0, +-co[xR") onto itself, it is
enough to show that

Let us prove that the sequence (‘c“ o

lim S, (T“rk ,xk)((P)) = (T?r,*X)((T)))

k—yoo

in H,(]0, +oo xR").
By relation (3.4), for every (Ag,A) € [0,00[xR",

A (@) 00,2 =" 2 () H4(9) (o, 1)

_1 .
=" 7 _Zu(hore)e M ,($) (o, )
ru+1/2

= S ree I A®) (o)

Thus, for every (Ao, L) € [0,00[xR",

i () @)= (@) (0.2 =

; H(§ A
(r,u+l/2 (V 7\'0) i) r“+1/2jy(r7»0)e_’<7"x>) « 2/;5_(‘21(101) )

By standard computation and using the relation (3.6), we deduce that for every (ki,k>,0) € N x N x N,

. 0 o y .
lim sup (1 +7»(2)+ \7\|2)k1 (akz )ksz (%ﬂ (T”rk ) ((p) 1” 9 ((p)) (?»07%))‘ =0,

k=20 (g M) €[0,00[ xRN

which means that (I’('rk ) ((T))) converges to (I‘“ ((T))) in H,(]0, +oo[xR"). Since T’ € H',,(]0, +oo[ xR"),
then

lim (7,7

koo (7 =2z

(@) = (T, (@),

and consequently, the function 7 @ is continuous on [0, o[ xR".
Moreover, from relation (3.1), there exist m € N and C; > 0 such that for every (r,x) € [0,00[xR",

1T (r)] < CUNE(:_ ().
and by relation (3.5)
T @(r,x)] < Co (1477 + [x%) ™ NE (9),

so the function 7 * @ is slowly increasing and the proof is complete. Q.E.D.
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Lemma 3.6. Ler ¢,y € H,,(]0, +oo[xR™). Then, for every X > 0, the sequence (0x n)n, N = (No,...,N,) €
N1 defined by

X 2x  2x Mgl Naol

0 . Ly
XN(S y) N Nl Nn et an:O <kOX X+12VXk1‘...,7X+%kn)((p)(s’y)
koX 2X 2X
X+ —ki,....,— X+ —k
W( NO + N ’ + Nn ")

converges in H,(]0,4oo[xR") to the function

X
Ot = [ [ T @)W

Proof. From Proposition 3.4 the function 8x y belongs to the space H,,(]0, +-0o[xR"). Now, for every (s,y) €
]0,00[xR", we have

No—1  Np—1 "OT;‘X X+katly
Ox n(s,y) —Ox(s,y) = Z Z tgx / o
k=0  kn=0" Ny XN
koX 2k,
(T"NO())(V__’X+%V/<;1X((p)(s7y)l{l(%7“w_x+ NnX) ( )((P)(Suy)qj(nx))drdx'
Let (ki,ky,0) € Nx N x N then
d L
(14524 ) (550D (577 (Bxn — Bx) (5.))
No—1  N,—1 "g,ix _xyhatly d
_ 0 / N (1_|_S2_|_| 2\k 9 \po
= , y|*)"1 (5= ) DY
kOZ:O an:O I\}\(}% XX d9s>"
_ul koX 2k,
(s 2<TkNoéf7_._7x+3vk:X((P)(Say)‘P< O X 2 ) ()50 #(1)) )
No—1 N,—1 .kofly _xhntly kX 2k,
= .. k;{‘fo / k::" (F(O,...,—X—i- X)) — F(r,x,&y))drdx
ko=0  kn=0 0 7X+,$fn NO Nn

where F : ([0, +oo[xR")? — C is defined by

F(re.9) = (1054 2 (220D (50 (9) () ()
The function F is continuous on ([0, +oo[ xR")%. Moreover,
(1472 45"+ 3+ [y F (nx,5,))]
< (154 P oD (71 (@)(s.9)) (1 4 ) ()
2D (5731 (@)(s.9)) (12 2443 )
(¥0(@) (14 72+ 2Bt 3] 3w )|

< (145> +]yH)aH(

U
< Nk1+k2+\oc\+1
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and by Proposition 3.4, we get

(142 457+ x>+ [y[)|F (r.x,5,9)|
1 1
SCNE (@) (1472 + [x2)ym2 bt 2] | (r =29 (1 ) ) |

u H

The last inequality shows that

lim F(r,x,s,y) =0
2452 +[y[2+|x|2 oo

and consequently, the function F is uniformly continuous.
Let € > 0, there exists o > 0 such that for |[r— | <o, |x; — x| <o, 1 < j < n; we have for every
(5,5) € [0, +oo[xR",

|F(r,x,s,y) _F(r/7x/7s>)))| <E.

So for (N, ...,Ny) € (N*)"1 such that NLO <o, Z <o, 1< j<n, we get for every (s,y) € [0, +oo[xR",
J

(14574 [yl (a%)D;x (Sf”f% (Bx N — eX)(Svy)) ’

No—1 N,—1 %X x4 h]
<e Z Z / N drdx;...dx,

koX k,
k=0 k,=0" Ny X+

No— 1 Nal ¥ 0% 02X

<e ) Y L =yt
ko=0  k,=0 No Nt Ny
This proves that for every (kj,k,a) € Nx N x N,
sup N P (D (57 B = 00)5) 0.
(5,y)€[0,+oo[ xR 952" Y ’ (NQ - esNp )= (Ho0,...,4-00)

Which achieves the proof. Q.E.D.

Theorem 3.7. For all ¢,y € H,(]0,+oo[xR") and T € H',,(]0,4-oo[xR"), we have

I [ vy = . [7 [ @) i),

Proof. From Proposition 3.5, the integral

/Om/n(T,t'z'nx)((p)>1p(r,x)drdx:/Ow RnT*(“p(r, —x)y(r,x)drdx,

is well defined. Since the space H,,(]0, +oo[xR") is stable under convolution product, the function

530 [ [ (@3 Wrx)drds = (s, —)
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belongs to Hl,(]0,+e[xR"), and then <T,/ / ’c'z'”)((p)(., Jw(r,x)drdx) is also well defined.
0o Jre
Let X > 0, by Lemma 3.6, the function

X
K= [ [ (@)
o Jixxp
belongs to the space H],(]0,4-eo[xR"). It follows that the function
G [ f T (@) (53 W)
([O‘VX]X[*X*,X]”)L /

lies in H,,(]0, +oo[xR") and we have
(T / / (%) Y(r,x)drdx) = 37
<T’ /0 /[7X7X]" ﬂc?lr’x) ((P)(7 .)W(r’X)drd)o * <T’ //([07)(] x[=X,X]r)e Tl(ln,x) ((P) (say)W(77X)dde>.

(S7y) // (r )(%C)(Say)\lf(l,x)d;dx.
([O,X] X [ X ‘X]n)c X
Then, for every m € N7

naro< [ [ NA () (9)) ()
([OvX]X[fxvx]n)C ’

and from (3.5), we get

NA(F) < CNu(o) [ [ (172 4 )™ Ny ()
([0.X]x[-X,x]")

the last inequality shows that
}}im Fx =0, in H,(]0,4+oo[xR"),
o)

and by relation (3.7), we get
/ /n () y(r,x)drdx) —)}1;20 / / o rx o )W(r,x)drdx)
= lim (T, 0x).
X o0

Let On x,N = (No, ..., N,) be the sequence defined in Lemma 3.6, then

T,0x)= 1 T,0
< 5X> N lm’ >< 3 N,X>

—(00,...,00
X 2x 2x Moot Mol /kex 2X 2X
= lim . w(°7—X+k1,...,—X+k,,)
N—(co,...,00) NO NN, ko0 Ko No N Ny
7,7 ..
< (k,‘\}—(’)‘ X+ ki —X+%k,,)((P)( )

- /0 / (T, Tl(lr,x)((P»‘If(r,x)drdx.
[-X X]n
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Finally,

T/ / y(r,x)drdx) = hm/ / (0))y(r,x)drdx
R~ X—re0 X.X]"
:/ / (T, () (9)w(r,x)drdx.
0 JRn ’

Proposition 3.8. For every T € H';,(]0,4oo[xR") and every ¢ € H,,(]0,+oo[xR"); we have

Q.E.D.

a1
Hil(Trug) = N4 ) H,(T).
Where Trq is the element of H',(]0, e[ xR"), defined by

e drdx
T*7 - T ) ) . \n-
T = [ [ Trot0vnn o5

Proof. From Proposition 3.5, for T € H',(]0, +-eo[xR") and ¢ € H,(]0,+eo[xR"), the function T * @ is
continuous on [0,4eo[xR", and slowly increasing. Thus, T7.¢ is an element of H',(]0, +eo[xR") and for
every y € H,,(]0, +oo[xR"), we have

(Hi(Trig) W) = (Trag, 7 / +°° / (T (@) A (W) () drdx.

Applying Theorem 3.7, we obtain

AalTrg) ) =T, [ [ @A 0 ). (3.8)

Now, for every (s,y) € [0,+oo[xR", we have

[ Lo e s

Feo . drdx
- /0 / T @AW 050) 5

e drdx
= L Al @

By means of relation (3.4), we obtain
oo drdx
—X ¢ ) % ) ANn /D
L e @A
drdx

Foo 1
= L e A v s

= (P A(QW)(5.).
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Replacing in (3.8), it follows that for @, y € H,,(]0, +-oo[xR") and T € H',(]0, +-00[ xR"),

L
(A(Tre), W) = (T, A (r 2 ()W)
L
= (2 A(0) HU(T), W)
This completes the proof. Q.E.D.

We denote by M(]0,00[ xR") the subspace of . (]0, o[ xR") consisting of functions f such that for every
(k,a) € Nx N there is m = m(k,a) € N, for which the function

3\
() (42 WP () D),
is bounded on [0, +eo[xXR".
M(]0, o[ xR") is equipped with the topology induced by . (]0,eo[xR").

Definition 3.9. We define the space 0),(]0,00[xR") t0 be the subspace of H',,(]0,4-eo[xR") formed by the
distributions T such that 7¢,(T) is an infinitely differentiable function on [0,4co[xR", verifying for every
(k,a) € Nx N, there exists m = m(k,o) € N, such that the function

1

k
(r,x)— (1 +r7+ |x|2)m (822) DY (r *"2.4,(T))(r,x)

is bounded on [0, +oo[xR",
The space @L (]0,00[xIR") is endowed with the topology generated by the family

1 n
Ono(T) =Yg 254,(T)), Vo € Hy(]0,+oo[xR"),
where, V), ¢ is defined by relation (2.4).

Remark 3.1. It is clear from Definition 3.9, that for every T € (O);,(]O7 o[ xR™), the function

Ll
(rx) = r 2 (T (1),
is a multiplier of the space H,(]0, +-oo[xR").

Lemma 3.10. For every T € Q},(]0,0[xR"), the mapping @ — T * @ is continuous from Hy,(]0, +-eo[ xR")
into itself.

Proof. From Proposition 3.8 and Definition 3.9, for every T' € O),(]0, o[ xR") and every ¢ € H},(]0, +oo[xR"),
we have
-1
H(T+9) (Mo, A) =g * H4(T) (Mo, M) H(9) (Mo, ).
Now, from Remark 3.1, the mapping
Ll
vy (T

is continuous from H,,(]0, +-eo[xR") into itself, then the result follows from the fact that .7, is a topological
isomorphism from H,(]0, +oo[ xR") onto itself. Q.E.D.
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Proposition 3.11. The Hankel transform 7, is a topological isomorphism from Q),(]0,[xR") into
P+ IM(]0, 00 xR).

Where rF’*%M(]O,oo[x]R”) denotes the space of functions f such that

Flrx) =1 2g(rx),
with g € M(]0, o[ xR"), equipped with the family of semi norms

1

Yo (f) =Yno(r " 2f).
Proof. e It is clear from Definition 3.9 that 7] is an injective mapping from (O)L(]O,oo[xR") into
PEIMI(]0, o0 X RY).
eletge r“+%M(]0,oo[><R”), there exists 7 € H',,(]0, +-oo[xR") such that for every (r,x) € [0, +oo[xR",
A (T)(rx) = 8(r3) = P2 (1),

with f € M(]0, e[ xR").
This shows that T belongs to @/,(]0,o0[xR") and that 77 is a bijective mapping from 0y,(]0,o[x<R")
into #+2M(]0, 0o xIR").
On the other hand, for T € @,(]0,[xR") and for every ¢ € H,,(]0, +-co[xR") and m € N, we have
Ll
Vno(Hu(T)) = Yo (r* 2 H(T)) = Qno(T)-
Q.E.D.

Remark 3.2. It is clear from Lemma 3.10 that, for every T' € H',,(]0, 4-0o[xR") and S € @}, (]0,oo[xR") the

mapping
O—<T,S*x@ >,

defines an element of H';,(]0, o[ xR").

Definition 3.12. For every T € H',,(]0, +oo[xR") and S € 0},(]0,0[xR"), we define the convolution product
T xS by the following brackets

(T+S,9) =(T,Sx¢), ¢€cH,(]0,+oo[xR").

Proposition 3.13. For every T € H',(]0, +oo[xR") and S € 0,(]0,0[xR"), we have

AT %) = 0" 2 H(8) (Mo, M) AT,
Proof. Let @ be in H,(]0,4oo[xR"),

(AT %8),9) = (T %S, 7,(9))
= (1,5 7u(9))-
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Using Proposition 3.8, Remark 3.1 and the fact that the Hankel transform is an isomorphism from
H.,(]0, +-oo[ xIR™) onto itself, we get
(T 8),0) = (T, 00" H4(5)0))
= T) 0" AS)9)
SR ACEAGR)
This proves the result. Q.E.D.

Example 3.3. Let §, be defined on H,(]0,+eo[xRR") by

1
0,0)= lim r *20(rx).
0 @) (r)—(0,0) o)

Then, 8, belongs to the dual space H',(]0, +-0o[xR") and by standard computation, we have
A8 =rE @1,

In particular, 8, belongs to the subspace Q’,,(]0, e[ xR") then, from Proposition 3.11 and Proposition 3.13,
for every T € H',,(]0, o0 xR"), we have
OuxT =T.
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