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Abstract

It is shown that the ring of fractions of the algebra of all bounded linear operators on a separable infinite
dimensional Banach space is isomorphic to the Adams completion of the algebra with respect to a carefully
chosen set of morphisms in the category of separable infinite dimensional Banach spaces and bounded
linear norm preserving operators of norms at most 1.
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1 Adams completion
The notion of (generalized) Adams completion arose from a general categorical completion process, sug-
gested by Adams [1,2]. Originally, this was considered for admissible categories and generalized homology
(or cohomology) theories. Subsequently, this notion has been considered in a more general framework by
Deleanu, Frei and Hilton [6] where an arbitrary category and an arbitrary set of morphisms of the category
are considered.

Let C be a category and S be a set of morphisms of C . Let C [S−1] denote the category of fractions
of C with respect to S and F : C → C [S−1], the canonical functor. Let S denote the category of sets and
functions. Then for a given object Y of C , C [S−1](-,Y ) : C → S defines a contravariant functor. If this
functor is representable by an object Ys of C , i.e., C [S−1](-,Y )∼= C (-,YS), then YS is called the generalized
Adams completion of Y with respect to the set of morphisms S or simply the S-completion of Y. We shall
often refer to YS as the completion of Y [6].

The following theorem shows that under certain assumptions the Adams completion of an object of a
category C always exists.

1.1 Theorem. ([7], p.32, Theorem 1) Let C be a cocomplete small U -category (U is a fixed Grothendeick
universe) and S a set of morphisms of C that admits a calculus of left fractions. Suppose that the following
compatibility condition with coproduct is satisfied.

(a) If each si : Xi→ Yi i ∈ I, is an element of S, where the index set I is an element of U , then

∨
i∈I

si : ∨
i∈I

Xi→ ∨
i∈I

Yi

is an element of S.

Then every object X of C has an Adams completion XS with respect to the set of morphisms S.
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The following theorem shows that under certain conditions the Adams completion of an object of a cat-
egory C always exists.

1.2 Theorem. ([5], p.528, Theorem 1.2) Let S be a set of morphisms of C admitting a calculus of left
fractions. Then an object YS of C is the S-completion of the object Y with respect to S if and only if there
exists a morphism e : Y → YS in S̄ which is couniversal with respect to morphisms of S : given a morphism
s : Y → Z in S there exists a unique morphism t : Z→ YS in S̄ such that ts = e. In other words, the following
diagram is commutative :

Y e //

s
��

YS

Z
t

??

In order to show the morphism e : Y → YS, as stated in Theorem 1.2 is in S, the following result is to be
used.

1.3 Theorem. ([5], p.528, Theorem 1.2) Let S be a set of morphisms in a category C admitting a calculus
of left fractions. Let e : Y → YS be the canonical morphism as defined in Theorem1.2, where YS is the
S-completion of Y . Furthermore, let S1 and S2 be sets of morphisms in the category C which have the
following properties:

(a) S1 and S2 are closed under composition,

(b) f g ∈ S1 implies that g ∈ S1,

(c) f g ∈ S2 implies that f ∈ S2,

(d) S = S1∩S2.

Then e ∈ S.

2 Ring of fractions
We recall the following definitions from [10].

Let A be a ring and let S be a multiplicatively closed subset of A, i.e., s, t ∈ S implies st ∈ S and 1 ∈
S. A ring of fractions (right) of A with respect to S [10] is defined as a ring A[S−1] together with a ring
homomorphism u : A→ A[S−1] satisfying

(i) u(s) is inverible for every s ∈ S,

(ii) every element in A[S−1] has the form u(a)u(s)−1 with s ∈ S,

(iii) u(a) = 0 if and only if as = 0 for some s ∈ S.

2.1 Proposition. [10] Let S be a multiplicatively closed subset of A. Then A[S−1] exists, if and only if S
satisfies
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(i) if s ∈ S and a ∈ A then there exists t ∈ S and b ∈ A such that sb = at,

(ii) if sa = 0 with s ∈ S, then at = 0 for some t ∈ S.

When A[S−1] exists, it has the form
A[S−1] = A×S/∼

where∼ is the equivalence relation on A×S defined as (a,s)∼ (b, t) if there exists c,d ∈ A such that ac= bd
and sc = td ∈ S.

Addition and multiplication of (a,s),(b, t) ∈ A[S−1] are defined in the obvious way:

(a,s)+(b, t) = (ac+bd,u) for some c ∈ A,u and d ∈ S with u = sc = td.

(a,s) · (b, t) = (ac, tu) for some c ∈ A and u ∈ S with sc = bu.

A[S−1] is a ring and that a 7→ (a,1) is a ring homomorphism u : A→ A[S−1].

2.2 Proposition. [10] When A[S−1] exists, it has the following universal property: for every ring homomor-
phism g : A→ B such that g(s) is invertible in B for every s ∈ S, then there exists a unique ring homomor-
phism h : A[S−1]→ B such that g = hu, i.e., the following diagram is commutative:

A u //

g

��

A[S−1]

h
||

B

2.3 Note. The objects of A[S−1] are of the form u(a)u(s)−1, a ∈ A, s ∈ S. Every element of B is of the form
g(a)g(s)−1, a ∈ A, s ∈ S and h : A[S−1]→ B is an isomorphism and it is unique. Thus u : A→ A[S−1] is
surjective.

Let A be the algebra of all bounded linear operators on a separable infinite dimensional Banach space.

We prove the following.

2.4 Proposition. Let A and B be the algebras of all bounded linear operators on a separable infinite
dimensional Banach space. Let g : A→ B be a surjective bounded linear homomorphism such that

(a) g(s) is a unit in B,

(b) g(a) = 0 implies as = 0 for some s ∈ S.

Then there exists a unique ring homorphism θ : B→ A[S−1] such that θg = u, i.e., the following diagram is
commutative

A
g //

u
��

B

θ||
A[S−1]
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Proof. By Proposition 2.2 there exists a unique isomomorhism h : A[S−1]→ B such that g = hu :

A u //

g

��

A[S−1]

h
||

B

Let θ = h−1. for any a ∈ A, θg(a) = h−1g(a) = h−1hu(a) = u(a) implying θg = u, i.e., the above diagram
is commutative.

We show that θ is unique. Let there exist another θ ′ : B→ A[S−1] such that θ ′g = u. For any b ∈ B, we
have θ ′(b) = θ ′(g(b′)) = u(b) = θg(b), i.e., θ = θ ′. This completes the proof . �

3 The category B

Let U be a fixed Grothendieck universe [9]. Let B denote the category of separable infinite dimensional
Banach spaces and bounded linear norm preserving operators of norms at most 1. We assume that the
underlying sets of the elements of B are elements of U . Let

S = {s in B : s is a bounded linear surjective norm preserving operator of norm at most 1}.

We prove the following proposites of S.

3.1 Proposition. Let si : Xi→ Yi lie in S, for each i ∈ I, where the index set I is an emement of U . Then

∨
i∈I

si : ∨
i∈I

Xi→ ∨
i∈I

Yi

lies in S.

Proof. Coproducts in B are l1 sums. Let X = ∨
i∈I

Xi, where i ∈ I and Y = ∨
i∈I

Yi, where i ∈ I. Define

s = ∨
i∈I

si : X → Y by the rule s(x) = (si(xi))i∈I . Clearly, s is well defined bounded linear homomorhism.

For any (yi)i∈I ∈ Yi, we have (yi)i∈I = (si(xi))i∈I = s(x) since si(Xi) = yi. Thus s(X) = Y, i.e., is surjec-
tive. That s is a bounded linear norm preserving operator of norm at most 1, can be proved easily. Hence
s = ∨

i∈I
si lies in S. This competes the proof. �

3.2 Proposition. S admits a calculus of left fractions.

Proof. Let A and B be any two objects of category B. Clearly S is a closed family of morphisms of the
category B. We shall verify conditions (i) and (ii) of Theorem 1.3 ([6], p.67). Let s : M→ N and t : N→ P
be two morphisms of the category B. We show that if ts ∈ S and s ∈ S, then t ∈ S. Clearly t ∈ S. Hence the
condition (i) of Theorem 1.3 ([6], p.67) holds.
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In order to prove condition (ii) of Theorem 1.3 ([6], p.67), consider the diagram

A
f //

s
��

B

C

in B with s ∈ S. We assert that the above diagram can be embedded to a weak push-out diagram

A
f //

s
��

B

t
��

C g
// D

in B with t ∈ S. Let D = (B⊕l1 C)/4̄ is the quotient of the direct sum (B⊕l1 D), endowed with the l1 norm
and 4̄ is the closer of the subspace

4= {( f (a),−s(a)) : a ∈ A} .

Define g : C → D by the rule g(c) = (0,c) + 4̄ and t : B→ D by the rule t(b) = (b,0) + 4̄. Clearly,
the two maps are well defined and bounded linear homomorphisms. For any a ∈ A, t f (a) = t( f (a)) =
( f (a),0)+4̄= (0,s(a))+4̄= g(s(a)) = gs(a) implying that t f = gs. Hence the diagram is commutative.

In order to show that t is surjective, take an element (b,c)+ 4̄ ∈ D+ 4̄. Then (b,c)+ 4̄ = (b,0)+
(0,c)+ 4̄= t(b)+g(c) = t(b)+g(s(a)) = t(b)+ t f (a) = t(b+ f (a)) ( since t is linear) implying t is sur-
jective, i.e., t ∈ S.

Next let v : B→ Z and w : C→ Z be in category B such that v f = ws

A
f //

s
��

B

t
�� v

��

C g
//

w //

D
θ

��
Z

Define θ : D→ Z, by the rule θ((b,c)+ 4̄) = u(b)+ v(c). It is easy to show that θ is well defined and
bounded linear homomorphism (since ‖θ‖ ≤max{‖u‖ ,‖v‖}). Next for any b ∈ B,θ t(b) = θ(b,0) = u(b),
showing that θ t = v; simillarly θg=w. Thus the two triangles are commutative. This completes the proof. �

The following result is well known.

3.3 Proposition. The category B is cocomplete.
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From Theorems 3.1, 3.2 and 3.3 we see that all the conditions of the Theorem 1.1 and Theorem 1.2 are
satisfied and hence we have the following result.

3.4 Theorem. Every object A of the category B has an Adams completion AS with respect to the set S of
homorphisms. Furthermore, there exists a homorphism e : A→ AS in S̄ which is couniversal with respect to
the homomorphisms in S : given a homorphism s : A→ B in S there exists a unique homorphism t : B→ AS
in S̄ such that ts = e. In other words the following diagram is commutative :

A e //

s
��

AS

B
t

??

3.5 Theorem. The homorphism e : A→ AS is in S.

Proof. Let S1 = {s : X → Y in B | s is a surjective homorphism } and S2 = {X → Y in B | s is a homo-
morphism }. For S1 and S2, it easily follows that all the conditions of Theorem 1.3 are satisfied. Therefore,
e ∈ S. This completes the proof. �

4 The result
We show that the ring of fractions A[S−1] of the algebra A of all bounded linear operators on a separable
infinite dimensional Banach space, is precisely the Adams completion AS of A.

4.1 Theorem. A[S−1]∼= AS.

Proof. Consider the diagram :
A u //

e

��

A[S−1]

AS

ϕ

<<

By Theorem 2.4, there exists a unique homorphism ϕ : AS→ A[S−1] in S such that ϕe = u.
Next consider the diagram

A e //

u
��

AS

A[S−1]

ψ

<<

By Theorem 3.4, there exists a unique homorphism ψ : A[S−1]→ AS in S such that ψu = e.
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In the following diagram
A e //

e

��

AS

A[S−1]

ψ

<<

AS

ϕ

<<

1AS

<<

we have ψϕe = ψu = e. By the uniqueness condition of the couniversal property of e, we conclude that
ψϕ = 1AS .

Also in the diagram

A i //

u

��

A[S−1]

AS

ϕ

<<

A[S−1]

ψ

<<

1A[S−1]

<<

we have ϕψu = ϕe = u. By the uniqueness condition of the couniversal property of u, we conclude that
ϕψ = 1A[S−1]. Thus A[S−1]∼= AS. This completes the proof . �

It is pleasure to thank the referee for his comments which resulted in an improved presentation of the
paper.
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